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ABSTRACT: Nitric oxide (NO) has been standing out as a seed germination process stimulator, 
mainly under stress conditions. This work aimed to evaluate the physiological and biochemical 
effects of NO on germination and vigor of pea seeds submitted to water deficit. Seeds of 
cv. Itapuã 600 were sown in moistened substrate with water (control), PEG 6000 solution 
(-0.15 MPa) and PEG 6000 solution with sodium nitroprusside (SNP) (-0.15 MPa + 50 μM), an 
NO donor. The germination, vigor (germination speed and seedling development), activity 
of antioxidant enzymes, reactive oxygen species, lipid peroxidation, and amylase activity 
were evaluated. Germination and vigor of pea seeds were reduced under water deficit, but 
the application of SNP was able to improve the physiological and biochemical performance 
of the seeds under this condition. Water deficit promotes an increase in oxidative stress, 
but the application of NO promotes greater activity of antioxidative apparatus enzymes 
and amylases, softening the damage caused by water deficit during seed germination and 
growth of pea seedlings. 

Index terms: antioxidant enzymes, germination, lipid peroxidation, sodium nitroprusside, 
water stress.

RESUMO: O óxido nítrico (ON) vem se destacando como estimulador do processo de 
germinação das sementes, principalmente sob condições de estresse. O objetivo deste 
trabalho foi avaliar os efeitos fisiológicos e bioquímicos do ON na germinação e no vigor 
de sementes de ervilha submetidas ao déficit hídrico. Sementes da cv. Itapuã 600 foram 
semeadas em substrato umedecido com água (controle), solução de PEG 6000 (-0,15 MPa) e 
em solução de PEG 6000 com nitroprussiato de sódio (SNP) (-0,15 MPa + 50 µM), um doador 
de ON. Foram avaliadas a germinação, vigor (velocidade de germinação e desenvolvimento 
de plântulas), atividade de enzimas antioxidantes, espécies reativas de oxigênio, peroxidação 
de lipídeos e atividade de amilases. A germinação e o vigor das sementes de ervilha foram 
reduzidos sob o déficit hídrico, mas a aplicação do SNP foi capaz de melhorar o desempenho 
fisiológico e bioquímico das sementes sob essa condição. O déficit hídrico promove um 
aumento do estresse oxidativo, mas a aplicação de ON promove maior atividade das enzimas 
do aparato antioxidativo e das amilases, amenizando os danos causados pelo déficit hídrico 
durante a germinação e crescimento de plântulas de ervilha. 

Termos para indexação: enzimas antioxidantes, germinação, peroxidação de lipídeos, 
nitroprussiato de sódio, estresse hídrico.
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INTRODUCTION

Approximately 90% of all agricultural areas in the world are exposed to different environmental stresses (such as 
salinity, extreme temperatures, and water deficit), which compromise agricultural production (Waqas et al., 2019). 
Among these, the water deficit caused by drought is one of the main stresses that threaten large-scale plant production 
(Lau et al., 2021). 

The seed germination depends directly on water absorption for metabolic activation and conversion/transport 
of energy reserves to the embryo (Jain et al., 2019). Therefore, as water availability is reduced, several cell changes 
occur in seeds, such as increased solute concentration in cells, changes in intracellular pH, protein denaturation, loss 
of membrane integrity, and others (Bewley et al., 2013; Marcos-Filho, 2015). In general, cell changes caused by water 
deficit result in a reduction in germination speed, delay in seedling development, and, at more drastic levels, seed 
death (Możdżeń et al., 2015; Pereira et al., 2020a).

The exposure of seeds to stressful conditions such as water deficit generates the formation of reactive oxygen 
species (ROS), mainly radical superoxide (O2∙

-) and hydrogen peroxide (H2O2) (Zhang et al., 2021). In this context, 
oxidative stress occurs due to the loss of seed capacity to maintain cellular homeostasis of these ROS, causing several 
cellular damages that compromise the viability and physiological quality of seeds (Cechin et al., 2015; Noctor et al., 
2018; Ebone et al., 2019). The neutralization of excess ROS at the cellular level occurs mainly through the action of 
antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase 
(POX), and others (Kapoor et al., 2019). The performance of these and other antioxidant enzymes in seeds exposed to 
water deficit is essential for mitigating oxidative stress in species such as rice (Liu et al., 2019), cotton (Bai et al., 2020), 
sunflower (Morais et al., 2020) and others. 

Nitric oxide (NO) is classified as a free radical synthesized from L-arginine, colorless, and inorganic (Kolbert 
et al., 2021). In seeds, the action of NO has been reported as a germination stimulant in several species, such as 
Arabidopsis thaliana (Albertos et al., 2015), Eucalyptus urophylla (Pereira et al., 2020b), Brassica juncea (Rather 
et al., 2020), Chenopodium quinoa (Hajihashemi et al., 2020), Brassica chinensis (Ren et al., 2020) and Urochloa 
brizantha (Oliveira et al., 2021). In general, these authors report that the action of NO in seeds is mainly related to 
the greater protection of oxidative damage through the activation of enzymes and the greater hydrolysis of reserves 
to the embryonic axis, favoring the germination process, especially under stress conditions. In pea seeds, Vidal et al. 
(2018) observed that the application of sodium nitroprusside (SNP, an NO donor) stimulated germination, increased 
antioxidant activity, seedling growth, and reduction of abscisic acid/gibberellic acid (ABA/GA) ratio. In a previous study, 
Sekita et al. (2021) evaluated the physiological and biochemical effects of NO on germination and vigor of different lots 
of pea seeds. These authors concluded that NO application does not alter pea seed germination, but it increases vigor. 
Furthermore, they observed that it is more effective in seed lots with lower physiological potential (Sekita et al., 2021). 
However, studies evaluating the effect of NO on the performance of pea seeds exposed to water deficit are scarce and 
may bring important responses to a better understanding of the physiological and biochemical mechanisms involved. 

In light of the above, this work aimed to evaluate the physiological and biochemical effects of NO on germination 
and vigor of pea seeds submitted to water deficit.

MATERIALS AND METHODS

The study was conducted at the Seed Analysis Laboratory of the Department of Agronomy at Universidade Federal 
de Viçosa, Minas Gerais, Brazil. Approximately 1,500 seeds from one lot of pea seeds cv. Itapuã 600 (ISLA Sementes 
Ltda.) were used. The seeds were submitted to the treatments and tests described below: 

Germination: Four replications of 50 seeds were distributed in rolls of paper towels (Germitest®), moistened with 
water (control), PEG 6000 solution (-0.15 Mpa) and PEG 6000 solution with SNP (-0.15 Mpa + 50 μM) at the proportion 
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of 2.5 times the weight of the dry paper. The osmotic potential and the SNP dose were defined according to pre-tests in 
a previous study (Sekita et al., 2021). The rolls were kept in a seed germinator at the temperature of 20 oC. The results 
consisted of the percentage of normal seedlings obtained on the eighth day after sowing (Brasil, 2009).

First germination count: It was performed with the germination test. The result consisted of the percentage of 
normal seedlings obtained on the fifth day after sowing (Brasil, 2009). 

Germination speed index (GSI): Four replications of 50 seeds were distributed in paper rolls uniformly moistened 
and kept under the same conditions used in the germination test. Daily evaluations of normal seedlings were performed 
until stabilization (Brasil, 2009). These data were used for calculation of the GSI, as proposed by Maguire (1962). 

Hypocotyl and radicle length: Four replications of 10 seeds were linearly distributed and equidistant in moistened 
paper rolls. The rolls were kept under the same conditions used for the germination test, for eight days. The hypocotyl 
and radicle length of normal seedlings were measured with the aid of a ruler. The results were expressed in cm of 
hypocotyl or radicle (Krzyzanowski et al., 2020). 

Hypocotyl and radicle dry matter: It were performed with the determination of hypocotyl and radicle length. 
The cotyledons of the normal seedlings used in determination of hypocotyl and radicle length were separated. 
The structures were deposited separately in paper bags and placed in a forced air oven at 70 oC until reaching 
constant weight. The structures were weighed, and the results were expressed in mg of hypocotyl or radicle 
(Krzyzanowski et al., 2020).

Antioxidative enzyme activity: Four replications of 25 seeds were placed to germinate as performed in the 
germination test and removed at 0 (8 h of soaking); 1; 2; 3; 4; 5; 6 and 7 days after sowing. After that, 0.2 g of embryos 
(by removal of the seed coat) were macerated in liquid nitrogen and then, 2 mL of the following homogenization 
medium were added: 0.1 M potassium phosphate buffer 0.1 M at pH 6.8, ethylenediaminotetraacetic acid (EDTA) 
0.1 mM, phenylmethylsulfonic fluoride (PMSF) 1 mM and polyvinylpolypyrrolidone (PVPP) 1% (w/v) (Peixoto et al., 
1999). Then the extract was centrifuged, and the supernatant was removed. Activities of catalase enzymes (CAT) 
(Anderson et al., 1995); peroxidase (POX) (Kar and Mishra, 1976), and ascorbate peroxidase (APX) (Nakano and 
Asada, 1981) were determined. For the calculation of enzyme activity, the quantity of proteins was determined 
according to Bradford (1976), using bovine albumin (BSA) as a standard.

Reactive oxygen species: Four replications of 25 seeds were placed to germinate as performed in the germination 
test and removed at 1; 2; 3; 4; 5; 6 and 7 days after sowing. Samples of 0.2 g of embryos (by removal of the seed 
coat) were used. The superoxide anion (O2∙

-) was quantified through determination of the amount of accumulated 
adrenochrome, using the molar attenuation coefficient of 4.0 x 103 M-1 (Boveris, 1984; Misra and Fridovich, 1971; 
Mohammadi and Karr, 2001). Hydrogen peroxide (H2O2) was quantified based on the calibration curve created with 
different concentrations of H2O2 (Gay and Gebicki, 2000; Kuo and Kao, 2003).  

Lipid peroxidation: It was performed with four replications of 25 seeds placed to germinate as in the germination 
test and removed at 0 (8 h of soaking), 1, 2, 3, 4, 5, 6, and 7 days after sowing. After that, samples of 0.3 g of embryos (by 
removal of the seed coat) were homogenized with 0.1% TCA and incubated with 0.5% TBA and 20% TCA. Reading was 
made at 532 nm and 600 nm. The molar attenuation coefficient of 155 mM-1.cm-1 was used to quantify the concentration 
of lipid peroxides, and the results were expressed in nmol malondialdehyde (MDA.g-1) (Heath and Packer, 1968). 

Amylase activity: It was performed with four replications of 25 seeds placed to germinate as in the germination 
test and removed at 0 (8 h of soaking), 1, 2, 3, 4, 5, 6, and 7 days after sowing (DAS). Approximately 1 g of embryos 
(through removal of the seed coat) was macerated in 10 mL of cold water at 4 oC. The extract was centrifuged at 
15,000 x g at 4 °C for 30 minutes. The supernatant was collected and the α-amylase and β-amylase enzyme activities 
were quantified according to the methods proposed by Kishorekumar et al. (2007) and Tárrago and Nicolás (1976). 
The results were expressed in U mg-1.protein-1.

Experimental design and statistical analysis: A completely randomized design (CRD) was used with four replications 
for the control and for each treatment. Analysis of variance (ANOVA) was performed on the data. The normality of the 
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data was tested by the Shapiro-Wilk test and homoscedasticity by the Bartlett test. The means were compared by the 
Tukey test (p ≤ 0.05). All the statistical analyses were performed with the R Software (R Core Team, 2020). 

RESULTS AND DISCUSSION

There was a reduction in the germination of pea seeds under water deficit at the -0.15 MPa potential, obtaining 63%, 
while in control (without water deficit) the germination was 98%. With the application of SNP, it was possible to observe 
an increase in 22 percentage points (p.p.), reaching 84% germination on the eighth day after sowing (Figure 1A). Studies 
with pea seeds using PEG 6000 indicate a reduction in germination under -0.2 MPa (Petrovic' et al., 2016) and -0.6 MPa 
(Pereira et al., 2020a) potentials. In fact, the water restriction promoted by the use of osmotic solutions reduces the pre-
germination metabolic activity of the seeds, which have a prolonged imbibition phase II, with a consequent delay in the 
root protrusion (Bewley et al., 2013). 

In the control treatment (without water deficit), the first germination count (FGC) (Figure 1B) and germination 
speed index (GSI) (Figure 1C) presented values of 96% and 12.9, respectively. In the treatment with water deficit 
(-0.15 MPa), these values were reduced to 54% and 4.47, respectively. The SNP application promoted a significant 
recovery in germination speed (GSI) in a situation of water deficit (Figures 1B and C). Therefore, as observed for 
germination (Figure 1A), the SNP application improved the performance of pea seeds under water deficit. Other 
studies also prove the positive effect of NO on the performance of lettuce seeds (Deng and Song, 2012), wheat 
seeds under osmotic stress (Zhang et al., 2003) and high salinity (Zheng et al., 2009). Seed germination is usually 
the most critical stage in seedling establishment, and this process is critically vulnerable to adverse environmental 
conditions. Water deficit has adverse effects on seed germination and seedling growth through physiological and 
biochemical changes such as oxidative damage. Thus, it is important to develop suitable measures to alleviate 
the negative effects of stress during seed germination and early seedling development. We verified that NO was 
a  protective agent stimulating germination metabolic processes and improving seed performance under stress 
conditions. Therefore, our results show that exogenous NO can significantly enhance the germination of pea seeds 
under hydric stress probably because of the protective effect against oxidative molecules, as already related by 
some authors (Zheng et al., 2009; Lin et al., 2012).

Considering the seedling development, it was observed that under water deficit there was a reduction in the length 
of the seedling hypocotyl, with values 78% lower when compared to those obtained under adequate conditions of 
water availability (Figure 1D). On the other hand, there was no significant difference between the control treatment 
and the water deficit in radicle length (Figure 1E). In addition, the application of NO was not efficient in improving the 
development of seedlings in length (Figures 1D and 1E). In general, there was a higher accumulation of dry matter in 
seedlings of the control treatment, which presented hypocotyl dry matter (HDM) values (Figure 1F) of 18.32 mg.seedling-1 
and radicle dry matter (RDM) (Figure 1G) of 20.24 mg.seedling-1. When submitted to water deficit, there was a reduction 
of 70 and 55% respectively. With the application of the NO, the HDM reduction under water deficit was from 70%, to 
53%, and when observing the RDM/RL ratio, it was observed that the water deficit impaired the accumulation of radicle 
dry matter with values of 1.17 mg of DM.cm radicle-1 in seedlings under stress compared to 1.97 mg of DM.cm radicle-1 
in control; in seedlings under stress and in the presence of NO, the radicle length was 1.81 mg of DM.cm radicle-1 which 
means a significant reduction of 41% and recovery of 33%. These results may be an indication that there is greater 
translocation and assimilation by the embryonic axis of the seeds, which is reinforced by the lower values of dry matter 
of cotyledons (CDM) in control and water deficit, with the presence of SNP (Figure 1H). The beneficial effect of NO is 
also reported for barley, where the application of SNP increased germination percentage, germination rate, radicle and 
shoot length, vigor index, and decreased mean germination time in water deficit situations (Karami and Sepehri, 2017).  
Therefore, we observed that the application of NO attenuated the hydric stress effects as indicated by enhancing the 
characteristics of seed germination and early seedling growth parameters. 
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Figure 1. Germination percentage (A), first germination count (FGC) (B), germination speed index (GSI) (C), hypocotyl 
length (HL) (D), radicle length (RL) (E), hypocotyl dry matter (HDM) (F), radicle dry matter (RDM) (G), and 
cotyledon dry matter (CDM) (H) of pea seedlings from seeds subjected to soaking with water (control), PEG 
6000 solution (-0.15 MPa) or PEG 6000 (-0,15 MPa) + SNP 50 μM solution. Means followed by the same letter 
do not differ among treatments by the Tukey test at 5% probability. Bars: Standard deviation.

Some studies corroborate the results observed in the germination and development of seedlings under water deficit. 
Pereira et al. (2020a) evaluated the germination and initial growth of pea seedlings (var. Aragon) under water deficit 
and observed a significant reduction in the physiological performance of the seeds and the development of seedlings, 
especially at -0.6 MPa potential. However, considering an osmotic potential of -0.2 MPa (similar to that evaluated in 

Journal of Seed Science, v.44, e202244016, 2022

5Nitric oxide in pea seeds under water deficit



this work), these authors did not observe significant differences in germination and development of seedlings when 
compared to the control (0 MPa). This observation evidences the different responses of different genotypes when 
subject to water deficit (Nemeskéri and Helyes, 2019). Al-Quraan et al. (2021) observed that severe soil water stress 
(less than 40% of the water content of the retention capacity) should be avoided during the germination stage to 
ensure adequate growth and metabolism of pea seedlings. 

Regarding the antioxidative apparatus during water deficit and with the application of the NO donor, it was possible to 
observe that antioxidant enzymes had increasing behavior during the germination of pea seeds in all treatments (seeds 
of the control treatment, submitted to water deficit and under water deficit in the presence of NO). The application of 
exogenous NO increased antioxidative enzymatic activity during germination of seeds under water deficit. Comparing 
only seeds under water deficit in the presence of NO or not, it is possible to observe that NO promoted an increase of 
35, 22, 64, and 37%, in relation to the lowest value, of the activity of enzymes SOD, CAT, APX, and POX, respectively, on 
the seventh day of germination (Figure 2).  

The action of antioxidant enzymes is one of the main mechanisms that plant cells use to combat the adverse 
effects of water stress (Lau et al., 2021). As already mentioned, the NO and the post-translational modifications 
mediated thereby play a fundamental role in plant responses to stresses. Nabi et al. (2019) point out that NO plays a 
crucial role in regulating plant responses under water deficit, including the potentiation of antioxidant mechanisms 
of plants under these situations. This information is reinforced by the higher activity of enzymes observed in the 
treatment -0.15 MPa + SNP (Figure 3). 

In general, especially from two days of germination, the content of hydrogen peroxide (H2O2) and the release 
of superoxide anion (O2∙

-) were lower throughout germination in seeds treated with NO (-0.15 MPa + SNP). The 

Figure 2. Activity of enzymes superoxide dismutase (SOD) (A), catalase (CAT) (B), ascorbate peroxidase (APX) (C) (POX) 
(D) during germination of pea seeds subjected to soaking with water (control), PEG 6000 solution (-0.15 MPa) 
or PEG 6000 (-0,15 MPa) + SNP solution 50 μM. Bars: Standard deviation.
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concentration of H2O2 increased throughout the evaluated period, however, the application of SNP promoted, on the 
seventh day of evaluation, a reduction of 22% in seeds treated with NO when compared to seeds under stress without 
the presence of NO (-0.15 MPa) (Figure 3A). Unlike H2O2, the release of O2∙

- increased until the third day of germination 
and then decreased from then on. On the seventh day of evaluation, the release of O2∙

- was 61% lower in seeds treated 
with NO when compared to seeds under stress without SNP (Figure 3B). Exogenous NO could significantly enhance 
the germination rate of wheat seeds and decreased the content of H2O2 and O2∙

- in the mitochondria under salt stress 
(Zheng et al., 2009).

Corroborating the results observed for ROS (H2O2 and O2
-), MDA concentrations increased throughout germination 

and presented lower values in seeds treated with NO, which indicates that the application of SNP may be effective in 
protecting against oxidative stress during seed germination. On the seventh day of germination, the MDA concentration 
was 25% lower in seeds treated with NO when compared to seeds under stress without SNP (Figure 3C). MDA, a 
cytotoxic product of membrane lipid peroxidation, has been considered an indicator of oxidative damage. The stress 
hydric increased the MDA as well as H2O2  while NO reduce their content. These results suggested that NO with a 
suitable concentration can partially prevent oxidative damage as observed by Ren et al. (2020). 

In general, excessive accumulation of ROS is highly toxic to cells, as they can react with biomolecules (such 
as membrane lipids) and result in oxidative stress, which is one of the main causes for seed deterioration (Ebone 
et al., 2019). Similar to the considerations in this study, Al-Quraan et al. (2021) found that the MDA content in pea 
seedlings increased significantly after seven days of water restriction. On the other hand, in sunflower plants submitted 

Figure 3. Hydrogen peroxide content (H2O2) (A), Superoxide anion content (O2∙
-) (B) and malondialdehyde (MDA) 

(C) content during germination of pea seeds subjected to soaking with water (control), PEG 6000 solution 
(-0.15 MPa) or PEG 6000 (-0,15 MPa) + SNP 50 μM solution. Bars: Standard deviation.
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to water stress and treated with SNP (10 uM), there was an increase in antioxidant activity and reduction of the level of 
MDA, relieving the negative effects of stress on membrane integrity (Cechin et al., 2015). In Eucalyptus urophylla seeds 
submitted to saline stress, the supply of NO through conditioning with SNP was beneficial, acting as a cell protector 
and assisting in the maintenance of germination, vigor, and development of seedlings (Pereira et al., 2020b). Farooq et 
al. (2009) mention that NO induces genes that encode antioxidant enzymes, increasing their activity and reducing lipid 
peroxidation in water stress situations. Therefore, in this study, the NO application (-0.15 MPa + SNP) contributed to 
reducing oxidative stress and, consequently, lipid peroxidation during pea seed germination. 

These results indicated that efficient antioxidant systems were activated by NO, which effectively increased the 
activities of SOD, CAT, POX, and APX, and reduced contents of MDA and H2O2. Thus, our results demonstrated that NO 
application on pea seeds may be a great option to improve seed germination and seedling growth under hydric stress 
by modulating the physiological responses resulting in better seed germination and seedling growth. The application 
of NO had a protective effect, demonstrated by an improvement in seed performance and increased H₂O₂ scavenging 
ability in mitochondria, reducing the oxidative stress caused by water deficit. This beneficial effect may be related to a 
reduction of oxidative stress in seeds treated with NO, resulting in less damage to embryo cells and, consequently, their 
development until seedling formation.  

The activity of α enzymes and β-amylase increased over time (Figures 4A and B). However, seeds under water 
deficit showed a reduction of 42 and 45% in activity for α and β-amylase, respectively, when compared to control. The 
SNP application partially reversed reduction in the activity of these enzymes, showing a recovery of 9% of the activity 
of α-amylase and 22% of β-amylase (Figure 4).

The activity of amylases is essential for the starch hydrolysis and a supply of soluble sugars to the embryonic 
axis during seed germination (Kumari et al., 2010; Sfaxi-Bousbih et al., 2010). The effect of NO on the increased 
activity of amylases is also reported in species such as wheat (Zheng et al., 2009) and tomato (Amooaghaie and 
Nikzad, 2013), corroborating the hypothesis that NO increases the conversion of starch into soluble sugars through the 
higher activity of these enzymes. In chickpea seeds, the SNP application caused the genetic expression of α-amylase 
750 times (Pandey et al., 2019). Basahi (2021) states that oxidative and metabolic disorders are among the main causes 
of the successful germination of pea seeds. Based on this information, one can verify the direct relationships between 
higher germination and vigor (Figure 1), higher enzymatic activity (Figure 2), lower contents of H2O2 and O2∙

- and MDA 
(Figure 3) and higher activity of amylases (Figure 4) observed in seeds submitted to -0.15 MPa + SNP treatment when 
compared to water deficit (-0.15 MPa). In general, these results are similar to those observed by Sekita et al. (2021), 

Figure 4. Enzymatic activity of α (A) and β-amylase (B) during germination of pea seeds submitted to soaking with water 
(control), PEG 6000 solution (-0.15 MPa) or PEG 6000 (-0.15 MPa) + SNP solution (-0.15 MPa and 50 μM). Bars: 
Standard deviation.
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who concluded that NO leads to reduction in oxidative stress, favors the translocation of reserves to the embryo, and 
has potential for use in the treatment of pea seeds to increase seed vigor. Therefore, all these observations show the 
beneficial effect of NO on pea seeds in water deficit situations.

CONCLUSIONS

The application of sodium nitroprusside (SNP) 50 μM promotes improvement of physiological and biochemical 
performance of pea seeds under water deficit. Nitric oxide (NO) promotes greater activity of antioxidative apparatus 
enzymes and amylases, softening the damage caused by water deficit during seed germination and growth of pea 
seedlings.
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