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ABSTRACT

The discretization of  river networks is a critical step for computing flow routing in hydrological models. However, when it comes to 
more complex hydrologic-hydrodynamic models, adaptations in the spatial representation of  model calculation units are further required 
to allow cost-effective simulations, especially for large scale applications. The objective of  this paper is to assess the impacts of  river 
discretization on simulated discharge, water levels and numerical stability of  a catchment-based hydrologic-hydrodynamic model, using 
a fixed river length (Δx) segmentation method. The case study was the Purus river basin, a sub-basin of  the Amazon, which covers 
an area that accounts for rapid response upstream reaches to downstream floodplain rivers. Results indicate that the maximum and 
minimum discharges are less affected by the adopted Δx (reach-length), whereas water levels are more influenced by this selection. 
It is showed that for the explicit local inertial one-dimensional routing, Δx and the α parameter of  CFL (Courant-Friedrichs-Lewy) 
condition must be carefully chosen to avoid mass balance errors. Additionally, a simple Froude number-based flow limiter to avoid 
numerical issues is proposed and tested.

Keywords: Hydrological modelling; Hydrodynamic modelling; Spatial discretization; Local inertia; River reach; MGB model.

RESUMO

A discretização da rede fluvial é uma etapa crítica para o cálculo da propagação de vazões em modelos hidrológicos. No entanto, quando 
se trata de modelagem hidrológico-hidrodinâmica mais complexa, adaptações na representação espacial das unidades de cálculo do 
modelo são necessárias para permitir simulações eficientes, especialmente para aplicações em grande escala. O objetivo deste artigo foi 
avaliar os impactos da discretização dos rios nas vazões simuladas, níveis de água e estabilidade numérica de um modelo hidrológico-
hidrodinâmico baseado em divisões por sub-bacias, usando um método de segmentação de comprimento do rio (Δx) fixo. O estudo 
de caso foi a bacia do rio Purus, um afluente do rio Amazonas, que abrange uma área que conta desde regiões de respostas rápidas 
a montante até rios de várzea a jusante. Os resultados indicam que as descargas máximas e mínimas são menos afetadas pelo Δx 
adotado, enquanto os níveis de água são mais influenciados por essa seleção. Mostra-se que, para a propagação unidimensional inercial 
local usando um modelo explícito, o Δx e o alfa da condição CFL (Courant-Friedrichs-Lewy) devem ser cuidadosamente escolhidos 
para evitar erros de balanço de massa. Além disso, um limitador de fluxo baseado em número Froude simples é proposto e testado.

Palavras-chave: Modelagem hidrológica; Modelagem hidrodinâmica; Discretização espacial; Método inercial local; Trecho de rio; 
Modelo MGB.
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INTRODUCTION

Hydrological models are a set of  mathematical equations 
designed to represent components of  the hydrological cycle, 
allowing for the understanding of  its processes and many other 
applications, for instance, the assessment of  land use and climate 
change impacts (Sorribas et al., 2016; Bravo et al., 2014; Nóbrega et al., 
2011) or operational flood and drought forecasting (Alfieri et al., 
2013; Sheffield et al., 2014; Fan et al., 2015). These models usually 
account for a water budget (rainfall storage and runoff) module 
and a water flow along river networks (i.e. routing) module.

At larger scales, rivers typically cross several hundreds of  
kilometers with different climatic and geophysical conditions, 
encompassing well-defined channels in mountainous regions to 
extensive floodable areas at lowlands. While simplified physical 
approaches are known to be suitable for flow routing in steep 
terrains (Price, 2018), and yet adopted by most of  current global 
hydrological models (Bierkens, 2015; Kauffeldt  et  al., 2016), 
complexities emerging from river-floodplain water exchange in 
mild slopes can lead to flood peak delay and backwater effects 
on tributaries, which cannot be resolved with simple flow routing 
methods (Trigg et al., 2009; Yamazaki et al., 2011; Paiva et al., 2011; 
Fleischmann et al., 2016; Lopes et al., 2018; Zhao et al., 2017). In 
contrast, hydraulic models are able to represent floodplain and 
backwater processes at some computational cost and with large 
data requirements (Chaudhari et al., 2019). Modeling large scale 
river hydrodynamics can be very challenging, since many of  the 
world largest floodplains occur in ungauged or poorly monitored 
areas, such as the Amazon, Congo, Niger and Paraguay rivers 
(Paz et al., 2011; Pedinotti et al., 2012; Paiva et al., 2013; Tshimanga 
& Hughes, 2014).

Over the last few decades, significant progress in remote 
sensing technologies has introduced new perspectives for 
hydrodynamic modeling studies (Schumann et al., 2009; Yan et al., 
2015; Sampson et al., 2016; Sheffield et al., 2018; Bates et al., 2018). 
The near-global coverage of  Shuttle Radar Topography Mission 
– SRTM (Farr et al., 2007) led to the development of  global, void-
filled Digital Elevation Models (DEM) (e.g., Jarvis et al., 2008) and 
derivatives such as the one developed by the HydroSHEDS project 
(Lehner et al., 2006), which have the advantage of  being open access 
for the scientific community. Together with the huge amount of  
information brought by remotely sensed data, increasing advances 
in computational resources have encouraged the application of  
large-scale hydrodynamic models in many regions of  the globe. 
In this context, the offline coupling between a hydrological and a 
fully 2D or 1D/2D channel/floodplain hydraulic model has proven 
a very promising approach to simulate floodplain dynamics in 
complex river systems (Biancamaria et al., 2009; Paz et al., 2011, 
2014; Schumann et al., 2013; Hoch et al., 2017; Munar et al., 2018). 
However, 2D flood inundation models are still computationally 
expensive depending on the modeling objectives and are strongly 
sensitive to DEM accuracy. The latter is important because high 
quality terrain datasets (e.g., LiDAR or TanDEM-X) with global 
coverage are not freely available to the general public (Yan et al., 
2015; Sampson et al., 2016; Archer et al., 2018). This particular 
problem can be even more pronounced in densely vegetated areas 
such as the Amazon Basin, since the C-band radar of  the widely 
used SRTM is not able to fully penetrate the vegetation canopy 

(Carabajal & Harding, 2005; Berry et al., 2007; O’Loughlin et al., 
2016; Yamazaki et al., 2017).

A simpler approach used by some large-scale hydrodynamic 
studies is to adopt one-dimensional flow routing treating the 
floodplains as storage units (Yamazaki et al., 2011; Paiva et al., 
2011). Notwithstanding the limitations of  the 1D model structure, 
especially its inability to represent water movement in multiple 
directions, several researches have demonstrated its potential at 
regional to global scales with satisfactory results (Yamazaki et al., 
2014; Ikeuchi  et  al., 2015; Mateo  et  al., 2017; Pontes  et  al., 
2017; Zhao et al., 2017; Lopes et al., 2018; Siqueira et al., 2018). 
Moreover, a key improvement of  recent studies, albeit initially 
proposed for 2D flood inundation modeling, is the use of  the 
explicit local inertia approximation of  the shallow water equations 
(Bates et al., 2010), which has been an interesting alternative to 
the full Saint-Venant hydrodynamic equations due to its relative 
efficiency and easier implementation. The ability to speed up model 
computations together with code parallelization (Yamazaki et al., 
2013) can be crucial either for handling finer model resolutions 
or when several model runs are made necessary, for instance, 
for uncertainty assessment in ensemble flood forecasting (e.g., 
Pappenberger et  al., 2005), data assimilation (e.g., Brêda et al., 
2017) or parameter estimation (e.g., Dung et al., 2011).

Another key issue for large-scale river routing is to define 
how the river network is depicted within the model. Partitioning 
a basin in a regular latitude-longitude cell grid, thus providing 
a gridded-based network river map, is a very common practice 
since coupling groundwater, atmospheric and land surface models 
(LSM) can be easily done with a simple cell-by-cell relationship 
(e.g., Decharme et al., 2008). Conversely, large errors in length and 
slope of  rivers, as well as the definition of  flow directions over 
coarse resolution maps, must be treated using upscaling techniques 
(e.g., Paz et al., 2006; Paz & Collischonn, 2007; Yamazaki et al., 
2009; Wu et al., 2011), while a realistic representation of  channels 
and floodplains can be only achieved with a very fine grid cell 
resolution (Goteti et al., 2008; Lehner & Grill, 2013).

A basin can also be divided in several unit-catchments 
according to its underlying DEM (e.g., Beighley  et  al., 2009; 
David  et  al., 2011; Paiva  et  al., 2011, 2013; Luo  et  al., 2017; 
Siqueira et al., 2018) to preserve small-scale topographic features. 
This approach seems to be more suitable for hydrological models 
since topography strongly controls surface water storage and 
movement (Goteti et al., 2008), and a better connectivity of  the 
river system can be ensured by the generation of  high-resolution, 
vector-based network river maps (David et al., 2013; Paiva et al., 
2011; Yamazaki et al., 2013; Lin et al., 2018).

Discussions regarding the choice of  grid or vector-based 
discretizations are present in recent literature. There is a strong 
motivation towards the use of  the latter approach especially for 
large-scale modeling, since: (i) it is possible to reduce computational 
demand due to the more flexible computational elements 
(Beighley  et  al., 2009; Lehner & Grill, 2013; Yamazaki  et  al., 
2013); (ii) there is a smaller sensitivity of  model parameters to its 
spatial resolution, which can improve model scalability because 
it respects topography properties (Tesfa et al., 2014); (iii) gauge-
to-reach association becomes easier with a high resolution river 
network, giving rise to higher societal meaning (David  et  al., 
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2013), when water users can easily identify known features in the 
simulation, such as a known river segment in the hydrographic 
map; and (iv) it is more suitable for hydro-ecological applications 
that typically require river-reach scale resolution (Lehner & Grill, 
2013). Because of  these benefits, some river routing models have 
been implementing vector-based river maps for computations 
over continental domains, such as RAPID (Tavakoly et al., 2016) 
and mizuRoute (Mizukami et al., 2016), as well as for global scale 
simulations, as in HydroROUT (Lehner & Grill, 2013). More 
hydrologically consistent DEMs are also becoming popular for 
hydrological-hydrodynamic models applications in recent works 
(Yamazaki et al., 2019).

These advances in regional to global hydrologic and 1D 
hydrodynamic modeling studies come with a need of  better 
understanding how choices in parameters and model structures 
affect the simulation results. Although the impact of  cross-section 
geometry and channel roughness in variables such as flood extent 
and river water levels has already been addressed by some previous 
studies (e.g. Yamazaki et al., 2011; Paiva et al., 2013; Saleh et al., 2013; 
Luo et al., 2017; Pontes et al., 2017), there is a lack of  literature when 
it comes to river network discretization in the context of  modeling 
at large scales. In a recent work, Mateo et al. (2017) assessed the 
effect of  varying spatial resolution and flow connectivity using a 
global river model (CaMa-Flood) in the Chao Phraya River basin 
(158,000 km2). It was found that model predictions in very flat 
floodplains and deltas can benefit from finer spatial resolutions if  
multiple downstream connectivity is accounted for in model structure, 
while using single downstream connectivity not necessarily implies 
in better results when resolution is improved. On the other hand, to 
the authors knowledge, large scale evaluations regarding 1D model 
stability conditions (i.e., mass balance numerical issues) were not 
previously addressed, which is of  importance as 1D hydrodynamic 
studies encompassing entire basins have been adopting criteria 
from 2D modeling that are known to be suitable for flat regions 
(e.g. Yamazaki et al., 2013; Pontes et al., 2017).

In the present work we explore the knowledge gap 
regarding the river network discretization for large scale hydrologic-
hydrodynamic models, focusing on vector-based representation of  
drainage networks. Our driving questions are: what is the effect of  
the spatial discretization on the distribution of  unit-catchments, 
and on simulated river discharge and water levels? What is the 
effect of  spatial discretization on modeling numerical aspects?

METHODOLOGY

In this study, we used a vector-based, spatial discretization 
method that assumes unit-catchments with fixed river lengths. 
This method is interesting because it allows a better control of  
the total computational time of  the hydrodynamic model, as 
discussed in the following text.

For the hydrologic-hydrodynamic simulation we used the 
MGB model (Modelo de Grandes Bacias in portuguese; Pontes et al., 
2017) to assess impacts of  catchment / river discretization on 
simulations, using the Purus river basin (an Amazon tributary) as 
a case study. The following sections provide a detailed description 
of  the discretization method, the model, the study area, the input 
data and the performed assessments.

A length-delimited, vector-based river discretization 
for hydrologic-hydrodynamic modeling

An initial step needed to run a hydrological or a river 
routing model is to derive flow directions from the terrain data. 
For large-scale applications the most widely used approach is the 
deterministic eight-node (D8) method, where the direction that the 
water flows in a given pixel is assigned as a single direction towards 
the steepest slope among its eight surrounding neighbors (Jenson 
& Domingue, 1988). Although other approaches were proposed 
to account for multiple directions and better represent the water 
movement over terrain (Tarboton, 1997; Seibert & McGlynn, 
2007), they can create diffuse and overlapping catchment area 
boundaries (Jones, 2002).

A pit removal procedure is often applied prior to flow 
direction in order to produce a “hydrologically corrected” (or 
conditioned) DEM, since the existence of  flat regions or single 
topographical depressions leads to areas without a defined outlet 
and disconnected drainage patterns (Martz & Garbrecht, 1999; 
Planchon & Darboux, 2001; Wang & Liu, 2006; Buarque et al., 
2009). Currently, global datasets of  flow directions with extensive 
manual corrections are available at different spatial resolutions (e.g., 
Lehner et al., 2008), which can be suitable for many large scale 
hydrological and river routing modeling applications.

The sum of  pixels along flow direction paths leads to 
a flow accumulation matrix, which needs to be reclassified in 
order to define the main channels. However, depending on the 
model domain, it is recommended to propagate the upstream 
area along the flow directions instead of  the upstream number 
of  pixels, in order to properly consider the area of  the pixels, 
which can vary at different latitudes if  the pixels have the same 
resolution in angular units, when using geographical coordinates 
(Paz & Collischonn, 2007). Drainage networks are then extracted 
by means of  reclassification of  the flow accumulation matrix 
using a constant area threshold, corresponding to the smallest 
area at which channel hydrodynamics is represented. Further 
discussions regarding the choices of  area thresholds for river 
networks definitions, and even suggestions for the use of  variable 
thresholds, can be found in Fan et al. (2013).

One of  the common procedures to derive unit-catchments 
is to use well-known GIS packages, as an example, the ArcHydro 
definitions (Paiva  et  al., 2011; Yamazaki  et  al., 2013). Similar 
procedures are also used in free softwares such as QGIS (e.g., the 
GRASS GIS plugin). In this method, all pixels that are draining to a 
given river reach belong to the same unit-catchment, while a reach 
is defined by a river segment between two junctions or between a 
river spring and its downstream junction. Although the method 
provides a simple and logical description for the model topology, 
it produces high variability of  reach lengths that are not suitable to 
more complex hydraulic modeling procedures. Paiva et al. (2011) 
addressed this problem assuming unit-catchments as floodplain 
units and dividing reaches according to a predefined maximum 
length, when using a full 1D Saint-Venant hydrodynamic model. 
For handling short and long reaches in a global inertial routing 
modelling, Yamazaki et al. (2013) adopted outlet rejection and outlet 
adding procedures according to minimum and maximum length 
thresholds, the latter equal to double the minimum threshold value.
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In the present study, we adopted a fixed-length vector river 
discretization in order to provide equal flow distances and to enhance 
model time-step and runtime control, as well as to facilitate the 
coupling between hydrological and hydrodynamic modules. This 
discretization method is the same used by Siqueira et al. (2018) for 
continental hydrologic-hydrodynamic modeling in South America. 
The discretization procedure adopted is described below.

Step 1 - Marking outlets

Starting from a previously delineated river network from 
usual definitions (Buarque et al., 2009), the initial step is to mark 
all the intermediate outlets corresponding to the very downstream 
point of  a given river reach (orange boxes in Figure 1a). For that, 
the algorithm first identifies the river junctions by checking if  
two or more neighboring pixels of  the D8 flow direction grid 
are over the river network and also drain to the analyzed pixel. 
In a positive case, the grid positions (row, column) of  nearby 
upstream draining pixels (i.e., the intermediate outlets) and their 
respective flow accumulated areas are both stored in a vector. 
This procedure is repeated for each junction until the entire grid 
is evaluated and all the intermediate outlets are found. In addition, 
the attributes of  the pixel with the largest upstream area (basin 
outlet) are also included in the vector of  intermediate outlets, as 
it is not connected to any junction.

Step 2 - Delineating reaches and unit-catchments by a 
length threshold

The next step is to segment streams by using a predefined 
reach length (threshold) and a stepwise approach. The algorithm 
begins at the basin outlet and performs the segmentation in the 
upstream direction (Figure 1b), so that the vector of  intermediate 
outlets is sorted descending in terms of  drainage area. After 

setting an accumulated length value of  zero to the basin outlet 
(green square in Figure 1b), the algorithm starts tracing in the 
upstream direction and the accumulated length is updated at each 
pixel using the Distance Transforms method (Butt & Maragos, 
1998) to improve distance calculations (Paz & Collischonn, 2007). 
Whenever the length threshold is exceeded, as indicated by the 
break lines in Figure 1b, the accumulated length is reset to zero 
and a unique number (ID) is assigned to all pixels belonging to 
the same river reach. It is worth noting that the algorithm selects 
the upstream pixel with the largest accumulated area (blue squares 
in Figure 1b) to keep tracing when a junction is found along the 
flow path. Moreover, if  the length threshold is not met at the 
very upstream (headwater) pixel, the river network at this point is 
further extended following the pixel with the largest drainage area 
(dashed line in Figure 1b). It is important to note that the length 
can be smaller than the predefined value since it is topographically 
limited by headwater unit-catchment boundaries. Moreover, the 
extension of  the river reach in the most upstream unit-catchment 
can impact the river length in the headwater areas (where there 
exist high uncertainties in drainage network definition), however 
the method is aimed to be applied at large scale hydrodynamic 
models, and smaller effects are expected in downstream reaches.

All the intermediate outlet pixels over the segmented river 
(white squares in Figure 1c) are marked as checked. The algorithm 
then seeks for the next intermediate outlet with the largest drainage 
area (green square in Figure 1c) that is marked as not checked to 
proceed with the segmentation for the next tributary. Because 
the algorithm starts from an intermediate outlet (accumulated 
length = 0) when tracing in the upstream direction, checked pixels 
must be neglected to avoid redefinition of  some existing reaches. 
Following this rationale, the above procedure is repeated until the 
entire river network is completely segmented. Figure 2a shows the 
result of  the segmentation process, and reaches are distinguished 
by orange and green colors for visualization purposes. Finally, 
unit-catchments are defined in the same way as in the traditional 

Figure 1. Delineating river reaches by a predefined length: (a) Marking intermediate (orange squares) and basin outlet (green square) 
points; (b) Segmentation from basin outlet (green square) and junction overpass following outlet pixels with highest accumulated 
area (blue squares); (c) Segmentation from the next intermediate outlet (green square), ranked in descending order of  accumulated 
area. Outlet pixels along previously traced rivers (white squares) are ignored when selected for a new segmentation. Adapted from 
Siqueira et al. (2018, supplement).
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method, i.e., by identifying all pixels draining to the same river 
reach (or same ID). Therefore, model computational elements 
are constrained by topography and river lengths at the same time. 
Figure 2b shows the spatial discretization of  the basin as a result 
of  the above method.

The MGB model

Model description

MGB is a conceptual, semi-distributed, hydrological model 
which has been widely used for large-scale modeling in South America 
from rapid-response basins to markedly seasonal and often slow 
response basins (Collischonn et al., 2007; Fan et al., 2015, 2017; 
Paiva et al., 2013; Siqueira et al., 2018; Fleischmann et al., 2019). In 
its most recent version, the basin is divided into unit-catchments 
(Paiva et al., 2011; Fan & Collischonn, 2014; Pontes et al., 2017), 
each one containing a single river reach with an associated floodplain 
and hydrological vertical water and energy balance. Combinations 
of  soil type and land use within each unit-catchment are categorized 
as Hydrological Response Units (HRU).

The soil water balance is computed independently for each 
HRU of  each unit-catchment, where surface runoff  is generated 
with excess of  storage capacity considering a statistical distribution 
of  water in soil. Canopy interception is represented as a function of  
Leaf  Area Index (based on the approach by Wigmosta et al., 1994) 
and evapotranspiration is calculated using the Penman-Monteith 
equation. Groundwater and subsurface flows are computed, 
respectively, with linear and non-linear functions according to water 
availability in soil layer. Runoff  generated from water balance at 
each HRU is routed to the stream network using linear reservoirs, 
considering effects such as attenuation and delay within the unit-
catchment. Flow routing in the drainage network is computed 
using the Muskingum-Cunge method (Collischonn et al., 2007), 1D 
full hydrodynamic (Paiva et al., 2013) or more recently the inertial 
approximation of  shallow water equations (Pontes et al., 2017).

Further details about the water balance module of  MGB can 
be found in the general description presented by Collischonn et al. 
(2007) or by Siqueira et al. (2018).

Flow routing using local inertia equations

Regarding the river routing, flow in natural channels is 
usually represented by 1D full Saint Venant equations, expressed 
by continuity (Equation 1) and momentum conservation (Equation 
2) equations:

A Q 0
t x
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+ =
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	 (1)
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where Q is the river discharge [m3s-1], A is the flow cross-section 
area [m2], h is the flow depth [m], z is the river bed elevation, 
relative to a datum [m]; So is the channel bottom slope [m.m-1]; Sf 
is the water surface slope [m.m-1]; g is acceleration due to gravity 
[m.s-2], and n is the Manning’s friction coefficient [m1/3 s].

MGB solves the momentum equation using the simple 
finite difference scheme proposed by Bates et al. (2010) and further 
tested by Almeida & Bates (2013) and Fassoni-Andrade et al. (2018). 
In this method, the convective acceleration is neglected and flow 
variables in the friction term (|Q|Q) are written semi-implicitly 
(|Qt|Qt+∆t), which in turn can be rearranged and solved with an 
explicit formulation as shown in Equation 3.
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where: g is the acceleration due to gravity [m.s-2]; n is the Manning’s 
roughness coefficient; ∆t is the model time step [s]; B is the channel 
width [m]; Qt and Qt+∆t are, respectively, the flow from previous 

Figure 2. Fixed-length, vector-based discretization of  the basin: (a) River reaches are separated by break lines and distinguished by 
colors orange and green; (b) Delineated unit-catchments based in all pixels draining to the same river reach. Adapted from Siqueira et al. 
(2018, supplement).
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and current time step [m3.s-1]; Sflow is the water surface slope 
[m.m-1] and; hflow is the effective water depth between current 
and downstream unit-catchment [m].

The only prognostic variable is the total volume stored 
in channels and floodplains (Equation 4), whereas flow depth 
and discharge are derived from the total volume after solving the 
continuity and momentum equations, respectively. Evaporation 
losses are considered in Equation 4 by assuming flooded areas as 
open water and applying the Penman equation. Therefore, when 
flooding occurs in each unit-catchment, the surface area available 
for soil water balance is reduced proportionally from each HRU.

t+ t t
t+ t t+ ti i
in out i i

V -V = Q - Q - Evq  P
t

∆
∆ ∆∑ ∑ +

∆
	 (4)

where Vi is the total volume stored in channel and floodplains, for 
unit-catchment i [m3]; Qin and Qout are, respectively, the inflow and 
outflow discharge of  unit-catchment I [m3.s-1]; Evqi is the evaporation 
loss; i P  the precipitation over open flooded areas [m3.s-1]; t and ∆t 
denote the previous and current time step, respectively.

In order to respect the Courant-Friedrichs-Lewy (CFL) 
condition, the maximum acceptable time step is adaptive and 
changes according to maximum water depth, following Equation 5 
(Bates et al., 2010):

.max
xÄt

g hmax
a ∆

= 	 (5)

where ∆x [m] is the river reach length; hmax [m] is the maximum 
water depth in the model domain and; α is a coefficient lower 
than unity and g is the acceleration due to gravity [m.s-2]. In the 
case of  MGB, ∆x corresponds to the reach length chosen for the 
basin discretization (Pontes et al., 2017; Fleischmann et al., 2019). 
Further details about the flow routing equations of  MGB model 
can be found in Pontes et al. (2017) and Siqueira et al. (2018).

Finally, regarding the fixed-length discretization described 
in this study, all tributaries contributing along a given river reach 
have their outlets artificially moved to the reach upstream point 
(i.e., green unit-catchments contributing to the blue unit-catchments 
at the center of  Figure 2b).

Parameterization of  floodplain topography and river 
hydraulics

The geometry of  channel cross-sections is usually not 
available for large-scale basins. Hence, a very common approach 
is to adopt classic hydraulic geometry relationships for specific 
sites according to drainage area or discharge (Leopold & Maddock, 
1953). In the present research we assumed a rectangular channel, 
where the river cross-section geometry (i.e., bankfull depth 
and channel width) is parameterized with power law equations 
(Decharme et al., 2008; Yamazaki et al., 2011; Miguez-Macho & 
Fan, 2012; Neal et al., 2012; Paiva et al., 2013; Domeneghetti, 
2016; Luo et al., 2017).

Riverbed elevation can be roughly estimated using channel 
depth and riverbank height (i.e., channel top bank), the latter derived 
from a spaceborne DEM (Paiva et al., 2011; Yamazaki et al., 2011; 
Pontes et al., 2017). Since river bank height is a key parameter 

controlling flood frequency and extent (Miguez-Macho & Fan, 
2012), noise often present in terrain data should be preferably 
smoothed to reduce both negative and excessive slopes in the 
bed profile, which can lead to excessive inundation and numerical 
instabilities in the model. Therefore, to define channel top bank 
elevations a smoothing procedure is carried out through a simple 
linear regression, which is fitted to DEM values within each unit-
catchment considering only pixels located over drainage networks. 
The riverbank height is set as the smoothed elevation associated 
to the center pixel of  the river reach while DEM values remain 
unchanged (Siqueira et al., 2018). Finally, riverbed elevations are 
estimated subtracting the channel depths from the bank heights 
defined above.

To represent floodplain inundation, a hypsometric curve 
relating flow depth, flooded area and water volume stored in both 
floodplain and channel for a given unit-catchment is derived from 
its underlying DEM. Concepts of  the HAND model (Rennó et al., 
2008) were adopted to compute water volume emulating the 
inundation process from lower towards nearby higher areas, which 
is the same approach adopted in CaMa-Flood by Yamazaki et al. 
(2013). Volumes are calculated through the numerical integration 
of  flooded area with flow depth at each time step.

Since the HAND method allows the whole DEM to be 
normalized for the drainage network (Rennó et  al., 2008), the 
hypsometric curve becomes insensitive to riverbank height estimation, 
for instance when applying the smoothing procedure. Nevertheless, 
it is worth mentioning that DEM conditioning procedures such as 
raising or lowering pixels (e.g., Yamazaki et al., 2012; Hoch et al., 
2017) are not conducted here prior to riverbed and floodplain 
geometry estimation, so that elevations are maintained as close 
as possible to the original topographic data.

Study area

The Purus River is one of  the main tributaries of  the 
Amazon River (Figure 3) with a drainage area of  370,000 km2 and 
average discharge of  11,000 m3s-1 (Paiva et al., 2011). Land cover is 
mainly forest. Extensive floodplains (“várzeas”) exist along the river 
which lead to major hydrograph attenuation, with the floodplain 
to channel width ratio reaching values as high as 30 (Melack & 
Hess, 2010; Junk et al., 2011; Paiva et al., 2011; Fleischmann et al., 
2016). Surface water slopes are generally small (< 5 cm/km), and 
relevant backwater effects occur from the Amazon mainstem 
(Meade et al., 1991). We choose the Purus basin as the study case 
for the following reasons: (i) MGB was successfully applied in a 
previous work with hydrodynamic modeling (Paiva et al., 2011); and 
(ii) the existence of  a strongly seasonal flood pulse and extensive 
floodplains in the lower portion of  the basin.

Input data

GIS processing

We performed the GIS processing in two steps. Firstly, D8 
flow directions and drainage networks were extracted from the 
SRTM DEM version 4 (Jarvis et al., 2008) using a GIS package 
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called IPH-Hydro Tools (Siqueira et al., 2016). Second, to estimate 
floodplain topography, we computed the HAND values using 
drainage networks and flow directions derived above together with 
the Bare-Earth SRTM DEM version 1, which combines multiple 
remote sensing datasets in order to reduce vegetation biases on 
SRTM Data (O’Loughlin et al., 2016).

Spatial resolution of  both SRTM and Bare Earth SRTM 
datasets were resampled from 3 to 15-arcsec in order to reduce 
computational burden during GIS data processing. We choose 
to not derive flow directions directly from the Bare-Earth SRTM 
because the delineation of  drainage networks is hampered by the 
vegetation removal. This is reasonable because in the original DEM 
the riparian vegetation helps delineating the presence of  the water 
courses, once the elevation values are higher around the river.

The vegetation-removed DEM leads to a flat area along 
the river floodplain that can hinder a proper river delineation, 
since the flatter is the terrain, more complicated is to obtain flow 
directions. However, for other steps in the hydrodynamic model 
parameterization, especially related to the estimation of  floodplain 
topography, the use of  vegetation-removed DEMs is fundamental.

We used a minimum area threshold of  625 km2 to match the 
resolution of  the Multi-Source Weighted Ensemble Precipitation 
- MSWEP (Beck et al., 2017) precipitation grid cells (0.25º x 0.25º; 
see description below).

Land use, soil and hydrological data

The soil map used is a combination of  the Brazilian database 
of  soils and the Digitized Soil Map of  the World and Derived Soil 
Properties (Food and Agriculture Organization, 2003), the latter 
needed to account for areas lying outside the Brazilian national 
limits. Land use classification was retrieved from the Global 
Land Cover map (Arino et al., 2012), a product generated using 
Envisat MERIS fine-resolution (300 m) satellite imagery over the 

year of  2009. Regarding the hydrological data, time series of  river 
discharge and river stage were provided by the Brazilian National 
Water Agency (ANA – Agência Nacional de Águas) at daily time 
interval. The same hydrologic response units map was used by 
previous studies using the MGB model: Siqueira  et  al. (2018), 
Lopes et al. (2018), Pontes et al. (2017), Fan et al. (2014, 2016), 
Schwanenberg et al. (2015), among others.

Meteorological forcing

Two meteorological datasets were used as input to MGB 
water balance module. The Multi-Source Weighted Ensemble 
Precipitation – MSWEP (Beck et al., 2017) was used as precipitation 
input, which is a 0.25º global dataset that optimally combines 
satellite, gauge and reanalysis data. Climate forcing was derived 
from the CRU Global Climate v.2 (New et al., 2002), a dataset that 
provides long term monthly averages (period of  1961-1990) for 
all land areas at 10’ resolution for relative humidity, wind speed, 
sunlight hours and surface air temperature.

Experimental setup

To understand the effects of  spatial discretization on model 
results we performed the following steps:

1.	 Model performance: The model was calibrated using in 
situ observed discharges to provide a representative, 
reference run for all assessments. In this case, a fixed 
length discretization of  Δx = 10 km was adopted for river 
reaches within unit-catchments, and α = 0.3 was assumed 
as the adjustment factor to the routing time step resulting 
from CFL condition;

2.	 Spatial discretization visual inspection and statistical analysis: 
Purus basin was spatially discretized in river reaches with 

Figure 3. Purus basin location. Red dots are the available in-situ discharge gauges, with their respective identification code (see Table 1).
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Δx = 5 km, 10 km (default), 30 km and 50 km, each one 
analyzed through visual inspection and from a statistical 
perspective;

3.	 Spatial discretization effects on model results: The model was run 
using the four different spatial discretizations (hereafter 
named only as 5 km, 10 km, 30 km and 50 km) and results 
were intercompared in terms of  discharges and water 
levels. As the purpose of  these simulations is to isolate 
the effect of  discretization, model parameters for each 
run were kept the same as for the default simulation. It is 
not expected great sensitivity of  model parameters to the 
adopted Δx because the unit-catchment approach respects 
the topographical limits (as noted by Tesfa et al., 2014);

4.	 Numerical and computational aspects: Following the previous 
analyses, all model runs were compared in terms of  both 
numerical stability and computational efficiency, the 
former evaluated through a mass balance assessment. For 
each unit-catchment and simulation interval, mass error 
(Merror) in river storage was calculated based on Equation 4: 
dV/dt = Qin - Qout + Merror, which can be rearranged in 
the accumulated form (total error) as (Equation 6):

( )
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where: i is the unit-catchment index; NU is the total number 
of  unit-catchments; t is the time step of  simulation; NT 
is the total number of  time steps [days]; t

iV  e t 1
iV −  are 

the river storages (channel + floodplain) at current and 
previous time intervals, respectively [m3]; t

iQin  e  t
iQout are 

the inflows (from local runoff  + upstream tributaries) and 
outflows at unit-catchment i, respectively [m3s-1]; t

iPflood is 
the precipitation over the flooded area [mm]; t

iEflood  is 
the open water evaporation in floodplain [mm]; t

iAflood  
the flooded area at unit-catchment i [km2]; 86400 is a time 
conversion factor (from seconds to days).

5.	 Flow limiter test: The MGB model was run using the four 
spatial discretizations but considering a flow limiter in 
which the maximum allowed discharge between neighbor 
unit-catchments is the one that leads to Froude Number 

vFr
gh

 
=  

 
 equal or less than one. The flow limiter does 

not imply mass imbalance (e.g., in flooded areas) because 
it limits only the flow between unit-catchments (i.e., reduce 
instantaneous discharges), so that the total water is always 
conserved in the system due to the continuity equation 
(Equation 1).

All simulations were performed using an Intel i5 2.2Ghz 
processor with 8GB of  RAM. The 10 km reach-length was chosen 
as the reference value because it is a value commonly used in MGB 
model previous studies (Pontes et al., 2017; Fleischmann et al., 2019).

Model performance was assessed by three comparison 
statistics: the Nash-Sutcliffe Efficiency - NSE (Nash & Sutcliffe, 
1970); the Kling-Gupta Efficiency - KGE (Kling et al., 2012); 
and the Delay Index - DI (Paiva et al., 2013). The latter consists 
in the time delay (in days) that leads to the highest Pearson 
correlation between observed and the simulated discharges. These 
performance metrics correspond to a 10-year simulation period 
from 01/01/2000 to 31/12/2009 (reference run).

RESULTS AND DISCUSSIONS

Model adjustment

In general, model performance in Purus basin was 
considered satisfactory (Table 1). For gauges located in smaller 
drainage areas, KGE values were mainly between 0.6 and 0.9, while 
NSE values were around 0.55 and 0.75. For larger drainage areas 
(> 60,000 km2), KGE and NSE values were always greater than 
0.85. DI values were all between -1 and 5 days, being among -1 
to 1 in 11 of  the 14 locations studied.

Spatial discretization visual inspection and statistical 
analysis

Information regarding the spatial discretization is given 
by Figure 4 and Table 2. Figure 4a and Figure 4b show a colored 
visual example of  the differences between the discretizations. 
Despite the larger number of  unit-catchments and river reaches 
in the 5 km (3064) in comparison to the 50 km (400) threshold, 
the catchment border between tributaries is maintained equal since 
the resulting irregular grid follows the underlying topography. 
Therefore, the spatial delineation of  unit-catchments is more 
detailed only for main rivers with respect to downstream/upstream 
borders, and catchments considered as headwater remain unchanged 
independently on the adopted Δx (see the one located at the center 
of  boxes in Figure 4a).

Table 1. MGB model performance to the Purus river basin test case.
Gauge 

ID Gauge Name Area 
(km2) KGE NSE DI 

(days)
13180000 Manoel Urbano 32800 0.72 0.58 0
13300000 Seringal Sao Jose 11200 0.74 0.55 -1
13405000 Seringal Guaraby 6110 0.65 0.71 5

13410000 Seringal da 
Caridade 63100 0.87 0.85 0

13450000 Assis Brasil 3760 0.44 0.44 0
13470000 Brasileia 7020 0.66 0.60 -1
13550000 Xapuri 8270 0.75 0.57 -1

13580000 Fazenda Santo 
Afonso 6330 0.84 0.73 1

13600002 Rio Branco 23500 0.79 0.68 -1
13650000 Floriano Peixoto 34400 0.82 0.62 0

13710001 Valparaiso 
Montante 105000 0.86 0.88 0

13750000 Seringal Fortaleza 154000 0.93 0.94 0
13870000 Lábrea 226000 0.93 0.94 3
13880000 Canutama 236000 0.94 0.93 5
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Figure 4. (a) Detail of  fixed-length discretization (5, 10, 30 and 50 km) within the corresponding box, with river reaches highlighted 
by different colors; (b) Accumulated frequencies of  river bottom slope for each discretization; (c) Histogram of  unit-catchment areas 
for each discretization. Colors in “a” do not refer to colors in “b” and “c”.

Figure 4c shows the accumulated frequencies of  river 
bottom slope (m/km) resulting from each model discretization. 
While the 5 km leads to bottom slopes varying from -2.5 m/km 
to 2.5 m/km, the 50 km smoothens the profiles, with bottom 
slopes varying from -0.2 m/km to 1.5 m/km. Negative slopes 
occur because no correction is carried out over the original 
DEM (i.e., Bare-Earth SRTM), which are more pronounced 

in river bottom profiles with short lengths since they are more 
affected by DEM noise in flat areas. As expected, unit-catchment 
areas are smaller for smaller reach lengths. For example, most 
of  the unit-catchment areas for 5 km and 10 km are smaller 
than 200 km2. In turn, for the 30 km and 50 km discretization, 
areas were more concentrated between 200 km2 and 1200 km2, 
respectively.

Table 2. Unit-catchment areas and reach lengths for different spatial discretization in the Purus river basin.
Unit-catchments area (km2) Length of  river reaches (km)

5 km 10 km 30 km 50 km 5 km 10 km 30 km 50 km
Number of  unit-catchments 3064 1613 607 400 3064 1613 607 400
Average 123.7 234.9 624.3 947.3 5.31 10.32 30.41 50.28
Standard deviation 167.8 215.1 277.6 340.3 0.23 0.25 0.31 1.17
Coefficient of  variation 1.36 0.92 0.44 0.36 0.04 0.02 0.01 0.02
Quantiles 5% 14.0 41.4 234.7 467.9 4.93 9.93 30.00 49.88

25% 32.1 89.7 410.0 702.9 5.16 10.13 30.18 50.19
50% 59.5 149.3 606.4 896.3 5.32 10.29 30.36 50.41
75% 125.0 283.4 803.6 1176.9 5.44 10.46 30.59 50.64
95% 623.1 711.9 1105.6 1578.2 5.62 10.76 31.01 51.01
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It can be noted that the fixed-length discretization 
does not lead to the exact Δx previously defined for unit-
catchments. This occurs due to aspects related to the DEM 
resolution (15 arcsec ≈ 450 m), flow direction in adjacent pixels 
of  river networks, especially in the border of  unit-catchments (e.g., 
diagonal direction = 1.414 x DEM resolution), and limitations in 
headwater river reaches with larger Δx (such as the 50 km), since 
length is topographically limited by their upstream catchment 
boundaries.

Both local runoff  and inflow of  tributaries contributing 
along a given unit-catchment are added to the very upstream 
point of  this latter unit-catchment. So, the longer the river reach 
is, the longer will be the total distance for flow propagation. At 
the same time, increasing reach length also leads to smoothing 

of  river channel slopes. This can reduce the flood wave celerity 
and cause flows to be attenuated (in conditions without the effect 
of  floodplains). However, differences in total river length were 
relatively small. Table 3 shows how total river length (down to the 
basin outlet) can change according to the adopted reach length.

Spatial discretization effects on model results

In this section, impacts of  the spatial discretization on 
model results are evaluated using the same simulation period of  
the reference run. Results for discharge, flow depth and water 
level anomalies, at three locations (gauges 1355000 (3760 km2), 
13650000 (34,400 km2), and 13880000 (236,000 km2)), are given by 
Figure 5 for the period between 2004 and 2006. To complement 
the analysis, Figure 6 shows a comparison between maximum 
and minimum (full period – calibration and validation) calculated 
discharges at each unit-catchment and for each discretization. For 
this, we computed the mean of  minimum and maximum discharges 
of  independent events that met a pre-defined flow threshold, i.e. 
(local) low flows below Q80 (lower values from the flow duration 
curve) and peak flows higher than Q20 (higher values from the 
flow duration curve) of  the simulated time series. In general, 
discharge seems to be not largely affected by the adopted Δx. As 
an integrative variable that depends on all discharge generated in 

Table 3. Accumulated river lengths down to the Purus basin 
outlet (in km) according to ∆x. Length accumulation is computed 
individually for each unit-catchment and results are summarized 
in percentiles of  25, 50 and 75%.
Percentiles of  
unit-catchments

Discretization ∆x
5 km 10 km 30 km 50 km

25% 1152.5 1157.8 1181.4 1230.9
50% (median) 1586.5 1591.3 1604.3 1657.1

75% 2226.5 2236.0 2239.7 2286.8

Figure 5. Model results for the 5 km, 10 km, 30 km and 50 km discretizations at gauges 1355000 (3760 km2), 13650000 (34,400 km2), 
and 13880000 (236,000 km2) for (a) discharge; (b) flow depth; and (c) water level anomalies. 



RBRH, Porto Alegre, v. 26, e5, 2021

Fan et al.

11/19

the upstream areas, discharges are less sensitive to smaller changes 
in the volumes of  individual reaches. Hydrographs tended to 
be similar independently of  the reach length (Figure 5a), while 
slightly higher differences appeared on the extreme values. The 
only exception was observed for minimum discharge values at 
intermediate drainage areas (Figure 5b). For an area of  2.5×105 km2 
the minimum flow varied between 1500 m3s-1 (50 km reaches) and 
1300 m3s-1 (5 km and 1 km reaches).

The differences in minimum flows at intermediate drainage 
areas can be related to the flow depth (Figure 5b). As one can see, 
the flow depth largely differs between the tested reach lengths at 
the gauge 13650000 (34,400 km2), which is a representative point 
of  intermediate drainage areas. At gauge 13650000, the 50 km 
reach length simulated flow depth was 10 m lower than the 5 km 
reach length simulation. With a lower depth, the 50 km simulation 
has lesser flooding areas, resulting in more in-bank flow during 
higher discharges, as water does not flow to floodplains in these 
cases. For this reason, simulated flows with smaller Δx tend to 
be delayed in comparison to the ones obtained with larger reach 
lengths, as observed in gauge 13880000.

At other scales these effects are not as important as found 
in the intermediate scale. In the smaller scale (gauge 1355000 - 
3760 km2), differences are not much pronounced, and in larger 
scales (gauge 13880000  236,000 km2) there is a difference of  
2 m in the flow depth between discretizations of  50 km/30 km 
and 10 km/5 km, which is not as expressive as the ones in the 
intermediate scales and not as expressive on discharges. Likewise, 
it is interesting to mention that 5 km and 10 km simulation results 
were also closer to each other in the larger scale, as the 30 km and 
50 km were also similar between them.

Numerical and computational aspects

Computational burden and model instabilities related to 
numerical errors are relevant drawbacks of  large-scale hydrodynamic 
routing. Besides, these problems are somehow linked: despite 
the adoption of  a larger Δx can increase model time step and 
speedup computations for explicit schemes governed by the CFL 

condition (e.g., local inertial formulation), flow routing is more 
subject to mass balance errors because numerical issues usually 
arise from larger time steps. In this section we assess the impact 
of  discretization on model efficiency and mass conservation to 
identify a tradeoff  between both characteristics. Moreover, as the 
time step of  the local inertial scheme computed by CFL condition 
can be adjusted by the α coefficient (Equation 7), we perform 
additional simulations with increasing α values (0.4, 0.5, 0.6 and 
0.7) to assess the relevance of  this parameter.

In order to provide a suitable comparison regarding numerical 
stability, total mass error (Merror described in Equation 6) was first 
expressed in terms of  a mean discharge dividing Merror [m

3] by the 
number of  simulation time steps, thus producing an estimate of  
the flow error Qerror [m

3s-1]. Further, the ratio between Qerror and the 
mean discharge of  Purus basin at its outlet point was computed 
for each Δx and α value, and results were plotted against their 
respective simulation times (Figure 7).

According to results, the difference in processing times 
between discretizations can be considered relevant. While both 
simulations using 50 km and 30 km discretizations were completed 
in less than one minute even for lower α values, the simulation time 
for the 10 km reach varied between 2.5 (α = 0.7) and 6 minutes 
(α = 0.3). Also, the simulation time using the 5 km reach was 
around five times slower than the 10 km one, reaching a maximum 
simulation time of  almost half  an hour (α = 0.3). Other than 
expected, model runs using different α values for the same Δx 
did not follow a linear pattern with respect to computational cost. 
This can be clearly seen for Δx = 5 km, since there is a major 
time difference in simulations with α between 0.3 and 0.4 when 
compared to the time difference with α between 0.6 and 0.7. 
Regarding mass balance, the adoption of  the lowest α (0.3) led 
to errors less than 0.01% (10-4) in all simulations. As α increases, 
errors also increase, reaching almost 5000% when using Δx = 50 km 
and α = 0.7. On the other hand, although the 5 km simulations 
resulted in relatively small errors, the associated simulation times 
were always the largest ones.

To further assess the impacts of  the selected α value on model 
instabilities, boxplots of  the Froude number (Fr) for each previous 

Figure 6. Comparison between calculated discharges at each unit-catchment for each spatial discretization: (a) mean of  maximum; 
and (b) mean of  minimum.
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run were plotted in Figure 8. Each boxplot contains the maximum 
Fr value (considering the entire simulation period) of  each unit-
catchment for a given discretization, separated by different α values. 
As we can see, simulations with 5, 10, 30 and 50 km discretizations 
produce Fr values higher than unity (i.e., supercritical flows and 
associated numerical instabilities) for α values ≥ 0.7, 0.6, 0.5 and 
0.4, respectively. To some extent, this agrees with results previously 

shown in Figure 7, albeit Fr > 1 not always led to significant mass 
errors (less than 0.1% [10-3] for limit values of  α, except for the 50 
km discretization). This indicates that numerical instabilities are 
likely to occur in some specific reaches, but errors are not necessarily 
propagated to other parts of  the basin.

Figure 9 shows the evolution of  model time step in the 
simulation period considering an α value of  0.7. It is important 

Figure 8. Boxplots comparing the tested discretizations against Froude numbers for all tested values of  α.

Figure 7. Mean Purus river simulated outflow error (in m3/s) against the simulation time for each test performed.
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to highlight that the model time step is adaptive and calculated 
at each time interval by Equation 5, as flow depths are constantly 
changing over time. It can be noted that the 5 km simulation 
resulted in an almost constant Δt (around 100 seconds). These low 
and nearly constant values occur because a small Δx leads to more 
noisy river bottom profiles. Noisy bottom profiles can produce 
“artificial reservoirs” that increase flow depth at corresponding 
unit-catchments (see, for instance, gauge 13650000 in Figure 5), 
so that higher “h” values are used to compute Δt through CFL 
condition (Equation 5), leading to lower Δt values. As the relative 
variation in flow depth tends to be low in cases with “artificial 
reservoirs”, it consequently forces the model to keep a small time 
step for the entire simulation. In contrast, model time step in the 
50 km simulation seems to be more adaptive to changes in flow 
depths (variations of  Δt between 1000 and 1500 seconds), since 
bottom profiles are smoothed according to reach length, which 
results in lower water depths. That suggests that DEM correction 
methods with respect to noise reduction can be useful to reduce 
model time step in hydrodynamic simulations.

Flow limiter test

Previous tests indicated that the simulations can present 
numerical instabilities that lead to mass balance errors, even 
when using constant river reach lengths and adaptive time steps 
to control the CFL condition (Equation 7). These numerical 
issues were more relevant in simulations with longer river reaches 
(e.g., 50 km), which are also the most computationally efficient 
ones. As longer reach lengths (e.g., 50 km) would allow the best 
computational times, one interesting question is how to reduce 
their numerical instabilities in order to be able to adopt them in 
large scale models.

Then, in a final test we evaluated the usage of  a simple flow 
limiter, based on the Froude number, by assessing the resulted 
oscillations and mass errors. The MGB model was run using the 
four tested spatial discretizations, using α values of  0.3 and 0.7, and 
considering a flow limiter in which the maximum allowed discharge 
between unit-catchments is the one in which the instantaneous 
Froude Number is equal to one.

The adopted flow limiter led to almost zero mass errors, 
i.e. it was able to reduce mass error instabilities. However, although 
with no relevant mass error, some hydrograph oscillations persisted 
(visual inspection) in the simulated discharges with α = 0.7, while 
none was observed in the scenario with α = 0.3. Then, Figure 10 
presents a spatial analysis of  where these oscillations occurred 
in the scenarios with α = 0.7 when using the Froude flow limiter. 
Since the scenario with α = 0.3 did not present oscillations, we 
applied a simple method to evaluate in which reach occurred 
oscillations by computing the correlation (Pearson correlation) 
between discharges simulated with α equal to 0.3 and discharges 
simulated with α equal to 0.7 discharges. Oscillations in river 
reaches were classified into the following categories: no oscillations 
(correlation higher than 0.99), intermediate (correlation between 
0.75 and 0.99) and large (correlation lower than 0.75) oscillations.

From our criteria, the usage of  a flow limiter resulted in 
simulations with almost no discharge oscillations using α = 0.7 
and reaches of  5 km and 10 km. The 30 km simulation had some 
intermediate and large oscillations mainly at upstream reaches due 
to higher slopes, while the 50 km simulation led to a considerable 
number of  oscillations over all the Purus basin, with a higher 
number of  occurrences in the middle-upstream region.

From our perspective, a Froude number-based flow limiter 
helps to avoid mass balance errors and oscillations in general, but 
does not totally eliminate them, especially when a longer reach is 
used in the discretization. Our results show that a ∆x of  30 km 

Figure 9. Time evolution of  model time step for each discretization, considering an α = 0.7.
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with the proposed Froude number-based flow limiter could be 
satisfactorily adopted to simulate the Purus river basin.

CONCLUSIONS

With the proposal of  further understanding the effects of  
river network discretization on large-scale hydrologic-hydrodynamic 
models, the present research provided insights about relevant issues 
in setting up model configurations prior to a given application. 
Most of  the insights were related to models which use the explicit 
local inertial approximation of  shallow water equations (Bates et al., 
2010) to perform flow routing, which is a usual setup for state-of-
the-art regional and continental models. Based on the obtained 
results, we consider that the main contributions of  the study are:

•	 A fixed-length, vector-based discretization method can 
easily connect hydrological models that are built over 
topographical divisions (i.e., unit-catchments, sub-basins) 
to a hydrodynamic routing module;

•	 Anomalies of  water level can be reasonably well simulated 
between different values of  Δx, but this is not valid for flow 
depths. Therefore, a DEM correction method to reduce 

noise in river bottom profiles (or methods to ensure a correct 
profile representation) should be preferred if  simulation 
of  water surface elevations (or flood extent) is desired;

•	 For the explicit local inertial routing, Δx must be cautiously 
chosen together with a time step correcting factor (α) 
for CFL condition. Although more efficient in terms of  
processing time, a larger Δx is more subject to supercritical 
flows and numerical oscillations if  small values of  α are 
not adopted. Smaller Δx values demand more processing 
time, but present less numerical issues even for higher 
values of  α. For large-scale hydrological-hydrodynamic 
modeling encompassing entire basins, the use of  low α 
values (such as 0.3) is recommended;

•	 A simple flow limiter based on Froude number can help 
to avoid numerical issues, but is not enough to eliminate 
flow oscillations, especially for the case of  larger Δx and 
higher values of  α.
Finally, and summarizing all the contributions, we can state 

that a smaller α of  the CFL condition had less impact in the total 
processing time for longer Δx and was satisfactorily applied to 
control the model stability.

Figure 10. Correlation between discharges simulated with α of  0.3 and 0.7. Results are classified in Large (r < 0.75), intermediate 
(0.75 ≤ r < 0.99) and no oscillations (r ≥ 0.99) in simulated hydrographs.
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