
i
i

“A5˙1038” — 2018/5/3 — 16:59 — page 59 — #1 i
i

i
i

i
i

Tema
Tendências em Matemática Aplicada e Computacional, 19, N. 1 (2018), 59-77
© 2018 Sociedade Brasileira de Matemática Aplicada e Computacional
www.scielo.br/tema
doi: 10.5540/tema.2018.019.01.0059

Parallel Implementation of a Two-level Algebraic ILU(k)-based Domain
Decomposition Preconditioner†

I.C.L. NIEVINSKI1*, M. SOUZA2, P. GOLDFELD3, D.A. AUGUSTO4,
J.R.P. RODRIGUES5 and L.M. CARVALHO6

Received on November 28, 2016 / Accepted on September 26, 2017

ABSTRACT. We discuss the parallel implementation of a two-level algebraic ILU(k)-based domain de-
composition preconditioner using the PETSc library. We present strategies to improve performance and
minimize communication among processes during setup and application phases. We compare our imple-
mentation with an off-the-shelf preconditioner in PETSc for solving linear systems arising in reservoir
simulation problems, and show that for some cases our implementation performs better.

Keywords: Two-level preconditioner, domain decomposition, Krylov methods, linear systems, parallelism,
PETSc.

1 INTRODUCTION

This paper discusses the formulation and the parallel implementation of an algebraic ILU(k)-
based two-level domain decomposition preconditioner first introduced in [2].

In this work we present and discuss details of the implementation using the MPI-based PETSc
suite [3], a set of data structures and routines for the parallel solution of scientific applications
modeled by partial differential equations. We also present results of computational experiments
involving matrices from oil reservoir simulation. We have tested with different number of pro-
cesses and compared the results with the default PETSc preconditioner, block Jacobi, which is a
usual option in the oil industry.

†This article is based on work presented at CNMAC2016.
*Corresponding author: Ítalo Nievinski – E-mail: italonievinski@gmail.com.
1Faculdade de Engenharia Mecânica, PPGEM, UERJ - Universidade do Estado do Rio de Janeiro, 20550-900 Rio de
Janeiro, RJ, Brasil.
2Departamento de Estatı́stica e Matemática Aplicada DEMA UFC - Universidade Federal do Ceará, Campus do PICI,
60455-760, Fortaleza, CE, Brasil. E-mail: michael@ufc.br
3Departamento de Matemática Aplicada, IM-UFRJ, Caixa Postal 68530, CEP 21941-909, Rio de Janeiro, RJ, Brasil.
E-mail: goldfeld@ufrj.br
4Fundação Oswaldo Cruz, Fiocruz, Av. Brasil, 4365, 21040-360 Rio de Janeiro, RJ, Brasil. E-mail: daa@fiocruz.br
5PETROBRAS/CENPES Av. Horácio Macedo 950, Cidade Universitária, 21941-915 Rio de Janeiro, RJ, Brasil. E-mail:
jrprodrigues@petrobras.com.br
6Instituto de Matemática e Estatı́stica, IME, UERJ - Universidade do Estado do Rio de Janeiro, 20550-900 Rio de
Janeiro, RJ, Brasil. E-mail: luizmc@ime.uerj.br

i
i

“A5˙1038” — 2018/5/3 — 16:59 — page 60 — #2 i
i

i
i

i
i

60 PARALLEL IMPLEMENTATION OF A TWO LEVEL PRECONDITIONER

The multilevel preconditioner has been an active research area for the last 30 years. One of the
main representatives of this class is the algebraic multigrid (AMG) method [19, 22, 30, 31], when
used as a preconditioner rather than as a solver. It is widely used in oil reservoir simulation as part
of the CPR (constrained pressure residual) preconditioner [6, 33]. Despite its general acceptance
there is room for new alternatives, as there are problems where AMG can perform poorly, see,
for instance [13]. Among these alternatives we find the two-level preconditioners. There are
many variations within this family of preconditioners, but basically we can discern at least two
subfamilies: algebraic [1, 4, 12, 14, 18, 20, 23, 28, 32] and operator dependent [15, 16, 17].
Within the operator dependent preconditioners we should highlight the spectral methods [21, 25].

Incomplete LU factorization ILU(k) [26] has long been used as a preconditioner in reservoir
simulation (an ingenious parallel implementation is discussed in [11]). Due to the difficulty in
parallelizing ILU(k), it is quite natural to combine ILU(k) and block-Jacobi, so much so that this
combination constitutes PETSc’s default parallel preconditioner [3]. The algorithm proposed
in [2], whose parallel implementation we discuss in this article, seeks to combine the use of
(sequential) ILU(K) with two ideas borrowed from domain decomposition methods: (i) the in-
troduction of an interface that connects subdomains, allowing, as opposed to block-Jacobi, for
the interaction between subdomains to be taken into account, and (ii) the introduction of a sec-
ond level, associated to a coarse version of the problem, that speeds up the resolution of low
frequency modes. These improvements come at the cost of greater communication, requiring a
more involved parallel implementation.

The main contribution of the two-level preconditioner proposed in [2] is the fine preconditioner,
as the coarse level component is a quite simple one. Accordingly, the main contribution in our
article is the development of a careful parallel implementation of that fine part; nonetheless,
we also take care of the coarse part by proposing low-cost PETSc-based parallel codes for its
construction and application. Besides the parallel implementation, we present and discuss a set
of performance tests of this preconditioner for solving synthetic and real-world oil reservoir
simulation problems.

The paper is organized as follows. Section 2 introduces the notation used throughout the paper.
Section 3 describes in detail the proposed two-level algebraic ILU(k)-based domain decompo-
sition preconditioner, which we call iSchur. Its parallel implementation is detailed in Section 4,
including the communication layout and strategies to minimize data transfer between processes,
while results of performance experiments and comparisons with another preconditioner are pre-
sented and discussed in Section 5. The conclusion is drawn in Section 6 along with some future
work directions.

2 NOTATION

In this section, we introduce some notation that will be necessary to define iSchur.

Consider the linear system of algebraic equations

Ax = b (2.1)

arising from the discretization of a system of partial differential equations (PDEs) modeling the
multiphase flow in porous media by a finite difference scheme with n gridcells. We denote by
ndof the number of degrees of freedom (DOFs) per gridcell, so that A is a matrix of dimension

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A5˙1038” — 2018/5/3 — 16:59 — page 61 — #3 i
i

i
i

i
i

NIEVINSKI, SOUZA, GOLDFELD, AUGUSTO, RODRIGUES and CARVALHO 61

ndofn× ndofn. For instance, for the standard black-oil formulation, see [24], the DOFs are oil
pressure, oil saturation and water saturation, so that ndof = 3.

It will be convenient to think of A as a block-matrix:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 ,
where a block, denoted ai j, is a matrix of dimension ndof×ndof.

The block-sparsity pattern of A is determined by the stencil of the finite-difference scheme used
for the discretization of the PDEs. Figure 1 depicts a bidimensional domain discretized by a 3×3
mesh and the sparsity pattern of the associated matrix for the black-oil model, assuming a five-
point finite-difference stencil. We say that two gridcells i and j are neighbors if either one of the
blocks ai j or a ji is not null. For the five-point stencil, gridcells are neighbors when they share an
edge. The gridcells and their respective indices are identified, in a way that Ω denotes either the

1 2

5

3

64

8 97

(a) 3×3 grid. (b) Associated matrix.

Figure 1: Discretization grid and associated
matrix, assuming three unknowns per gridcell
and a five-point stencil.

domain of the PDE or the set of indices {1,2, . . . ,n}. We introduce a disjoint partition of Ω, i.e.,
we break Ω = {1,2, . . . ,n} into P pieces Ω1,Ω2, . . . ,ΩP, in such a way that each gridcell belongs
to exactly one subdomain Ωk, see Figure 2. More precisely, we define

{ΩJ}1≤J≤P s.t.
P⋃

J=1

ΩJ = Ω and ΩI ∩ΩJ = /0 ∀I 6= J. (2.2)

We note that there are gridcells that, while belonging to one subdomain, have neighbors in other
subdomains. Our domain decomposition approach requires the definition of disconnected subdo-
mains, that can be dealt with in parallel. For that sake, we define a separator set, called interface
and denoted by Γ, and (disconnected) subdomain interiors ΩInt

J . A gridcell j is said to belong to
Γ if it is in a subdomain ΩJ while being neighbor of at least one gridcell in another subdomain
with greater index, i.e., ΩK with K > J:

Γ =
{

j ∈Ω|∃k,J,K s.t. j ∈ΩJ ,k ∈ΩK ,K > J,(a jk 6= 0 or ak j 6= 0)
}
. (2.3)

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A5˙1038” — 2018/5/3 — 16:59 — page 62 — #4 i
i

i
i

i
i

62 PARALLEL IMPLEMENTATION OF A TWO LEVEL PRECONDITIONER

Ω2 Ω4

Ω3Ω1

(a) Disjoint Subdomains ΩJ .

ΩIn t

2

ΩIn t

1
ΩIn t

3

ΩIn t

4

Γ

(b) Interface Γ and Subdomain
Interiors ΩInt

J .

Γ 2

Γ 1 Γ 3

(c) Local Interfaces ΓJ .

Ω2

Γ 3

(d) Ext. Interface Γ3 and Ext.
Subdomain Ω2.

Figure 2: 2D Domain partitioned into 4 subdomains.

We now define the subdomain interior ΩInt
J as the portion of ΩJ not in Γ:

Ω
Int
J = ΩJ−Γ, (2.4)

see Figure 2. These definitions are just enough to ensure that if gridcell j is in ΩInt
J and gridcell

k is in ΩInt
K , with J 6= K, then they are not neighbors.1 Indeed, to fix the notation, assume J < K.

Since j ∈ΩInt
J ⊂ΩJ and k ∈ΩInt

K ⊂ΩK , if j and k were neighbors, j would be in Γ by definition
(2.3) and therefore not in ΩInt

J .

We now define the local interface ΓJ associated with each subdomain ΩJ as the intersection of Γ

and ΩJ , or equivalently,

ΓJ =
{

j ∈ΩJ
∣∣ (∃K > J and ∃k ∈ΩK

)
s.t. (a jk 6= 0 or ak j 6= 0)

}
. (2.5)

Notice that {ΓJ}1≤J≤P form a disjoint partition of Γ. See Figure 2.

Finally, we define extended subdomains ΩJ and extended local interfaces ΓJ , which incorporate
the portions of the interface connected to the subdomain interior ΩInt

J . We define ΩJ as

ΩJ = ΩJ ∪
{

k ∈ Γ
∣∣ ∃ j ∈Ω

Int
J s.t. (a jk 6= 0 or ak j 6= 0)

}
. (2.6)

1Had the condition K > J been dropped from definition (2.3), Γ would still be a separator set. But it would be unnecessarily
large, which would yield a more expensive preconditioner.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A5˙1038” — 2018/5/3 — 16:59 — page 63 — #5 i
i

i
i

i
i

NIEVINSKI, SOUZA, GOLDFELD, AUGUSTO, RODRIGUES and CARVALHO 63

and ΓJ as its restriction to Γ, i.e., ΓJ = Γ∩ΩJ , see Figure 2.

Notice that ΓJ ⊂ ΓJ ⊂ Γ. We point out that ΓJ is the result of augmenting ΓJ with the gridcells
of the interface Γ that are neighbors of gridcells in ΩJ . We refer to ΓJ as an extended interface,
see Figure 2.

If the equations/variables are reordered, starting with the ones corresponding to ΩInt
1 , followed

by the other ΩInt
J and finally by Γ, then A has the following block-structure:

A =


A11 A1Γ

. . .
...

APP APΓ

AΓ1 · · · AΓP AΓΓ

 , (2.7)

where the submatrices AJJ contain the rows and columns of A associated with ΩInt
J , AΓΓ the ones

associated with Γ, AJΓ the rows associated with ΩInt
J and the columns associated with Γ, and

AΓJ the rows associated with Γ and the columns associated with ΩInt
J . Therefore, denoting by |S|

the number of elements in a set S, the dimensions of AJJ , AΓΓ, AJΓ and AΓJ are, respectively,
ndofnJ × ndofnJ , ndofm× ndofm, ndofnJ × ndofm, and ndofm× ndofnJ , where nJ =

∣∣ΩInt
J

∣∣ and m =
|Γ|. It is important to notice that, since a jk = 0 for any j ∈ ΩInt

J and k ∈ ΩInt
K with J 6= K, the

submatrices AJK of rows associated with ΩInt
J and columns associated with ΩInt

K are all null (and
therefore omitted in (2.7)). This block-diagonal structure of the leading portion of the matrix
(which encompasses most of the variables/equations) allows for efficient parallelization of many
tasks, and was the ultimate motivation of all the definitions above. We point out that although not
necessary by the method, the implementation discussed in this work assumes that the matrix A
is structurally symmetric2, in this case the matrices AJJ and AΓΓ are also structurally symmetric.
Furthermore, AJΓ and AT

ΓJ have the same nonzero pattern.

3 DESCRIPTION OF THE TWO-LEVEL PRECONDITIONER

The goal of a preconditioner is to replace the linear system (2.1) by one of the equivalent ones:

(MA)x = Mb (left preconditioned) or

(AM)y = b (right preconditioned, where x = My).

A good preconditioner shall render AM or MA much better conditioned than A (i.e., M should
approximate, in a sense, A−1) and, in order to be of practical interest, its construction and
application must not be overly expensive.

We now present our preconditioner, which combines ideas from domain decomposition meth-
ods, DDM, and level-based Incomplete LU factorization, ILU(k). In DDM, one tries to build an
approximation to the action of A−1 based on the (approximation of) inverses of smaller, local ver-
sions of A (subdomain-interior submatrices AJJ , in our case). In this work, the action of the local
inverses is approximated by ILU(kInt), while other components required by the preconditioner
(see equation (3.4)) are approximated with different levels (kBord, kProd or kΓ). The motivation

2If A is structurally symmetric, then AT and A have the same nonzero structure but are not necessarily equal.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A5˙1038” — 2018/5/3 — 16:59 — page 64 — #6 i
i

i
i

i
i

64 PARALLEL IMPLEMENTATION OF A TWO LEVEL PRECONDITIONER

for this approach is that ILU(k) has been widely used with success as a preconditioner in reser-
voir simulation and DDM has been shown to be an efficient and scalable technique for parallel
architectures.

It is well established that in linear systems associated with parabolic problems, the high-
frequency components of the error are damped quickly, while the low-frequency ones take many
iterations to fade, see [31]. In reservoir simulation, the pressure unknown is of parabolic nature.
A two-level preconditioner tackles this problem by combining a “fine” preconditioner component
MF , as the one mentioned in the previous paragraph, with a coarse component MC, the purpose
of which is to annihilate the projection of the error onto a coarse space (associated with the
low frequencies). If the two components are combined multiplicatively (see [29]), the resulting
two-level preconditioner is

M = MF +MC−MF AMC. (3.1)

In Subsection 3.1 we present a ILU(k)-based fine component MF and in Subsection 3.2 we
describe a simple coarse component.

3.1 ILU(k) based Domain Decomposition

The fine component of the domain decomposition preconditioner is based on the following block
LU factorization of A:

A = LU =


L1

. . .
LP

B1 · · · BP I




U1 C1
. . .

...
UP CP

S

 , (3.2)

where AJJ = LJUJ is the LU factorization of AJJ , BJ = AΓJU−1
J , CJ = L−1

J AJΓ and

S = AΓΓ−
P

∑
J=1

AΓJA−1
JJ AJΓ = AΓΓ−

P

∑
J=1

BJCJ , (3.3)

is the Schur complement of A with respect to the interior points.

From the decomposition in (3.2), we can show that the inverse of A is

A−1 =


U−1

1
. . .

U−1
P

I




C1

I
...

CP

−I


 I

S−1


 I

B1 · · · BP −I




L−1
1

. . .
L−1

P

I

 . (3.4)

We want to define a preconditioner MF approximating the action of A−1 on a vector. There-
fore, we need to define suitable approximations for L−1

J , U−1
J , BJ and CJ , J = 1, . . . ,P, and for

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A5˙1038” — 2018/5/3 — 16:59 — page 65 — #7 i
i

i
i

i
i

NIEVINSKI, SOUZA, GOLDFELD, AUGUSTO, RODRIGUES and CARVALHO 65

S−1. These approximations are denoted by L̃−1
J , Ũ−1

J , B̃J , C̃J , and S−1
F , respectively. The fine

preconditioner is then defined as

MF =


Ũ−1

1
. . .

Ũ−1
P

I




C̃1

I
...

C̃P

−I


 I

S−1
F


 I

B̃1 · · · B̃P −I




L̃−1
1

. . .
L̃−1

P

I

 . (3.5)

In the remaining of this subsection, we describe precisely how these approximations are chosen.

First we define L̃J and ŨJ as the result of the incomplete LU factorization of AJJ with level of
fill kInt, [L̃J ,ŨJ] = ILU(AJJ ,kInt). In our numerical experiments, we used kInt = 1, which is a
usual choice in reservoir simulation. Even though L̃J and ŨJ are sparse, L̃−1

J AJΓ and Ũ−T
J AT

ΓJ
(which would approximate CJ and BT

J) are not. To ensure sparsity, C̃J ≈ L̃−1
J AJΓ is defined as

the result of the incomplete triangular solve with multiple right-hand sides of the system L̃JC̃J =
AJΓ, by extending the definition of level of fill as follows. Let vl and wl be the sparse vectors
corresponding to the l-th columns of AJΓ and C̃ respectively, so that L̃Jwl = vl . Based on the
solution of triangular systems by forward substitution, the components of vl and wl are related
by

wlk = vlk −
k−1

∑
i=1

L̃Jkiwli . (3.6)

The level of fill-in of component k of wl is defined recursively as

Lev(wlk) = min
{

Lev(vlk), min
1≤i≤(k−1)

{
Lev(L̃Jki)+Lev(wli)+1

}}
, (3.7)

where Lev(vlk) = 0 when vlk 6= 0 and Lev(vlk) = ∞ otherwise, and Lev(L̃Jki) is the level of fill of
entry ki in the ILU(kInt) decomposition of AJJ when L̃Jki 6= 0 and Lev(L̃Jki) = ∞ otherwise. The
approximation C̃J to CJ = L−1

J AJΓ is then obtained by an incomplete forward substitution (IFS)
with level of fill kBord, in which we do not compute any terms with level of fill greater than kBord

during the forward substitution process. We denote C̃J = IFS(L̃J ,AJΓ
,kBord). Notice that when

kBord = kInt, C̃J is what would result from a standard partial incomplete factorization of A. The
approximation B̃J to BJ = AΓJŨ−1

J is defined analogously.

Similarly, in order to define an approximation S̃ to S, we start by defining FJ = B̃JC̃J and a level
of fill for the entries of FJ ,

Lev(FJkl) = min
{

Lev(AΓΓkl), min
1≤i≤m

{
Lev(B̃Jki)+Lev(C̃Jil)+1

}}
, (3.8)

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A5˙1038” — 2018/5/3 — 16:59 — page 66 — #8 i
i

i
i

i
i

66 PARALLEL IMPLEMENTATION OF A TWO LEVEL PRECONDITIONER

where m = #ΩInt
J is the number of columns in B̃J and rows in C̃J , Lev(AΓΓkl) = 0 when AΓΓkl 6= 0

and Lev(AΓΓkl) = ∞, otherwise, and Lev(C̃Jki) is the level of fill according to definition (3.7)
when C̃Jki 6= 0 and Lev(CJki) = ∞, otherwise

(
Lev(B̃Jil) is defined in the same way

)
. Next, F̃J is

defined as the matrix obtained keeping only the entries in FJ with level less than or equal to kProd

according to (3.8). We refer to this incomplete product(IP) as F̃J = IP(B̃J ,C̃J ,kProd).

S̃ is then defined as

S̃ = AΓΓ−
P

∑
J=1

F̃J . (3.9)

While S̃ approximates S, we need to define an approximation for S−1. Since S̃ is defined on
the global interface Γ, it is not practical to perform ILU on it. Instead, we follow the approach
employed in [7] and define for each subdomain a local version of S̃,

S̃J = RJ S̃RT
J , (3.10)

where RJ : Γ→ ΓJ is a restriction operator such that S̃J is the result of pruning S̃ so that only the
rows and columns associated with ΓJ remain. More precisely, if {i1, i2, . . . , in

ΓJ
} is a list of the

nodes in Γ that belong to ΓJ , then the k-th row of RJ is eT
ik , the ik-th row of the nΓ×nΓ identity

matrix,

RJ =


eT

i1
...

eT
inΓ

 .
Finally, our approximation S−1

F to S−1 is defined as

S−1
F =

P

∑
J=1

TJ(LS̃J
US̃J

)−1RJ ≈
P

∑
J=1

TJ S̃−1
J RJ , (3.11)

where LS̃J
and US̃J

are given by ILU(kΓ) of S̃J . Here TJ : ΓJ → Γ is an extension operator that
takes values from a vector that lies in ΓJ , scales them by wJ

1, . . . ,w
J
n

ΓJ
(which we call weights),

and places them in the corresponding position of a vector that lies in Γ. Therefore, using the same
notation as before, the k-th column of TJ is wJ

keik ,

TJ =
[

wJ
1ei1 · · · wJ

nΓ
einΓ

]
.

Different choices for the weights gives rise to different options for TJ , our choice is one that
avoids communication among processes and is defined as follows.

wJ
k =

{
1, if the ik-th node of Γ belongs to ΓJ

0, if the ik-th node of Γ belongs to ΓJ−ΓJ .

We note that TJ ,J = 1, . . . ,P, form a partition of unity. Our approach is based on the Restricted
Additive Schwarz method, proposed on [5].

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A5˙1038” — 2018/5/3 — 16:59 — page 67 — #9 i
i

i
i

i
i

NIEVINSKI, SOUZA, GOLDFELD, AUGUSTO, RODRIGUES and CARVALHO 67

3.2 Coarse Space Correction

We define a coarse space spanned by the columns of an (n×P) matrix that we call RT
0 . The J-th

column of RT
0 is associated with the extended subdomain ΩJ and its i-th entry is

(RT
0)iJ =

{
0, if node i is not in ΩJ and
µΩ
−1
i , if node i is in ΩJ ,

where the i-th entry of µΩ, denoted µΩi, counts how many extended subdomains the i-th node
belongs to. Notice that (RT

0)iJ = 1 ∀i ∈ΩInt
J and that the columns of RT

0 form a partition of unity,
in the sense that their sum is a vector with all entries equal to 1.

We define MC by the formula
MC = RT

0 (R0ART
0)
−1R0. (3.12)

Notice that this definition ensures that MCA is a projection onto range(RT
0) and for A symmetric

positive definite this projection is A-orthogonal. Since R0ART
0 is small (P×P), we use exact LU

(rather than ILU) when applying its inverse.

Summing up, the complete preconditioner has two components: one related to the complete
grid, called MF in equation (3.5), and another related to the coarse space (3.12). It is possible
to subtract a third term that improves the performance of the whole preconditioner, although
increasing its computational cost. The combined preconditioners are written down as

M = MF +MC or (3.13)

M = MF +MC−MF AMC. (3.14)

This formulation implies that the preconditioners will be applied additively (3.13) or multiplica-
tively (3.1) and can be interpreted as having two levels, see [7]. In the following sections we
address this two-level algebraic ILU(k)-based domain decomposition preconditioner by iSchur
(for “incomplete Schur”).

4 PARALLEL IMPLEMENTATION

In this section we discuss the parallel implementation of the preconditioner, considering data
locality, communication among processes, and strategies to avoid communication.

We use distributed memory model, so the matrix A is distributed among the processes and, as we
use PETSc, the rows corresponding to the elements of each subdomain, including interior and
local interfaces, reside in the same process, see Figure 3 for a four domain representation.

4.1 Preconditioner Setup

Algorithm 1 describes the construction of the fine and coarse components of the preconditioner.

Step 1 of Algorithm 1 is the incomplete LU factorization. Because each subdomain is completely
loaded in only one process and there is no connections between subdomain interiors, this step
can be done in parallel in each process without communication. We use a native and optimized
PETSc routine that computes the incomplete LU factorization.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A5˙1038” — 2018/5/3 — 16:59 — page 68 — #10 i
i

i
i

i
i

68 PARALLEL IMPLEMENTATION OF A TWO LEVEL PRECONDITIONER

Figure 3: Subdomain and matrix distribution among processes.

Algorithm 1: Preconditioner Setup

Input: A, kInt, kBord, kProd

Output: L̃J , ŨJ , C̃J , B̃J , LS̃J
, US̃J

, LC, UC

Fine Component

1: [L̃J ,ŨJ] = ILU(AJJ ,kInt), J = 1, . . . ,P;

2: C̃J = IFS(L̃J ,AJΓ,kBorder), J = 1, . . . ,P;

3: B̃J =

(
IFS(ŨT

J ,AT
ΓJ ,kBorder)

)T

, J = 1, . . . ,P;

4: S̃ = AΓΓ−
P

∑
J=1

IP(B̃J ,C̃J ,kProd)

5: S̃J = RJ S̃RT
J , J = 1, . . . ,P;

6: [LS̃J
,US̃J

] = ILU(S̃J ,kΓ), J = 1, . . . ,P;

Coarse Component

7. [LC,UC] = LU(R0ART
0).

In Step 2, C̃J = IFS(L̃J ,AJΓ,0) computes an approximation C̃J = L̃−1AJΓ through a level zero
incomplete triangular solver applied to the columns of AJΓ. For each column ai of AJΓ, we take
Ii, the set of indices of the nonzero elements of ai. Then we solve ci(Ii) = L̃(Ii,Ii)\ai(Ii),
which is a small dense triangular system, where ci is the i-th column of C̃J . See Figure 4. The

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A5˙1038” — 2018/5/3 — 16:59 — page 69 — #11 i
i

i
i

i
i

NIEVINSKI, SOUZA, GOLDFELD, AUGUSTO, RODRIGUES and CARVALHO 69

light gray rows and columns represent the Ii indices applied to the rows and columns of the
matrix L̃J and the dark gray elements are the ones in L̃(Ii,Ii). We use a PETSc routine to get
the submatrices L̃(Ii,Ii) as a small dense matrix and use our own dense triangular solver to
compute ci(Ii), which is a small dense vector, and then use another PETSc routine to store it
in the correct positions of ci, which is a column of the sparse matrix C̃J . We observe that the
nonzero columns of AJΓ that take part in these operations, in each subdomain, are related to the
extended interface, but are stored locally.

IFS(L̃J ,ai,0)

L̃(Ii,Ii)\ai(Ii) = ci(Ii)

ci

Figure 4: Incomplete Forward Substitution.

Note that L̃J and AJΓ (see Equation (2.5)) are in process J, as can be seen in Figure 3, which
means that Step 2 is done locally without any communication.

Step 3 computes B̃J also through the incomplete forward substitution using the same idea de-
scribed for Step 2 , but AΓJ is not stored entirely in process J. Actually, AΓJ has nonzero ele-
ments in the rows associated with the extended interface ΓJ , therefore the elements of AΓJ are
distributed among process J and its neighbors. So each process has to communicate only with its
own neighbors to compute B̃J . The matrix B̃J is stored locally in process J.

The communication layout of Step 3 is illustrated in an example for four subdomains in Figure
5, where the arrows show the data transfer flow. In this example, using, for instance, five-point
centered finite differences, each subdomain has at most two neighbors, but in different 2-D or
3-D grids and with different discretization schemes, each subdomain can have more neighbors.

The Step 4 computes the Schur complement through an incomplete product as described by equa-
tion (3.9). The submatrix AΓΓ is formed by the subdomains interfaces and therefore is distributed
among the processes. Each process computes locally its contribution IP(B̃J ,C̃J ,kProd) and sub-
tracts globally from AΓΓ to build up S̃, which is also distributed among the processes in the same
way AΓΓ is. Again, each subdomain communicates with their neighbors following the pattern
illustrated in Figure 5, but with arrows pointers reversed, and there is a synchronization barrier
to form the global matrix S̃.

In Step 5 and 6, each process takes a copy of the local part of S̃ relative to the extended interface
ΓJ as in (3.10), communicating only with neighbors, and makes an incomplete LU factorization.
The use of local copies avoids communication during the parallel application of S̃ throughout the
linear solver iterations when using the RAS [5] version of the preconditioner.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A5˙1038” — 2018/5/3 — 16:59 — page 70 — #12 i
i

i
i

i
i

70 PARALLEL IMPLEMENTATION OF A TWO LEVEL PRECONDITIONER

Figure 5: Domain distribution among processes.

In Step 7 the matrix R0ART
0 is initially formed as a parallel matrix, distributed among the pro-

cesses. Local copies of this matrix is made in all processes and then a LU factorization is done
redundantly. The order of this matrix is P, which is in general quite small.

4.2 Preconditioner Application

Algorithm 2 describes the application of the preconditioner M to the vector r, i.e., the computa-
tion of z = Mr. We define two additional restriction operators, RΩJ : Ω→ ΩInt

J and RΓ : Ω→ Γ.
These restriction operators are needed to operate on the correct entries of the vector, it can be
seen as a subset of indices in the implementation.

Step 1 of Algorithm 2 solves a triangular linear system in each process involving the L̃J factor
and the local interior portion of the residual, obtaining zJ . This process is done locally and no
communication is necessary because the residual r is distributed among the processes following
the same parallel layout of the matrix.

Step 2 applies B̃J multiplying zJ and subtracting from rΓ obtaining zΓ and the communication
between the neighbor subdomains is necessary only in rΓ and zΓ because B̃J is stored locally in
process J.

The Schur complement application is done in Step 3. Because each process has a local copy of its
parts of S̃ factored into LS̃ e US̃, only the communication in zΓ between the neighbor subdomains
is necessary. As described above, TJ is a diagonal operator, so we can compute it as a vector,

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A5˙1038” — 2018/5/3 — 16:59 — page 71 — #13 i
i

i
i

i
i

NIEVINSKI, SOUZA, GOLDFELD, AUGUSTO, RODRIGUES and CARVALHO 71

Algorithm 2: Preconditioner Application

Here we adopt the Matlab-style notation A\b to denote the exact solution of Ax = b.
Input: r, L̃J , ŨJ , C̃J , B̃J , LS̃J

, US̃J
, LC, UC

Output: z

1: zJ = L̃J \ (RΩJ r), J = 1, . . . ,P;

2: zΓ = RΓr−
P

∑
J=1

B̃JzJ

3: zΓ =
P

∑
J=1

TJ

(
US̃J
\
(

LS̃J
\ (RJzΓ)

))
;

4: zJ = ŨJ \
(

zJ−C̃JzΓ

)
, J = 1, . . . ,P;

5: zF = RT
Γ

zΓ +
P

∑
J=1

RT
ΩJ

zJ

Coarse correction:

6. z = zF +RT
0 (UC \ (LC \R0r)).

which is applied through an element wise product. The result is then summed globally in zΓ. At
this point there is a synchronization barrier among all processes.

In Step 4 we apply the ŨJ factor to zJ − C̃JzΓ. The matrix-vector product C̃JzΓ requires com-
munication among neighbors in zΓ and then the triangular solver is done locally with no
communication.

The vectors zJ and the vector zΓ are gathered in zF in Step 5, where zF is the residual
preconditioned by the fine component of the preconditioner.

Step 6 applies the coarse component, completing the computation of the preconditioned residual.
Triangular solvers involved are local because there are local copies of LC and UC in each process,
so no communication is necessary.

5 COMPARISON TESTS

We use two metrics to evaluate the preconditioners: the number of iterations and the solution
time. In this section we describe the platform where the tests were run, present the results of the
proposed preconditioner, and compare with a native PETSc preconditioner.

We consider five matrices from reservoir simulation problems. They are linear systems arising
from applying Newton’s method to solve the nonlinear equations discretizing the system of PDEs
that model multiphase flow in porous media. Matrices F8, U26, U31 and Psalt were generated
from a Petrobras reservoir simulation tool. The Psalt problem is a synthetic presalt reservoir

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A5˙1038” — 2018/5/3 — 16:59 — page 72 — #14 i
i

i
i

i
i

72 PARALLEL IMPLEMENTATION OF A TWO LEVEL PRECONDITIONER

model. The fifth matrix is the standard SPE10 model [10] with over a million active cells. All the
problems are black oil models using fully implicit method and there are four degrees of freedom
per grid cell.

Table 1 shows the problems’ size considering the total number of cells and the size of their
respective matrices.

Table 1: Test case problems.

Matrix Problem Size Matrix Size
F8 182558 730232

U26 408865 1635460
U31 617459 2469836
Psalt 765620 3062480

SPE10 1094421 4377684

For both preconditioners the problem was solved using native PETSc right preconditioned GM-
RES method [27], with relative residual tolerance of 1e-4, maximum number of iterations of
1000, and restarting at every 30th iteration. The mesh was partitioned using PT-Scotch [9]. IS-
chur has fill-in level 1 in the interior of the subdomains and zero in the interfaces, namely kInt = 1,
kBord = kProd = kΓ = 0, as this specific configuration presented a better behavior in preliminary
Matlab tests.

We compare the proposed two-level preconditioner with PETSc’s native block Jacobi precondi-
tioner (see [3]) combined (as in equation (3.1)) with the same coarse component presented in
this paper. We refer to this combination simply as block Jacobi. We note that block-Jacobi/ILU
is the default preconditioner in PETSc and is a common choice of preconditioner in reservoir
simulation, which makes it an appropriate benchmark.

The first set of tests was run on an Intel Xeon(R) 64-bit CPU E5-2650 v2 @ 2.60GHz with 16
cores (hyper-threading disabled), 20MB LLC, 64GB RAM (ECC enabled). The operating system
is a Debian GNU/Linux distribution running kernel version 3.2.65. The compiler is Intel Parallel
Studio XE 2015.3.187 Cluster Edition.

The iSchur preconditioner, both in setup and application phases, requires more computation and
communication than block Jacobi, so it has to present a pronounced reduction in number of
iterations compared with block Jacobi in order to be competitive. Table 2 shows the number of
iterations and the total time, in seconds, for both preconditioners, for all the tested problems,
ranging from one to sixteen processes. For each test, the best results are highlighted in gray.
We can observe that the iSchur preconditioner does reduce the number of iterations compared to
block Jacobi for all problems in any number of processes. For one process (sequential execution),
both preconditioners are equal, as there are no interface points, so we show the results just for the
sake of measuring speed up and scalability. In average, iSchur does 80% as many iterations as
block Jacobi. In this set of experiments, iSchur was more robust than block Jacobi, as the latter
failed to converge in two experiments.

We also observe that, for some of the matrices, the number of iterations increases with the number
of processes. This is to be expected, since block Jacobi neglects larger portions of the matrix as

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A5˙1038” — 2018/5/3 — 16:59 — page 73 — #15 i
i

i
i

i
i

NIEVINSKI, SOUZA, GOLDFELD, AUGUSTO, RODRIGUES and CARVALHO 73

the size of the subdomains decreases. A correlated fact occurs with iSchur. In this case as we are
using different levels of fill in the interface related parts and in the interior parts, more information
is neglected with more subdomains, as the number of interface points increases.

Table 2: Number of iterations and the total time for both preconditioners from 1 to 16
processes. (NC) stands for “not converged”.

Mat Prec
Number of Iterations Processes Total Time (s) Processes
1 2 4 8 16 1 2 4 8 16

F8
iS

104
113 106 92 102

10.8
7.9 4.1 2.1 1.8

bJ 119 109 125 135 6.1 3.0 1.9 1.7

U26
iS

92
131 199 218 303

22.0
19.8 14.5 9.1 9.9

bJ 252 NC 404 349 28.2 NC 13.3 9.7

U31
iS

69
110 449 517 864

28.0
28.8 48.7 32.1 43.1

bJ 124 593 639 NC 24.1 56.7 35.4 NC

Psalt
iS

34
68 57 72 54

17.8
24.3 11.9 8.2 5.6

bJ 87 76 117 76 19.7 9.2 8.0 5.0

SPE10
iS

116
135 148 148 176

71.5
53.9 30.9 18.0 17.5

bJ 142 149 164 198 43.6 24.1 15.4 16.1

Table 2 also shows the total time of the solution using both preconditioners. We can see that
despite the reduction in the number of iterations the solver time of iSchur is smaller than block
Jacobi only in a few cases. One of the main reasons is that the iSchur setup time is greater than
block Jacobi’s, especially when running on few processes. Although iSchur’s setup is intrinsi-
cally more expensive than block Jacobi’s, we believe that this part of our code can still be further
optimized to reduce this gap.

In reservoir simulation, the sparsity pattern of the Jacobian matrix only changes when the oper-
ating conditions of the wells change, and therefore it remains the same over the course of many
nonlinear iterations. This is an opportunity to spare some computational effort in the setup phase,
since in this case the symbolic factorization does not need to be redone. We can see in Table 3
the time comparison when the symbolic factorization is not considered; in this scenario iSchur is
faster in most cases. Furthermore, block Jacobi is a highly optimized, mature code (the default
PETSc preconditioner), while iSchur could possibly be further optimized.

In order to examine the behavior of the preconditioners as the number of subdomains increases,
we ran tests up to 512 processes on a cluster consisting of nodes with 16GB RAM and two Intel
Xeon E5440 Quad-core processors each, totaling 8 CPU cores per node. The results are depicted
in Figure 6. We see that iSchur consistently outperforms block Jacobi in terms of number of
iterations. Nonetheless, the behaviour of both preconditioners, with respect to scalability, cannot
be predicted from these experiments. Tests with more MPI processes, in a larger cluster, are still
required.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A5˙1038” — 2018/5/3 — 16:59 — page 74 — #16 i
i

i
i

i
i

74 PARALLEL IMPLEMENTATION OF A TWO LEVEL PRECONDITIONER

Table 3: Time of iterative solver without the symbolic
factorization.

Iterative Solver Time (s)

Mat Prec
Processes

1 2 4 8 16

F8
iS

10.5
6.3 3.3 1.7 1.6

bJ 6.1 3.0 1.9 1.7

U26
iS

21.7
16.2 12.7 8.2 9.4

bJ 28.1 NC 13.3 9.7

U31
iS

27.5
22.8 45.6 30.5 42.2

bJ 23.9 56.7 35.3 NC

Psalt
iS

17.3
17.5 8.4 6.4 4.6

bJ 19.6 9.2 8.0 5.0

SPE10
iS

70.8
44.2 26.0 15.5 16.1

bJ 43.4 24.0 15.3 16.1

1 2 4 8 16 32 64 128 256 512
Processes

50

100

150

200

250

It
er

at
io
ns

Psalt ischur
Psalt bjacobi

SPE10 ischur
SPE10 bjacobi

Figure 6: Comparison between block Jacobi and iSchur up to 512 processes.

6 CONCLUSIONS AND REMARKS

The presented preconditioner successfully reduced the number of iterations for the target
reservoir problems compared to block Jacobi for the full range of partitions tested.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A5˙1038” — 2018/5/3 — 16:59 — page 75 — #17 i
i

i
i

i
i

NIEVINSKI, SOUZA, GOLDFELD, AUGUSTO, RODRIGUES and CARVALHO 75

The scalability of both preconditioners is an on-going research as tests in a larger cluster are still
necessary, but these initial results indicate a little advantage to iSchur.

For the current implementation the total solution time, setup and iterative solver, of the iSchur is
smaller in only a few cases, where one important factor is the inefficiency in the setup step. The
block Jacobi in PETSc is highly optimized while our implementation has room for improvement.

Removing the symbolic factorization time, considering the case when it is done once and used
multiple times, which is usual in reservoir simulation, the solution using the iSchur precondi-
tioner is faster for most tested cases. It shows that the presented preconditioner can be a better
alternative than block Jacobi for the finer component when using two-level preconditioners to
solve large-scale reservoir simulation problems. Furthermore, we deem that the application part
of the code can still be optimized.

RESUMO. Discutimos a implementação paralela de um precondicionador algébrico de
decomposição de domı́nios em dois nı́veis baseado em ILU(k), utilizando a biblioteca
PETSc. Apresentamos estratégias para melhorar a performance, minimizando a comunica-
ção entre processos durante as fases de construção e de aplicação. Comparamos, na solução
de sistemas lineares provenientes de problemas de simulação de reservatórios, a nossa
implementação com um precondicionador padrão do PETSc. Mostramos que, para alguns
casos, nossa implementação apresenta um desempenho superior.

Palavras-chave: Precondicionador de dois nı́veis, decomposição de domı́nio, métodos de
Krylov, sistemas lineares, paralelismo, PETSc.

REFERENCES

[1] T. M. Al-Shaalan, H. Klie, A.H. Dogru, & M. F. Wheeler. Studies of robust two stage preconditioners
for the solution of fullyimplicit multiphase flow problems. In SPE Reservoir Simulation Symposium,
2-4 February, The Woodlands, Texas, number SPE-118722 in MS, (2009).

[2] D. A. Augusto, L. M. Carvalho, P. Goldfeld, I. C. L. Nievinski, J.R.P. Rodrigues, & M.Souza. An
algebraic ILU(k) based two-level domain decomposition preconditioner. In Proceeding Series of the
Brazilian Society of Computational and Applied Mathematics, 3 (2015), 010093–1– 010093–7.

[3] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W.
D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B.F. Smith, S. Zampini, H. Zhang,
& H. Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 3.7, Argonne National
Laboratory, (2016).

[4] M. Bollhöfer & V. Mehrmann. Algebraic multilevel methods and sparse approximate inverses. SIAM
Journal on Matrix Analysis and Applications, 24(1) (2002), 191–218.

[5] X. Cai & M. Sarkis. A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems
SIAM Journal on Scientific Computing, 21(2) (1999), 792–797.

[6] H. Cao, H. Tchelepi, J. Wallis & H. Yardumian. Parallel scalable unstructured CPR-type linear solver
for reservoir simulation. In SPE Annual Technical Conference and Exhibition, 9-12 October 2005,
Dallas, Texas. Society of Petroleum Engineers, (2005).

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A5˙1038” — 2018/5/3 — 16:59 — page 76 — #18 i
i

i
i

i
i

76 PARALLEL IMPLEMENTATION OF A TWO LEVEL PRECONDITIONER

[7] L. M. Carvalho, L. Giraud & P. L. Tallec. Algebraic two-level preconditioners for the Schur
complement method, SIAM Journal on Scientific Computing, 22(6) (2001), 1987–2005.

[8] T. F. Chan, J. Xu & L. Zikatanov. An agglomeration multigrid method for unstructured grids.
Contemporary Mathematics, 218 (1998), 67–81.

[9] C. Chevalier & F. Pellegrini. PT-Scotch: A tool for efficient parallel graph ordering Parallel computing,
34(6) (2008), 318–331.

[10] M. A. Christie & M. J. Blunt. Tenth SPE comparative solution project: A comparison of upscaling
techniques in SPE Reservoir Simulation Symposium, (2001).

[11] D. A. Collins, J.E. Grabenstetter & P. H. Sammon. A Shared-Memory Parallel Black-Oil Simulator
with a Parallel ILU Linear Solver. SPE-79713-MS. In SPE Reservoir Simulation Symposium, Houston,
2003. Society of Petroleum Engineers.

[12] L. Formaggia & M. Sala. Parallel Computational Fluids Dynamics. Practice and Theory., chapter
Algebraic coarse grid operators for domain decomposition based preconditioners. Elsevier, (2002),
119–126.

[13] S. Gries, K. Stüben, G. L. Brown, D. Chen & D. A. Collinns. Preconditioning for efficiently applying
algebraic multigrid in fully implicit reservoir simulations. SPE Journal, 19(04): 726–736, August 2014.
SPE-163608-PA.

[14] H. Jackson, M. Taroni & D. Ponting. A two-level variant of additive Schwarz preconditioning for use
in reservoir simulation. arXiv preprint arXiv:1401.7227, (2014).

[15] P. Jenny, S. Lee & H. Tchelepi. Multi-scale finite-volume method for elliptic problems in subsurface
flow simulation. Journal of Computational Physics, 187(1) (2003), 47– 67.

[16] P. Jenny, S. Lee & H. Tchelepi. Adaptive fully implicit multi-scale finite-volume method for multi-
phase flow and transport in heterogeneous porous media. Journal of Computational Physics, 217(2)
(2006), 627–641.

[17] P. Jenny, S. H. Lee & H. A. Tchelepi. Adaptive multiscale finite-volume method for multiphase flow
and transport in porous media. Multiscale Modeling & Simulation, 3(1) (2005), 50–64.

[18] A. Manea, J. Sewall & H. Tchelepi. Parallel multiscale linear solver for reservoir simulation. Lecture
Notes - slides - 4th SESAAI Annual Meeting Nov 5, 2013, (2013).

[19] A. Muresan & Y. Notay. Analysis of aggregation-based multigrid. SIAM Journal on Scientific
Computing, 30(2) (2008), 1082–1103.

[20] R. Nabben & C. Vuik. A comparison of deflation and coarse grid correction applied to porous media
flow. SIAM J. Numer. Anal., 42 (2004), 1631–1647.

[21] F. Nataf, H. Xiang & V. Dolean. A two level domain decomposition preconditioner based on local
Dirichlet-to-Neumann maps. Comptes Rendus Mathematique, 348(21-22) (2010), 1163–1167.

[22] Y. Notay. Algebraic multigrid and algebraic multilevel methods: a theoretical comparison. Numer.
Linear Algebra Appl, 12(5-6) (2005), 419–451.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

i
i

“A5˙1038” — 2018/5/3 — 16:59 — page 77 — #19 i
i

i
i

i
i

NIEVINSKI, SOUZA, GOLDFELD, AUGUSTO, RODRIGUES and CARVALHO 77

[23] Y. Notay. Algebraic analysis of two-grid methods: The nonsymmetric case. Numerical Linear Algebra
with Applications, 17(1) (2010), 73–96.

[24] D. W. Peaceman Fundamentals of Numerical Reservoir Simulation. Elsevier, (1977).

[25] A. Quarteroni & A. Valli. Applied and Industrial Mathematics: Venice - 1, 1989, chapter Theory and
Application of Steklov-Poincaré Operators For Boundary-Value Problems. Kluwer, (1991), 179–203.

[26] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2nd edition, (2003).

[27] Y. Saad & M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems SIAM Journal on scientific and statistical computing, 7(3) (1986),
856–869.

[28] Y. Saad & J. Zhang. BILUM: Block versions of multielimination and multilevel ILU preconditioner
for general sparse linear systems. SIAM Journal on Scientific Computing, 20(6) (1999), 2103–2121.

[29] B. Smith, P. Bjørstad & W. Gropp. Domain Decomposition, Parallel Multilevel Methods for Elliptic
Partial Differential Equations. Cambridge University Press, New York, 1st edition, (1996).

[30] J. Tang, R. Nabben, C. Vuik & Y. Erlangga. Theoretical and numerical comparison of various pro-
jection methods derived from deflation, domain decomposition and multigrid methods. Reports of the
Department of Applied Mathematical Analysis 07-04, Delft University of Technology, January 2007.

[31] U. Trottenberg, C. Oosterlee & A. Schuller. Multigrid. Academic Press, Inc. Orlando, USA, (2001).

[32] C. Vuik & J. Frank. Coarse grid acceleration of a parallel block preconditioner. Future Generation
Computer Systems, JUN, 17(8) (2001), 933–940.

[33] J. Wallis, R. Kendall & T. Little. Constrained residual acceleration of conjugate residual meth-
ods. In SPE Reservoir Simulation Symposium, number SPE 13563 in 8 th Symposium on Reservoir
Simulation, Dallas, 1985. Society of Petroleum Engineers.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)

