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ABSTRACT

The concept of  sediment transport at the limit of  deposition in storm sewers represents one operational condition that avoid deposition 
of  sediments maintaining the discharge capacity of  the pipes. In this study, this condition was analyzed applying one Artificial 
Neural Network Multilayer Perceptron (ANN-MLP) model to predict the volumetric concentration at the limit of  deposition, using 
544 experimental data from literature. It was evaluated different input variables combinations and model configurations, showing the 
sensitivity of  the model with these changes. Through this study, it was demonstrated that the proposed model outperforms the existing 
equations, leading to more assertive predictions in the determination of  volumetric concentrations at the limit of  deposition, resulting 
in values of  R2 = 0.92, Mean Absolute Percentage Error (MAPE) = 35.09 % and Mean Average Error (MAE) = 59.84 ppm. With 
the performed analysis, the study selects one equation to be used for extrapolations when determining the volumetric concentration 
at the limit of  deposition in storm sewers. The selected equation is superior due to its theoretical basis. This work includes one more 
concept to a better methodology in obtaining the conditions of  the flow at the limit of  deposition.
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RESUMO

O conceito de transporte de sedimentos no limite de deposição em galerias de drenagem representa uma condição operacional que 
evita deposição de sedimentos, mantendo a capacidade de descarga dos tubos. Neste trabalho, essa condição foi analisada aplicando 
uma Rede Neural Artificial Perceptron Multi Camadas (RNA-PMC) para a obtenção da concentração volumétrica no limite de 
deposição, utilizando 544 dados experimentais disponíveis na literatura. Foram avaliadas diferentes combinações de parâmetros de 
entrada e configurações do modelo, demonstrando sua sensibilidade para tais variações. Através do presente estudo é demonstrado 
que o modelo proposto supera o desempenho das equações existentes, levando a estimativas mais assertivas na determinação da 
concentração volumétrica no limite de deposição resultando valores de R2 = 0.92, Erro Percentual Absoluto Médio (MAPE) = 35.09% 
e Erro Absoluto Médio (MAE) = 59.84ppm. Com base nas análises realizadas, o estudo indica uma equação para uso em casos de 
extrapolações da concentração volumétrica no limite de deposição em galerias de drenagem. O uso da equação apontada está associado 
à base teórica utilizada em seu processo de obtenção. Este trabalho inclui, portanto, mais um conceito para uma melhor metodologia 
de se obter as condições de limite de deposição.
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INTRODUCTION

Sediment deposition in storm sewers is one of  the most 
recurrent problems affecting the hydraulic behavior of  drainage 
systems. Commonly, these structures are designed considering 
criteria based only on the discharge capacity, minimum velocity, 
and minimum shear stress for the design discharge. Owing to 
their simplicity, these criteria are easily utilized, but may not be 
sufficient to ensure that no sediment will deposit at the bottom 
of  the pipe during its operation, which may cause a discharge 
capacity reduction and efficiency loss of  the storm sewer.

To minimize the removal frequency of  deposited sediments 
inside storm sewers, a design concept was developed whereby 
the flow inside would promote sediment transport without 
deposition and, consequently, there would be no obstructions 
and the discharge capacity would not be reduced; this is defined 
as a self-cleaning design concept.

Commonly the self-cleaning design concept is studied with 
two assumptions, i. e., with deposition (which assumes a small 
amount of  sediments deposition in the bottom of  the pipe), and 
without deposition (where no deposition is assumed – clean bed). 
In this research, the limit of  deposition was analyzed as clean bed.

Studies, such as May (1982), Mayerle  et  al. (1991), Ab 
Ghani (1993), May et al. (1996), Ota (1999), Vongvisessomjai et al. 
(2010), Ebtehaj et al. (2014), Najafzadeh et al. (2017), Romero 
(2018), Montes et al. (2020a) and Tafarojnoruz & Sharafati (2020) 
suggest equations based on laboratory experiments to determine 
the self-cleaning conditions. Some of  these studies utilize Froude 
number as a function of  the volumetric concentration at the limit 
of  deposition to determine this condition. Despite the good 
correlations between the experimental and calculated Froude 
number, it is not possible to affirm that using these models the 
same performance will be achieved when calculating the volumetric 
concentration at the limit of  deposition.

Another issue regarding these sediment transport equations 
comprehends deciding which equation to use or which equation 
should provide better predictions of  the volumetric concentration 
at the limit of  deposition. Moreover, most of  those equations were 
developed using a limited range of  experiments. One analysis with 
a larger dataset can demonstrate the efficiency of  the proposed 
equations in a more general manner.

In order to present a model with a better efficiency to 
deal with deviations observed between the calculated and the 
experimental volumetric concentration at the limit of  deposition, 
the proposed research present an application of  Artificial Neural 
Network (ANN) models to predict it. The deviations observed 
are related to the methodology used to obtain most of  the best-fit 
equations, which are based on a specific range of  tests and the type 
of  equation (potential function) is fixed. Several studies analyzed 
the ANN model in the determination of  Froude Number, which 
showed a good performance, suggesting that the ANN model 
could outperform the existing equations in determining the 
volumetric concentrations the limit of  deposition. Additionally, the 
analysis presented in this paper uses a wider range of  experiments, 
aggregated from 544 experimental data sets obtained from research 
by Mayerle (1988), May (1993), Ab Ghani (1993), Ota (1999), and 
Montes et al. (2020a). Montes et al. (2020a), differently of  the other 
researches, utilized a larger smooth pipe with 595mm diameter 

to develop the experiments. Due this, their data was included in 
the presented analysis.

Using the abovementioned dataset, this study compares the 
performance of  the equations proposed by Mayerle et al. (1991), Ab 
Ghani (1993), May et al. (1996), Ota (1999), Vongvisessomjai et al. 
(2010), Ebtehaj et al. (2014), Najafzadeh et al. (2017), Romero 
(2018), Montes  et  al. (2020a) and Tafarojnoruz & Sharafati 
(2020) in determining the volumetric concentration at the limit 
of  deposition. In addition, there are uncertainties regarding the 
use of  these equations for the extrapolations. Ota (1999) included 
a more accurate physical consideration on his model, and may 
be the best solution. This research tries to bring the ANN and 
a performance analysis with a wider dataset to confirm this fact.

With a more precise estimation of  the volumetric 
concentration at the limit of  deposition, a better design approach 
for storm sewers can be suggested. This approach will lead to the 
maximum allowable volumetric concentration of  sediments that 
does not reduce the discharge capacity of  the structure.

LITERATURE REVIEW

This section presents the most recurrent criteria used to 
design storm sewers, then it is presented the equations used to 
determine the limit of  deposition. These equations typically use 
different dimensionless parameters to define such condition. Finally, 
some definitions related to ANN, and previous studies that have 
applied artificial intelligence for sediment transport inside storm 
sewers are presented.

Existing criteria for designing storm sewers

The basic premise in designing storm sewers lies in operating 
the structure under uniform and free flow. Manning equation is 
commonly used to determine the diameter and slope of  the pipe.

Additional sizing criteria of  the storm sewers encompass the 
determination of  the maximum and minimum velocities. Maximum 
velocities, above 3.0 m/s are avoided to protect the pipe against 
abrasion. However, depending on the material used, these velocities 
can be higher (Mays, 1999, 2004). The minimum flow velocities 
must be in the range between 0.60 m/s and 0.80 m/s, to avoid 
sediment deposition at the bottom of  the pipes (Fendrich et al., 
1997; Mays, 1999; Tucci, 2004).

Butler & Davies (2004) emphasized that a simple minimum 
velocity value, unrelated to volumetric concentration, characteristics 
of  the sediments being transported, and other hydraulic characteristics 
of  the flow, do not represent the capacity of  the pipe to transport a 
given sediment, because higher velocities are necessary to transport 
it in larger pipes rather than in smaller ones.

Vongvisessomjai et al. (2010) indicated that the structure 
could be under two operational situations throughout its work-life: 
low and high flow. Operation during low-flow periods must be 
such that no deposition occurs inside the pipe, and the structure 
must be able to transport the design discharge without overflowing 
during the rainy periods.

According to the American Society of  Civil Engineers 
(2007), during low-flow periods, the flows in the pipes are 
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commonly lower than the design flows, leading to a lower sediment 
transport capacity.

Determination of  the limit of  deposition in storm 
sewers

Definition of  the limit of  deposition

The limit of  sediment deposition in pipes is studied to 
determine the flow conditions that do not cause the deposition 
of  solids at the bottom of  the pipes. For design purposes, 
the determination of  this limit characterizes the self-cleaning 
condition of  the structure, and is often studied through two types 
of  experiments: allowing a small layer of  sediments to deposit 
at the bottom of  the pipe (with deposition) and in clean beds 
(without deposition).

For both cases, the limit of  deposition in storm sewers 
is usually determined by equations developed from experimental 
analyses, performed using non-cohesive sands and gravel (May et al., 
1996).

The sediment transport in the sewers is well described by Ota 
(1999) as when the shear stress produced by the flow at the bottom 
of  the pipe is sufficiently high, a sediment with a certain size may 
be transported in the pipes without deposition. Nevertheless, for 
the same flow condition, if  the sediment concentration increases, 
there is a limit of  volumetric concentration in the flow at which 
the solids begin to deposit. This is the limit of  deposition, as 
presented by Pedroli (1963) and Novak & Nalluri (1975), and 
the condition analyzed in this paper (without deposition – clean 
beds). As the volumetric concentration increases, the sediments 
tend to deposit in small amounts but continue to move forming 
separate dunes, as cited by May (1982). By further increasing 
the volumetric concentration, continuous deposition can occur, 
diminishing considerably the discharge capacity of  the pipe due 
to reductions in the cross-sectional area (Ota, 1999).

Several empirical equations were developed to determine 
the limit of  deposition in clean bed state, i. e., the self-cleaning 
in rigid boundary conditions. These equations are used to predict 
the minimum velocity and volumetric concentration to satisfy the 
nondeposition conditions (Safari et al. 2018). The most recurrent 
equations found in the literature, the theoretical discussions and 
the experimental dataset used to obtain them are presented in 
the following section.

Developed equations to determine the limit of  deposition 
in clean beds

The following studies present models used to determine 
the limit of  deposition in storm sewers, which were developed 
through experiments with clean beds.

Mayerle et al. (1991) investigated the sediment transport 
inside pipes without depositions using graded sand with diameters 
ranging from 0.5 mm to 8.74 mm, with a density of  2,550 kg/m3 in 
one 152 mm diameter and 20.50 m long pipe. The study affirms 

that the velocity needed to guarantee flow with no depositions 
depends on variables such as density, hydraulic radius, sediment 
concentration and grain size. Based on the results of  their 
experiments, Mayerle et al. (1991) presented Equation 1:
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where cV  is the critical velocity for non-deposition in m/s, g  is the 
acceleration of  gravity in m/s2, d  is the diameter of  the particle 
in m, sS  is the relative density of  the solid, vC  is the volumetric 
concentration in ppm and the hR  is the hydraulic radius in m. 
Mayerle et al. (1991) showed that the critical velocity needed to 
meet the self-cleaning criteria decreased with the particle size and 
increased with the hydraulic radius and volumetric concentration.

Ab Ghani (1993) developed experiments with three 
different pipes. Two with diameters of  154mm and 305mm 
with a length of  20.50 m and one with a diameter of  450 mm 
and length of  21.00 m. The roughness of  the 305 mm diameter 
pipe was settled using sand with diameters ranging from 
0.5 mm to 1 mm. In the 154 mm and 305 mm diameter pipes, 
the diameter of  the sediments ranged from 0.5 mm to 10 mm 
of  non-cohesive uniformly distributed material with densities 
ranging from 2,530 kg/m3 to 2,593 kg/m3. For the analysis in 
the 450 mm diameter pipe, the diameter of  the sediment was 
equivalent to 0.72 mm with a density of  2,620 kg/m3. In addition, 
using a larger set of  experimental observations with data from 
Mayerle et al. (1991), May (1993), and Loveless (1991), Ab Ghani 
(1993) determined an empirical equation with the volumetric 
concentration as the dependent variable, to represent the limit 
of  deposition in pipes, defined by Equation 2.
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where 50d  represents the median diameter of  particles in a 
mixture in m, 0λ  is the clean water friction factor, and grD  is 
the dimensionless sediment diameter, defined by Equation 4. Ab 
Ghani (1993) showed that the discrepancies between the observed 
and predicted concentrations using Equation 2 increase with 
decreasing sediment concentration.

May et al. (1996) used a set of  332 sediment transport 
experiments to develop another equation for defining the volumetric 
concentration of  the sediments at the limit of  deposition. In those 
experiments, the diameter of  the pipe used ranged from 77 mm to 
450 mm, the median diameter was between 160 μm and 8,300 μm 
and the volumetric concentration ranged from 2.3 to 2,110 ppm. 
Equations 5 and 6 were obtained through best-fit model.
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where tV  is the threshold velocity, y  is the water depth in the 
pipe in m, V  is the mean velocity of  the flow in m/s, D  is the 
pipe diameter in m, and A  is the cross-sectional area of  the 
flow in m2.

Ota (1999), in contrast to the other researchers, looked for 
an approach with a better theoretical basis, not using only best‑fit 
models with the experimental data. Among the observations 
presented by Ota (1999), there is a variation in shear stress as a 
function of  depth according to Equation 7.
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where ξ  represents the relationship between the shear stress at 
the bottom of  the pipe (τ ) and the mean value ( ), *u  is the 
shear velocity at the bottom of  the pipe in m/s and, *V  is the 
mean shear velocity. Figure 1 shows the variation of  ξ  with the 
relative depth inside the drainage pipe, as presented by Ota (1999).

Another contribution of  Ota (1999) to determine the 
limit of  deposition in pipes involves the relation between particle 
diameter and pipe roughness ( 50 /d k ), representing the internal 
angle of  friction. This relation results in the definition of  the 
compensated dimensionless shear stress, according to Equation 
8, to determine the limit of  deposition.
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where ψ  is the dimensionless shear stress, k  is the pipe roughness 
in m, and ρ  is the density of  fluid in kg/m3.

Ota (1999) determined the limit of  sediment deposition 
experimentally but included the results of  other studies for calibration, 
utilizing data presented by Ab Ghani (1993), Mayerle et al. (1991) 
and May (1993), resulting in 508 experimental data points.

With these considerations, Ota (1999) correlated the 
transport parameter and the compensated dimensionless shear 
stress, obtaining Equation 9:
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where φ  is the transport parameter, described in Equation 10.
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To facilitate the use of  Equation 9, Ota (1999) rewrote 
his equation in a simplified form, presented in Equation 11, valid 
for the limit of  deposition:
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The adoption of  ( )
2

350 /d kψ  parameter in the model 
φ  – ( )

2
350 /d kψ  appears to be more reliable for extrapolating 

the limit of  deposition for pipe diameters larger than 500 mm 
(Ota & Nalluri, 2003).

Rushforth et al. (2003) presented experiments in a full-scale 
model to evaluate the performance of  two models developed 
to determine the self-cleaning condition. The experiments were 
carried out in a pipe with 60 m long and 800 mm diameter. 
Although this comparison was performed with a deposited bed 
model, they noticed that the best-fit equations such as May (1993) 
underestimate the flow capacity to transport sediments, confirming 
Ota & Nalluri’s (2003) conclusion.

Vongvisessomjai et al. (2010) performed 28 new experiments 
using polyvinyl chloride (PVC) pipes. The laboratory analysis 
conducted was developed considering the sediment transport in 
pipes with partial-full-flow without deposition, using two pipes 
with dimensions of  100 mm and 150 mm, both 22 m long. Three 
uniform grain sizes were used in their study: 0.20 mm, 0.30 mm, and 
0.43 mm. Vongvisessomjai et al. (2010) determined a dimensionless 
parameter defined as the densimetric Froude number ( *Fr ) to 
determine the sediment transport at the limit of  deposition using 
the experiments conducted and obtained Equation 12.
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Vongvisessomjai et al. (2010) mentioned that the calculated 
values of  those equations are very similar to those calculated by 
Equations 5 and 6, and when compared with the experimental 
results, Equations 12 presented slightly better results than those 
equations. Vongvisessomjai et al. (2010) also concluded that the 
relationship between the grain size and the hydraulic radius is the 
most important parameter for sediment deposition in storm sewers.

Figure 1. Variation of  the ξ  with the relative depth inside the pipe.
Source: Adapted from Ota (1999).
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Ebtehaj  et  al. (2014), using the experimental datasets 
obtained by Ab Ghani (1993) and Vongvisessomjai et al. (2010), 
developed another sediment transport equation to determine the 
limit of  deposition of  sediments in storm sewers. To validate the 
proposed equation, Ebtehaj et al. (2014) used a dataset from Ota 
& Nalluri (1999). Ota & Nalluri (1999) data were aggregated from 
24 experiments with six different sediment diameters (ranging 
from 0.71 mm to 5.61 mm) and by 20 more experiments with 
a 2 mm sediment diameter. Through multiple regression using 
the root mean square error and the mean absolute relative error, 
as error functions, Ebtehaj et al. (2014) developed an equation 
to define the densimetric Froude number. Akaike Information 
Criterion (AIC) was used to measure the accuracy of  the model. 
The resulting equation presented by Ebtehaj  et  al. (2014) is 
presented by Equation 13.
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Ebtehaj et al. (2014) concluded that the new equation had a 
simpler form, and showed better accuracy than Vongvisessomjai et al. 
(2010) and May et al. (1996) equations.

Najafzadeh et al. (2017) used the Ab Ghani’s (1993) dataset 
to evaluate and develop another equation through EPR‑MOGA‑XL 
(Evolutionary Polynomial Regression – Multi‑objective optimization 
strategy) model. The EPR-MOGA-XL model was compared 
with an MT (Model Tree) model and with the equations of  
Novak & Nalluri (1975), Mayerle et al. (1991), Ab Ghani (1993), 
Vongvisessomjai  et  al. (2010) and Azamathulla  et  al. (2012). 
Najafzadeh et al. (2017) concluded that the developed models 
surpassed all empirical equations analyzed, which over (or under) 
predicted the densimentric Froude number. The Equation 14 was 
obtained through EPR-MOGA-XL model.
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Romero (2018) utilized the results of  two ANN models 
to evaluate the correlation between transport parameter and the 
compensated dimensionless shear stress, as proposed by Ota (1999). 
Due to the limitations of  the ANN method to extrapolation, it was 
proposed another equation to determine the limit of  deposition 
in terms of  volumetric concentration based on the ANN results, 
presented in Equation 15.
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Through analyzing the studies presented in this section, 
is possible to notice that, with exception of  Ota (1999), all the 
equations are defined as a best-fit equation model. Equation 11 is 
a semi-theoretical model and it is explained by Ota & Nalluri 
(2003) in detail.

Montes et al. (2020a) presented a study which evaluated 
the performance of  several empirical equations using different 
datasets. Among the utilized dataset Montes et al. (2020a) develop 
a new dataset using a larger pipe with 10.5 m long and 595 mm 

diameter. The experimental data gathered and presented in their 
work covers the self-cleaning condition with and without deposition 
(clean bed). Through several sensibility analysis, Montes  et  al. 
(2020a) concluded that the existing models are overfitted and 
tends to overestimate the threshold of  self-cleaning velocities. 
Montes et al. proposed another best-fit equation to determine 
the limit of  deposition for larger pipes, i.e., 500mm and above, 
presented in Equation 16, which outperformed others equations 
comparing with the new dataset.
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Tafarojnoruz & Sharafati (2020) presented another equation 
capable to determine the Froude number at the limit of  deposition, 
obtained through the generalized likelihood uncertainty estimation 
(GLUE). Using data from Ab Ghani (1993) and Vongvisessomjai et al. 
(2010), Tafarojnoruz & Sharafati (2020) presented the Equation 
17, which was compared with the equations of  Ab Ghani (1993), 
Vongvisessomjai et al. (2010) and Ebtehaj et al. (2014), showed 
more accurate predictions.
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Table 1 summarizes all presented equations to determine 
the limit of  deposition presented in this section.

Artificial neural networks

An artificial neural network (ANN) can be described, 
as a computational system capable of  simulating the decision 
processes of  the nervous system of  a human being (Graupe, 2013). 
The correlation with the human nervous system is made not only 
by the definitions but also by the processing units of  the model 
and connections between those units, called neurons and synaptic 
connections. The artificial neurons are the processing units of  
an ANN. These units receive information, process it, and then 
pass the resulting information to other neurons via weights (or 
artificial synaptic connections). Through the interaction between 
the artificial neurons over time, the computational system can 
extract and repeat patterns (Haykin, 1999; Braga  et  al., 2000; 
Silva et al., 2017).

According to Braga et al. (2000), the application of  the 
ANN in solving mathematical problems is very attractive because 
of  the parallelism of  the model and its ability to achieve superior 
performance than other mathematical models. Bishop (1995) 
emphasized that an artificial neural network with two hidden layers 
can approximate any mathematical function. Another positive 
point of  the model is its capability to learn and reproduce patterns 
observed in the data and generalize a problem. Generalization is 
the ANN’s capacity to produce one acceptable output for a given 
input dataset that was not shown during the training phase (or 
the fitting phase) (Haykin, 1999; Silva et al., 2017).

There are several types of  ANN. The most used and known 
types of  ANN can be classified as feedforward and recurrent ANN. 
The difference between them lies in the connections of  the artificial 
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neurons. While the recurrent type exhibits loop on the synaptic 
connections, the feedforward does not (Jain et al., 1996; Haykin, 2001; 
Silva et al., 2017). To develop the present research, the multilayer 
perceptron (MLP), one kind of  feedforward ANN, was used.

The ANN-MLP can be characterized by the number of  
hidden (or processing) layers of  neurons. The neuron is the smallest 
processing unit in the ANN-MLP architecture. It receives the 
information, processes it by calculating the sum of  the products 
between the weights and the received data, aggregate a bias value 
and, applies this sum to one activation function, which generates the 
output. Figure 2 shows the representation of  one artificial neuron.

In Figure 2, the input signals ( 1 2, , ..., nx x x ) are multiplied 
by a synaptic weight ( 1 2, , ..., kw w w ), after which they are summed, 
including one bias value (θ ). The sum then feeds one activation 
function (φ) that produces one output signal (y). Haykin (2001) 
presented Equations 18 and 19 to describe the behavior of  a 
single neuron mathematically.

1

n

n n
j

u w x θ
=

= −∑ 	 (18)

( )  u yϕ = 	 (19)

Figure 3 shows the architecture of  one ANN-MLP. Starting 
at the input layer, the data feeds the first hidden layer of  neurons, 
which are processed following Equations 18 and 19. The output 
of  the neurons in the first hidden layer feeds the neurons in the 
second hidden layer, continuing if  there are hidden layers in the 
architecture until the signal reaches the output layer. The output 
produced in the output layer is the result of  the ANN (Silva et al., 
2017).

The process to obtain one trained ANN model capable 
of  reproducing patterns and generalizing one desired problem 
consists of  repeating two phases, called the forward and the 
backward phases, over a specific number of  epochs (loop). 
In the forward phase, several input data are presented to the 
model to produce the outputs. In the backward phase, these 
outputs are compared with the desired value for the given 
input data. Using the difference between the output of  the 
ANN and the desired data, the weights and biases are then 
updated (Bishop, 1995; Braga et al., 2000; Silva et al., 2017). 
The difference between the desired and given output signals of  
the ANN can be expressed as various kinds of  metrics, such 
as Mean Squared Error (MSE), Mean Absolute Error (MAE) 
and Mean Absolute Percentage Error (MAPE). The backward 

Table 1. Self-cleaning models used to determine the limit of  deposition inside storm sewers.
Author Model Equation
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phase is also called the training phase. During this phase, the 
update of  the weights occurs following the backpropagation 
algorithm.

At the training phase of  the ANN, one should always look 
for overfitting and underfitting situations. In overfitting, the ANN 
results will be very close to the values for the training set, however, 
for input data different from those used during the training phase, the 
outputs given by the ANN will not be satisfactory, diverging from the 
desired values. For underfitting situations, the ANN are not able to 
achieve a satisfactory level of  results because of  the low number of  
epochs, neurons, or hidden layers (Silva et al., 2017; Haykin, 2001).

Sarle (1995) and Bishop (1995) stated that one way to 
avoid the overfitting of  a neural network consists of  stopping the 
training phase before all the training epochs finish. This method 
is known as early stopping. To perform this method, the first 
step is to separate the dataset into two sets, a training set, and 
validation set, use small random initial values, use a slow learning 
rate, compute the validation error periodically during the training 
phase, and stop the training when the validation error starts to 
rise with the epochs.

For further details and explanations of  the functioning of  
the ANN MLP, see Bishop (1995) and Silva et al. (2017).

Artificial intelligence and the limit of  deposition in 
storm sewers

Artificial intelligence and soft computing methods started 
to be employed in sediment transport issues since the beginning 
of  the 2000’s. One of  the first published works in the field was the 
Nagy et al. (2002), which aimed to evaluate the model capability to 
estimate the total discharge of  sediments into streams and natural 
rivers utilizing ANN. Nagy  et  al. (2002) observed that several 
inputs variables can lead to a worse generalization capability of  
the ANN. Through a discrepancy analysis and comparing the 
deviations between experimental dataset and the calculated values, 
Nagy et al. (2002) showed that ANN can be successfully applied 
for estimating the sediment discharge in natural rivers, due to 
capability of  the ANN accept any number of  input parameters, 
without omission or simplifications (as empirical equations), the 
ANN model could be applied by field engineers to estimate the 
sediment discharge without knowing all the processes and theories 
involved in sediment transport and the parallelism of  the model 
can overcome stochastic nature of  the sediment movement more 
than other equation. In addition, Nagy et  al. (2002) comment 
that one limitation of  the ANN models is the restriction for data 
extrapolation, but this can be easily overcome by feeding new 
patterns in the learning process of  the model.

Regarding the limit of  deposition inside storm sewers, 
the artificial intelligence and soft computing methods started to 
be used in the 2010’s for conditions with deposited sediments 
and without deposited sediments (clean bed). Azamathulla et al. 
(2012) presented a study using data from Ab Ghani (1993) and 
Vongvisessomjai et al. (2010) in an ANFIS based model to predict 
the Froude number at the limit of  deposition in clean pipes. 
The dataset utilized was divided into two groups, a training set 
and a testing set, which correspond of  85% and 15% of  the total 
amount of  used experiments, respectively. Through analyzing 
several input parameters in the model, Azamathulla et al. (2012) 
concluded that the developed ANFIS model outperformed the 
analyzed equation of  Vongvisessomjai et al. (2010). In all input 
parameters combination utilized, the proposed ANSIS model by 
Azamathulla et al. (2012) overcome the Vongvisessomjai et al. 
(2010) equation. To demonstrate that, Azamathulla et al. (2012) 

Figure 2. Representation of  connections of  one artificial neuron.
Source: Adapted from Silva et al. (2017).

Figure 3. Architecture of  typical multilayer perceptron neural network.
Source: Adapted from Silva et al. (2017).
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used the Root Mean Squared Error (RMSE) and the determination 
coefficient (R2). The best statistical measures observed in the 
proposed model was R2 = 0.98 and RMSE = 0.185 for the training 
set and R2 = 0.94 and RMSE = 0.174 for the testing dataset.

Safari  et  al. (2013) compared three types of  ANN 
architecture, i. e., neural networks with a radial basis function, 
generalized regression networks, and the multilayer perceptron 
(MLP), to determine the limit of  deposition using Loveless’s 
(1991) data. To train the models, Safari et al. (2013) used 80% of  
the experimental data obtained from literature, and the remaining 
20% were used for evaluating the proposed models. Through 
analyzing the R2 and the Mean Squared Error (MSE), Safari et al. 
(2013) demonstrates that ANN-MLP model outperforms the 
other two ANN architectures analyzed, with values of  R2 equal 
to 0.91 and MSE equal to 0.004. Despite the better performance 
of  the ANN-MLP, Safari  et  al. (2013) concludes in addition 
that all the analyzed ANN architectures could be used when 
determining the limit of  deposition, with a better performance 
than the empirical equations.

Ebtehaj & Bonakdari (2013) presented a comparison 
between the ANN-MLP and ANFIS model in the determination 
of  the Froude Number at the limit of  deposition in storm sewers. 
To perform the analysis, Ebtehaj & Bonakdari (2013) used the 
data of  Ab Ghani (1993) and Vongvisessomjai et al. (2010) and 
five different input variables combinations. In addition, Ebtehaj & 
Bonakdari (2013) presented the performance of  the equations of  
Novak & Nalluri (1975), Mayerle et al. (1991), Ab Ghani (1993), 
May et al. (1996), and Vongvisessomjai et al. (2010) in determining 
the Froude Number at the limit of  deposition inside storm sewers. 
It was showed that ANN-MLP outperforms all the ANFIS and 
the empirical equations analyzed, presenting values of  0.98 and 
0.0011 for R2 and RMSE, respectively.

Developing six different ANFIS models with different input 
variables, Ebtehaj & Bonakdari (2014a) analyzed the performance 
of  estimating the Froude Number at the limit of  deposition in rigid 
boundaries (without deposition – Clean pipes). The experimental 
data of  Ab Ghani (1993) and Vongvisessomjai et al. (2010) were 
used to training and evaluating the ANFIS models. To determine 
which model presented better performances it was evaluated the 
R2, Mean Relative Error (MRE), Mean Absolute Relative Error 
(MARE), Mean Squared Relative Error (MSRE), Mean Error 
(ME), Mean Absolute Error (MAE) and the RMSE. In addition, 
the ANFIS model was compared with three empirical equations: 
Ab Ghani (1993), Azamathulla et al. (2012), and Ebtehaj et al.
(2014). It was showed that ANFIS model outperformed the 
existing empirical equations to determine the Froude Number at 
the limit of  deposition.

Ebtehaj & Bonakdari (2014b) evaluated the performance of  
Genetic Algorithm model (GA), Imperialist Competitive Algorithm 
(ICA) and an ANN model with the equations of  May et al. (1996) 
and Ebtehaj et al. (2014). The developed analysis was performed 
using the data of  Ab Ghani (1993) and Vongvisessomjai et al. 
(2010), which were divided into two datasets: training (80% of  
the data) and evaluation (20% of  the data). Applying the RMSE 
and the Mean Absolute Percentile Error (MAPE), Ebtehaj & 
Bonakdari (2014b) showed that the best model evaluated was 

the ICA, with values of  RMSE and MAPE equal to 0.037 and 
3.90%, respectively.

One comparison between two evolutionary algorithms was 
performed by Ebtehaj & Bonakdari (2016). In order to predict the 
limit of  deposition in rigid boundaries through Froude Number, 
Particle Swarm Optimization (PSO) and the ICA were calibrated 
using the Ab Ghani (1993) and Vongvisessomjai et al. (2010) dataset. 
Besides the comparison between these two models, Ebtehaj & 
Bonakdari (2016) also used the results of  an ANN-MLP model, 
and the equations of  May et al. (1996) and Vongvisessomjai et al. 
(2010). All the predictions were compared with the experimental 
dataset utilizing the MAPE and the RMSE, which showed better 
values for the PSO model, corresponding of  3.5% and 0.007, 
respectively.

Ebtehaj & Bonakdari (2015) evaluated three different 
training algorithms applied to an ANN-MLP model to predict 
the Froude Number at limit of  deposition. It was analyzed 
the variable learning rate, resilient back-propagation and the 
Levemberg‑Marquardt algorithm. The predictions of  the ANN 
models were compared with the results provided by equations 
of  May et al. (1996), Azamathulla et al. (2012) and Ebtehaj et al. 
(2014) using the experimental data from Ab Ghani (1993) and 
Vongvisessomjai  et  al. (2010). To select the model with best 
performance, it was used the R2, MAPE and RMSE. For each 
training algorithm, six different models with different input 
parameter were evaluated. With values of  R2, RMSE and MAPE 
equal to 0.98, 0.025 and 5.78%, respectively, the ANN-MLP 
trained with Levemberg-Marquardt algorithm showed the best 
performance, outperforming the empirical equations analyzed.

Najafzadeh & Bonakdari (2017) develop a study with an 
application of  a neuro-fuzzy based group method of  data handling 
associated with particle swarm optimization (NF-GMDH-PSO) 
to predict the velocity at the limit of  deposition in clean pipes. 
To train and test the models, the authors utilized the Ab Ghani’s 
(1993) dataset, with 221 experimental data points, which was 
separated into training dataset (used to train the model) with 
75% of  the total amount of  data and testing dataset (used to 
evaluate the generalization capability of  the model) with 25% 
of  the total amount of  data. The authors compared the model 
predictions with the results provided by the empirical equations of  
Novak & Nalluri (1975), Mayerle et al. (1991), Ab Ghani (1993), 
Vongvisessomjai et al. (2010) and Azamathulla et al. (2012). Using 
the correlation coefficient (R), RMSE, MAPE, scatter index (SI) 
and BIAS to evaluate the performance of  the equations and the 
proposed model, they concluded that the NF-GMDH-PSO model 
surpasses the empirical equations performances, when determining 
the velocity at the limit of  deposition.

Ebtehaj et al. (2017a) implemented a hybrid model using 
decision tree (DT) and two kinds of  ANN: Multilayer Perceptron 
(MLP) and Radial Basis Function (RBF). It was employed data 
from Ab Ghani (1993), Vongvisessomjai et al. (2010) and, Ota 
& Nalluri (1999), where 70% of  the total amount of  data were 
used in the training and the remaining 30% were used to evaluate 
the model. To verify how close the model predictions are from 
experimental data, Ebtehaj  et  al. (2017a) used the R2, RMSE, 
MARE, SI and BIAS. Through comparing predicted values 
obtained by the proposed model with experimental data utilized, 
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Ebtehaj et al. (2017a) concluded that the implementation of  DT 
along with MLP improve the performance of  the model in order 
to predict the Froude Number at the limit of  deposition in clean 
pipes, presenting better results than the existing empirical equations.

Ebtehaj et al. (2017b) used data from Ab Ghani (1993), 
Ota & Nalluri (1999) and Vongvisessomjai et al. (2010) to train 
and develop a support vector machine model (SVM) coupled 
with a firefly algorithm (SVM-FFA) to predict the Froude number 
at the limit of  deposition. The performance of  the developed 
model was compared with the equations of  May et al. (1996), 
Azamathulla et al. (2012) and Ebtehaj et al. (2014), using the R2, 
MAPE, RMSE, BIAS and SI. In addition, the SVM-FFA model 
was also compared with the performance of  SVM, GP and ANN 
models. It was concluded that the SVM-FFA provided the better 
predictions among the models analyses, with values of  R2 equal 
to 0.986, MAPE of  4.6%, RMSE of  0.235, BIAS of  0.046 and 
SI of  0.058.

As Safari et al. (2013), Wan Mohtar et al. (2018) analyzed 
different architectures of  ANN to determine the incipient motion 
in sewers with deposited bed, using data from Yalin & Karahan 
(1979), Kuhnle (1993), Shvidchenko (2000), Salem (1998) and Bong 
(2013). Despite the study regard conditions with deposited beds, 
Wan Mohtar et al. (2018) showed the same conclusion as presented 
in Safari et al. (2013), i. e., the ANN which provided better results 
was the MLP. The performances of  the evaluated models were 
analyzed using the R2, RMSE and the relative error (RE).

Ebtehaj et al. (2019) published a comparison between the 
ANFIS and a hybrid model ANFIS-PSO to predict the Froude 
number at the limit of  deposition using data from Ab Ghani 
(1993), Ota & Nalluri (1999) and Vongvisessomjai et al. (2010). 
In the research, the performance of  these models was compared 
with equations of  May et al. (1996), Azamathulla et al. (2012) 
and Ebtehaj et al. (2014) using R2, RMSE, MAPE, BIAS and SI. 
It is showed that the hybrid ANFIS-PSO model outperforms all 
the equations and the ANFIS model, with values of  R2 equal to 
0.982, RMSE of  0.262, MAPE of  5.932%, BIAS of  -0.009 and 
SI of  0.064. Ebtehaj  et  al. (2019) also performed a sensitivity 
analysis, which indicate that the volumetric concentration is the 
most important variable for the correct estimation of  the Froude 
number.

Safari (2019) presented a comparation using three different 
numerical models: Decision Tree (DT), Generalized Regression 
(GR) and Multivariate Adaptative Regression Splines (MARS) to 
determine the densimetric Froude number of  to flow to guarantee 
the self-cleaning design concept. Safari (2019) analyzed his results 
with the estimations provided by the equations of  Mayerle et al. 
(1991), Ab Ghani (1993) and Vongvisessomjai et al. (2010), using 
the experimental dataset of  Mayerle (1988), May (1993), Ab Ghani 
(1993) and Vongvisessomjai  et  al. (2010). Through comparing 
the results of  RMSE, MAPE and concordance coefficient (CC), 
Safari (2019) showed that all the numerical models presented 
provided better estimation than the best-fit equations, with the 
MARS presenting the best estimations, showing values of  RMSE 
equal to 0.79, MAPE of  13.97% and CC of  0.92.

Kargar et al. (2019) analyzed a neuro-fuzzy (NF) and a GEP 
model to estimate the Froude Number in storm sewers at the limit 
of  deposition. The models were compared with the equations of  

Mayerle et al. (1991), Ab Ghani (1993) and Vongvisessomjai et al. 
(2010). The GEP model developed by Ab Ghani & Azamathulla 
(2011) was also evaluated. To train and to evaluate the performance 
of  the predicted models with the equations, Kargar et al. (2019) 
used experimental data from Mayerle (1988), May (1993), Ab Ghani 
(1993) and Vongvisessomjai et al. (2010). The comparisons between 
the presented models were performed using the RMSE and the 
CC, which showed that NF model presented better performances 
among all the analyzed models.

Mehr & Safari (2020) presented the application of  multigene 
genetic programing (MGGP), Gene Expression Programming (GEP) 
and a multilayer perceptron artificial neural network (ANN-MLP) 
in order to evaluate non deposition criteria with deposited bed. 
It was used four experimental datasets from El-Zaemey (1991), 
Perrusquia (1992, 1993), May (1993) and, Ab Ghani (1993). All the 
numerical models evaluate presented better predictions than the 
empirical equations analyzed in the work. Among the models the 
MGGP presenting slightly better predictions than the other models 
evaluated. To evaluate the models, Mehr & Safari (2020) used the 
Nash-Sutcliffe coefficient of  efficiency (NSE) and the RMSE.

Montes et al. (2020b) developed a numerical model using 
the Evolutionary Polynomial Regression-Multi-Objective Genetic 
Algorithmic (EPR-MOGA) using their own experimental data, 
carried out a 242 mm diameter acrylic pipe with 11.8 m long and 
longitudinal slope varying from 1.5% to 1.6%, at the Universidad 
de los Andes, Colombia. The EPR-MOGA model was trained to 
predict the Froude Number at the limit of  deposition, validated 
with their own experimental data aggregated another data found 
in the literature. Using the sum of  squared errors (SSE), R2 and 
the Akaike Information Criterion (AIC), Montes et al. (2020b) 
concluded that the EPR-MOGA model performs better than 
the equations analyzed in their work, which showed values of  
SSE equal to 0.06, R2 of  0.98 and the lower AIC observed. 
One reason attributed to that is because the analyzed models do 
not considerate the longitudinal slope as a dependent variable, 
and, the EPR-MOGA have improved generalization capability.

Montes et al. (2021) developed a random forest (RF) model 
to predict the non-deposition sediment transport in sewers. To train 
and evaluate the model, it was used data from Mayerle (1988), Ab 
Ghani (1993), Ota (1999), Vongvisessomjai et al. (2010) besides 
their own experimental data, regarding experiments on a 242mm 
acrylic pipe and on a 595mm PVC pipe, using sediment mean 
diameter of  0.35mm to 2.6mm. The RF model was trained to predict 
the Froude number at the limit of  deposition in clean pipes and 
then compared with the following models: Montes et al. (2020a), 
Kargar et al. (2019), Safari (2019), May et al. (1996), Safari & Aksoy 
(2020), Ebtehaj et al. (2019) and Ebtehaj et al. (2020). To analyze 
the models, it was used the R2, RMSE and MAPE. As stated by 
Montes et al. (2021), the presented RF model outperformed all 
other evaluated models with a low risk of  overfitting, this was 
achieved due the capability of  the model to better capture the 
complex interactions between input variables when compared to 
other models. Montes et al. (2021) also highlighted the importance 
in using larger datasets, once this can lead to better predictions as 
well. In addition, Montes et al. (2021) pointed that the volumetric 
sediment concentration at the limit of  deposition is the most 
important input variable when predicting the self-cleaning velocity 
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in sewers, and a good estimation of  this parameter can improve 
the design of  new self-cleaning sewers.

Ebtehaj et al. (2020) presented a sensitivity analysis using 
several combinations of  input parameters to calculate the Froude 
number at the limit of  deposition. Through an extensive analyzes it 
was showed that the volumetric concentration and the relationship 
between the grain diameter and the hydraulic radius are the most 
important parameters, once these variables are present in all 
optimum models evaluated.

In general, in all the presented studies, one can notice that 
artificial intelligence and soft computing models were developed 
in order to determine the limit of  deposition using the Froude 
Number. In addition, with exception of  Montes et al. (2020b), the 
presented researches use a limited experimental data, restraining 
the range of  the observed variables in the training and evaluation 
dataset. Also, the conclusions and assumptions of  previous studies 
indicates that, equations present worse predictions of  the Froude 
Number than the proposed models evaluated, but there are no 
discussions of  which model should be used in extrapolations.

Due the importance of  volumetric concentration at 
limit of  deposition conditions inside storm sewers, as stated by 
Montes et al. (2021) and Ebtehaj et al. (2020), this study applies 
an ANN-MLP with a larger experimental dataset gathered in 
the literature, in order to evaluate if  the proposed model can 
outperform the existing equations when determining the volumetric 
concentration at the limit of  deposition, raising a discussion of  
which model should be used in the extrapolations of  the data. With 
this approach, better estimations of  volumetric concentrations 
would be possible, improving the self-cleaning determination 
condition when designing new storm sewers.

Also, it is investigated if  the same parameters used in the 
determination of  Froude Number at the limit of  deposition is 
sufficient to produce results with same performance as observed 
in literature when determining the volumetric concentration.

Table 2 presents a summary relating the cited works with 
the condition analyzed, numerical model evaluated, dataset utilized, 
metrics used to evaluate the model, parameters used and, the 
existing equations evaluated in each work.

MATERIAL AND METHODS

This section presents the dataset utilized to train and 
evaluate the model, as the architectures and the metrics used to 
compare the results of  the artificial neural network with the other 
proposed equations.

Experimental dataset

The dataset used in this work was composed of  experiments 
available in the literature. The objective of  using the datasets 
already developed was to use the same information that was used 
to obtain the equations presented in the literature review to train 
and evaluate the ANN model.

The entire set of  experimental data regarding the definition 
of  the volumetric concentration at the limit of  deposition inside 
storm sewers consisted of  those in experiments performed by 

May (1993), Mayerle (1988), Ab Ghani (1993), Ota (1999), and 
Montes et al. (2020a) totaling 544 experimental data. The dataset 
was caried out by the researchers to study the conditions of  the 
flow at the limit of  deposition inside pipes in clean bed and it was 
used to define the proposed equations presented in the literature 
review. In those data, the following variables were observed: water 
depth, pipe roughness, pipe diameter, sediment particle size, 
velocity, longitudinal gradient, hydraulic radius, and the volumetric 
concentration. Table 3 shows the ranges for each variable measured 
in the experiments, and the number of  experiments performed 
by each author.

The quality of  experimental dataset used was verified using 
the Manning equation. If  the Manning equation was satisfied through 
the presented experimental data, then the data was validated. Also, 
the Manning’s coefficient obtained was compared with theoretical 
values presented by Henderson (1966). In addition, the relation 
between the depth and the pipe diameter was also verified. 
Experiments with this relation under 0.05 were not considered, 
once these conditions do not represent a storm sewer operational 
condition. The experimental dataset of  May (1993), Mayerle 
(1988), Ab Ghani (1993) and Ota (1999), are widely used in the 
sediment transport studies. When used aggregated, these datasets 
provide good ranges of  the observed variables. In addition, as 
exposed in Table 3, the Montes et al. (2020a) experiments were 
carried out with higher volumetric concentrations, slopes and pipe 
diameter than the other datasets, which were evaluated following 
the same abovementioned criteria and used in order to improve 
the used dataset.

Using the experimental data, the dimensionless sediment 
diameter ( grD ), the relationship between mean shear stress and 
shear stress at the bottom of  the pipe ( ξ ), the shear velocity ( *u ), 
the Reynolds number of  the particle ( *Re ) and the dimensionless 
shear stress (ψ ) were calculated according to Equations 4, 7, 20, 
21 and 22.

*   hu gR S= ξ 	 (20)

*
*  u dRe

υ
= 	 (21)

( )
*2

  s

u
g d S S

ψ =
− 	 (22)

Definition of  the training and evaluating datasets

The experimental data were separated into two datasets 
(training and evaluation datasets). The training dataset, representing 
75% of  the data (408 experiments), was utilized to train the ANN, 
and the evaluation dataset with 25% of  the data (136 experiments), 
was used to evaluate the generalization capacity of  the ANN. 
The ratio of  data splitting was settled following values found in 
previous studies.

The training dataset was defined ensuring that 75% of  
the experiments of  each author data were present inside of  it, 
not interfering in the representativeness of  the points of  each 
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Table 2. Summary of  numerical models evaluated in previous works regarding the definition of  self-cleaning condition inside storm 
sewers.

Author Bed condition Best model 
evaluated

Metrics used 
to evaluate the 

models
Dataset used Parameters used Equations evaluated

Azamathulla et al. 
(2012)

Clean bed (without 
deposit)

ANFIS R2 Ab Ghani (1993)
rF  = f ( 50d , hR , 0λ , grD , vC ) Vongvisessomjai et al. 

(2010)RMSE Vongvisessomjai et al. 
(2010)

Safari et al. 
(2013)

Clean bed (without 
deposit)

ANN-MLP R2 Loveless (1991) V  = f ( Q , vC , y , 0S , 50d , hR ) None
MSE

Ebtehaj & 
Bonakdari (2013)

Clean bed (without 
deposit)

ANN R2 Ab Ghani (1993)
rF  = f ( 50d , hR , 0λ , grD , vC ) Novak & Nalluri 

(1975)
RMSE Vongvisessomjai et al. 

(2010)
Mayerle et al. (1991)

Ab Ghani (1993)
May et al. (1996)

Vongvisessomjai et al. 
(2010)

Ebtehaj & 
Bonakdari 

(2014a)

Clean bed (without 
deposit)

ANFIS R2 Ab Ghani (1993)
rF  = f ( 50d , hR , 0λ , grD , vC )

May et al. (1996)
MRE Vongvisessomjai et al. 

(2010)
Ebtehaj et al. (2014)

MARE Azamathulla et al. 
(2012)

MSRE
ME

MAE
RMSE

Ebtehaj & 
Bonakdari 

(2014b)

Clean bed (without 
deposit)

ICA RMSE Ab Ghani (1993)
rF  = f ( 50d , hR , 0λ , grD , vC , D )

May et al. (1996)
MAPE Vongvisessomjai et al. 

(2010)
Ebtehaj et al. (2014)

Ebtehaj & 
Bonakdari (2016)

Clean bed (without 
deposit)

ICA RMSE Ab Ghani (1993)
rF  = f ( 50d , hR , 0λ , grD , vC )

May et al. (1996)
MAPE Vongvisessomjai et al. 

(2010)
Vongvisessomjai et al. 

(2010)
Ebtehaj & 

Bonakdari (2015)
Clean bed (without 

deposit)
ANN-MLP-LM R2 Ab Ghani (1993)

 = f ( 50d , hR , 0λ , grD , vC , D )
Novak & Nalluri 

(1975)
RMSE Vongvisessomjai et al. 

(2010)
May et al. (1996)

MAPE Azamathulla et al. 
(2012)

Ebtehaj et al. (2014)
Najafzadeh & 

Bonakdari (2017)
Clean bed (without 

deposit)
Neuro-Fuzzy 

GMDH Model
R Ab Ghani (1993)

rF  = f ( 50d , hR , 0λ , grD , vC )
Novak & Nalluri 

(1975)
RMSE Mayerle et al. (1991)
MAPE Ab Ghani (1993)

SI Vongvisessomjai et al. 
(2010)

BIAS Azamathulla et al. 
(2012)

Ebtehaj et al. 
(2017a)

Clean bed (without 
deposit)

ANN-DT-MLP R2 Ab Ghani (1993)
rF  = f ( 50d , hR , D , vC ) Azamathulla et al. 

(2012)
RMSE Vongvisessomjai et al. 

(2010)
May et al. (1996)

MARE Ota & Nalluri (1999) Ebtehaj et al. (2014)
SI

BIAS
Ebtehaj et al. 

(2017b)
Clean bed (without 

deposit)
SVM-FFA R2 Ab Ghani (1993)

rF  = f ( 50d , hR , 0λ , grD , vC , D )
Azamathulla et al. 

(2012)
MAPE Vongvisessomjai et al. 

(2010)
May et al. (1996)

RMSE Ota & Nalluri (1999) Ebtehaj et al. (2014)
BIAS

SI
Wan 

Mohtar et al. 
(2018)

Deposited bed ANN-MLP R2 Yalin & Karahan 
(1979) V  = f ( bW , y , 50d ) Novak & Nalluri 

(1975)
RMSE Kuhnle (1993) El-Zaemey (1991)

RE Shvidchenko (2000) Salem (1998)
Salem (1998) Bong (2013)
Bong (2013)
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author. Moreover, it was ensured that each variable’s maximum 
and minimum values were contained in the set. This procedure 
was taken to ensure that the evaluation dataset do not hold values 
outside the limits of  the ones presented during the training phase.

The evaluation set was composed of  the remaining 25% 
of  the experimental data, where, as in the training set, it was 
ensured that 25% of  the data of  each author were inserted in this 
set, without affecting the representativeness of  the data. This set 

Author Bed condition Best model 
evaluated

Metrics used 
to evaluate the 

models
Dataset used Parameters used Equations evaluated

Ebtehaj et al. 
(2019) 

Clean bed (without 
depositi)

ANFIS-PSO R2 Ab Ghani (1993)
rF  = f ( 50d , hR , 0λ , vC , D )

Azamathulla et al. 
(2012)

RMSE Ota & Nalluri (1999) May et al. (1996)
MAPE Vongvisessomjai et al. 

(2010)
Ebtehaj et al. (2014)

BIAS
SI

Safari (2019) Clean bed (without 
deposit)

MARS RMSE Mayerle (1988)
rF  = f ( 50d , hR , 0λ , grD , vC )

Mayerle et al. (1991)
MAPE May (1993) Ab Ghani (1993)

CC Ab Ghani (1993) Vongvisessomjai et al. 
(2010)

Vongvisessomjai et al. 
(2010)

Kargar et al. 
(2019)

Clean bed (without 
deposit)

NF RMSE Mayerle (1988)
rF  = f ( 50d , hR , 0λ , grD , vC )

Mayerle et al. (1991)
CC May (1993) Ab Ghani (1993)

Ab Ghani (1993) Vongvisessomjai et al. 
(2010)

Vongvisessomjai et al. 
(2010)

Mehr & Safari 
(2020)

Deposited bed MGGP RMSE El-Zaemey (1991)
rF  = f ( 50d , hR , 0λ , grD , vC )

Ab Ghani (1993)
NSE Perrusquia (1992, 

1993)
Nalluri et al. (1997)

May (1993) Safari & Shirzad 
(2019)

Ab Ghani (1993)
Montes et al. 

(2020b)
Clean bed (without 

deposit)
EPR-MOGA SSE Mayerle (1988)

rF  = f ( 50d , hR , 0λ , grD , vC )
Craven (1953)

R2 Ab Ghani (1993) Mayerle et al. (1991)
AIC Ota (1999) Ab Ghani (1993)

Vongvisessomjai et al. 
(2010)

May et al. (1996)

Montes et al. (2020b) Vongvisessomjai et al. 
(2010)

Ebtehaj et al. (2014)
Najafzadeh et al. 

(2017)
Safari et al. (2017)

Montes et al. 
(2021)

Clean bed (without 
deposit)

RF R2 Mayerle (1988)
rF  = f ( 50d , hR , 0λ , grD , vC )

Montes et al. (2020b)
RMSE Ab Ghani (1993) Kargar et al. (2019)
MAPE Ota (1999) Safari (2019)

Vongvisessomjai et al. 
(2010)

May et al. (1996)

Montes et al. (2020b) Safari & Aksoy (2020) 
Ebtehaj et al. (2019) 
Ebtehaj et al. (2020) 

Table 2. Continued...

Table 3. Variation range of  the main parameters of  the experimental data set used.

Author Number of  
experiments y (m) k (m) D (mm) d50 (mm) V (m/s) S (m/m) Rh (m) Cv (ppm)

May (1993) 97 0.058-0.299 0.00035-0.00070 76.7-299 0.57-7.9 0.429-1.498 0.0007-0.0237 0.019-0.090 0.31-2110
Mayerle 
(1988) 106 0.028-0.122 0.00035 152 0.5-8.74 0.374-1.104 0.0014-0.0056 0.017-0.046 20.4-1275

Ab Ghani 
(1993) 256 0.024-0.338 0.00035-0.001 154-450 0.46-8.3 0.24-1.216 0.0004-0.0056 0.0145-0.14 0.759-1450

Ota (1999) 49 0.055-0.189 0.001 225-305 0.714-5.61 0.39-0.756 0.002 0.034–0.086 4.193–77.99
Montes et al. 

(2020a) 36 0.003-0.218 0.00035 595 0.35-2.6 0.58-1.41 0.008-0.014 0.019–0.119 20-3410
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contains information that was not presented to the ANN in the 
training stage. This information is presented after the training 
phase to evaluate the capacity of  the ANN to generalize the 
determination of  the volumetric concentration at the limit of  
deposition.

ANN topologies

To observe if  the number of  neurons in the hidden layers 
and the combination of  the input variables produce significant 
changes in the generalization capability for the determination of  
the volumetric concentration at the limit of  deposition, several 
topologies were analyzed. In addition, evaluate different topologies 
is one way to avoid overfitting of  the ANN. Another procedure 
adopted to avoid overfitting is to stop the training phase before 
all the training epochs occur, as suggested by Sarle (1995) and 
Bishop (1995). The metric observed for this procedure was the 
error function calculated over the epochs in the training phase; 
when the error ceased decreasing significantly over the epochs, 
the training was stopped. For the initial epoch, the synaptic weight 
matrix was randomly initialized. The method adopted to prevent 
local minima of  the error function was restarting the model with 
different values of  the weight matrix.

The ANN architecture used in this study was the MLP, 
presented in Figure 3. In the input layer, where the data is presented 
to the ANN, the number of  neurons is equal to the number of  
variables shown to the model, followed by the first and second 
hidden layers, and finally the output layer, which has only one 
neuron, whose output value corresponds to the volumetric 
concentration at the limit of  deposition.

Combinations of  input variables analyzed

To verify if  and how the results of  the ANN models are 
affected by changing the input parameters, several combinations 
of  input variables were considered. These variables were obtained 
from the experimental data and also calculated using Equations 4, 
7, 20, 21 and 22. Eighteen combinations of  different input variables 
presented in Table 4 were analyzed as input parameters, defining 
one ANN model. In models ANN-XI to ANN-XIV, the input 
parameters refer to those observed in the literature which belong 
to the best models evaluated using numerical models, as presented 
in Table 2 and, the models ANN-XV to ANN-XVIII corresponds 
with the parameters of  equations used to determine the limit of  
deposition inside storm sewers, presented in Table 1.

The objective of  analyzing different combinations of  input 
parameters was to determine if  the number and combinations of  
these variables could lead to a better or worse prediction by the 
ANN models in defining the volumetric concentration at the limit 
of  deposition. Additionally, this was also needed to compare if  
the same parameters used in defining this condition through the 
other models, presented in Table 1 and Table 2, would reproduce 
the same performance regarding the determination of  volumetric 
concentration at the limit of  deposition.

Number of  neurons in the hidden layers and other 
considerations regarding the training of  the ANN models

For each ANN model presented in Table 4, 200 different 
topologies of  ANN were analyzed to obtain the best performance 
to predict the volumetric concentration at the limit of  deposition 
in sewers.

All the ANN models presented in Table 4 correspond 
to an ANN-MLP model, with one input layer, two internal 
processing layers, and one output layer. The number of  neurons 
in the input layer corresponded to the number of  input variables 
in each model presented in Table 4. For all combinations and 
topologies, the number of  neurons in the output layer is equal 
to one, representing the desired output data, i.e., the volumetric 
concentration at the limit of  deposition. The difference of  the 
200 analyzed topologies was the variation in the number of  
neurons in the processing (hidden) layers, which vary from 5 to 
25 neurons in the first hidden layer and from 5 to 15 neurons in 
the second hidden layer. For all neurons, the activation function 
was hyperbolic tangent, the learning rate was equal to 0.01, and 
the maximum training epochs was 10,000.

Comparison between experimental and calculated data

After training the 200 topologies for each ANN model 
presented in Table 4, every architecture with different combinations 
of  input variables and number of  neurons in the two hidden layers 
was evaluated using the training dataset, evaluation dataset and with 
all the data collected from literature. The objective in calculating 
and comparing the volumetric concentration using the evaluation 

Table 4. Combinations of  the input variables analyzed.
ANN Model Input layer parameters

ANN-I D , /y D , 50d , k , hR , S , 𝑉, *Re ,  ψ , *u , ξ
ANN-II D , /y D , 50d , k ,  hR , V , ψ , *u , ξ

ANN-III D , /y D , 50d , k ,  hR ,  V , 
*Re , ψ , ξ

ANN-IV D , /y D , 50d , k , hR , S , ψ ,
* Re

ANN-V D , /y D , 50d , k , hR , 0S , V ,  ψ , 
*u , ξ

ANN-VI D , /y D , 50d , k , 0S , V ,
* Re , ψ , *u ,  ξ

ANN-VII D , /y D , 50d ,  S , *Re , *u

ANN-IX D , /y D , 50d , V ,  S , * Re , *u ,  ξ

ANN-X D , /y D , 50d , k , S , *Re , *u ,  ξ

ANN-XI 50d , hR , V , grD , 0λ
ANN-XII D , 50d , hR , V
ANN-XIII D , 50d , hR , V , grD , 0λ
ANN-XIV D , 50d , hR , 0,  V λ
ANN-XV 50d , hR , V

ANN-XVI D , 50d , A , V , y
ANN-XVII

50d , k , hR , S , 0λ , ξ

ANN-XIII 50d , hR , V , 0λ
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data set was to evaluate the capability of  the ANN to provide 
results as good as for the training dataset, avoiding overfitting and 
showing the capability of  the model to generalize the definition 
of  the volumetric concentration at the limit of  deposition.

The equations of  Mayerle et al. (1991) (Equation 1), Ab 
Ghani (1993) (Equation 2), May et al. (1996) (Equation 5), Ota 
(1999) (Equation 11), Vongvisessomjai et al. (2010) (Equation 12), 
Ebtehaj  et  al. (2014) (Equation 13), Najafzadeh  et  al. (2017) 
(Equation 14), Romero (2018) (Equation 15), Montes et al. (2020a) 
(Equation 16) and Tafarojnoruz & Sharafati (2020) (Equation 17)  
were also evaluated using all the experimental data collected in 
the literature.

The equations of  Mayerle et al. (1991), Vongvisessomjai et al. 
(2010), Ebtehaj et al. (2014), Najafzadeh et al. (2017), Montes et al. 
(2020a) and Tafarojnoruz & Sharafati (2020) (Equation 17) were 
algebraically modified to set the volumetric concentration as the 
dependent variable of  the equation.

The comparison between calculated and desired (experimental) 
data was evaluated by calculating the coefficient of  determination 
(R2), the Mean Absolute Percentile Error (MAPE), the root mean 
squared error (RMSE), the mean absolute error (MAE), the mean 
bias error (MBE), scatter index (SI) and, the Akaike information 
criterion (AIC). These statistical measures are commonly used in 
other studies developed to determine the limit of  deposition in 
sewers using artificial intelligence and soft computing methods and 
give good overview of  the generalization capability of  the model.

The coefficient of  determination (R2) indicates which the 
total variation is common to the elements that constitute the pairs 
analyzed, where the closer to 1.0 the greater is the proximity to 
the experimental values. The R2 is calculated though Equation 23, 
where the  ir is the real (experimental) value, ip  is the predicted 
(calculated) value and r  is the mean value of  the real data.

( )
( )

2
2

21 i i

i

r p
R

r r

∑ −
= −

∑ −
	 (23)

The MAPE is directly related to the accuracy of  the values 
given by the ANN in the face of  the experimental values. This 
parameter quantifies the dispersion of  the calculated observations 
in relation to the values observed experimentally in mean percentile 
terms, where lower values indicate better predictions. The MAPE 
can be calculated through Equation 24, where N  is the number 
of  samples.

100  i i
i

r pMAPE
N p

−
= ∑ 	 (24)

The RMSE, defined by the Equation 25, can measure how 
large the residuals are. It is another method to measure the fit 
of  the predicted values with the real values, where lower values 
indicate better predictions. Due to the squared term, the RMSE 
is sensitive to outliers in the sample.

( )2
 i ir p

RMSE
N

∑ −
= 	 (25)

Through the absolute difference between the calculated 
and desired values, the MAE describes the mean magnitude of  
the residuals, independently if  they are positives or negatives. 
As the MAPE and the RMSE, lower MAE values indicate better 
predictions. The MAE can be calculated by Equation 26.

1  i iMAE r p
N

= ∑ − 	 (26)

Differently of  R2, MAPE, RMSE and MAE, the MBE 
is not used as a measure of  the model fit, once low MBE can 
produce predictions with high residuals. The result of  MBE is 
used to analyze if  the model is underestimating or overestimating 
the predictions based if  it is negative or positive. The MBE can 
be calculated through Equation 27.

( )1  i iMBE p r
N

= ∑ − 	 (27)

The SI, calculated through the relation of  the RMSE and 
the mean value of  the observed data, and provides a normalized 
measure of  the errors. As reported by Bryant et al. (2016), lower 
values are an indication of  better model performance. The SI can 
be calculated through Equation 28.

RMSESI
r

= 	 (28)

Finally, the AIC was calculated as a measure of  trade-
off  with the goodness of  the fit and the model parsimony 
(Montes et al. 2020a). Lower values of  the AIC indicate a better 
model. The AIC is calculated through Equation 29, where k  is 
the number of  predictors.

( )21 ln 2i iAIC N r p k
N

 = ∑ − +  
	 (29)

For the selection of  the best ANN topology for each 
input dataset shown in Table 4, it was observed which number of  
neurons in the two hidden layers provided the most satisfactory 
behavior when comparing the volumetric concentration given by 
the ANN and the three experimental datasets defined, i. e., training 
dataset, evaluation dataset and all the data, using the statistical 
measures presented.

The same analysis was repeated to identify the equation 
which provide the best estimations of  the volumetric concentration 
at the limit of  deposition, however, for this analysis, it was used 
the entire experimental dataset.

Finally, a similar analysis with the MAPE, RMSE and 
MAE was performed grouping the dataset into four ranges of  
volumetric concentration, defined by the quartiles of  the volumetric 
concentration in experimental data. The purpose of  this analysis 
was to evaluate how the model performances could be affected by 
the range of  the volumetric concentration magnitude, indicating 
ranges where the model predictions could have worse accuracy 
and how large the magnitude of  the residuals are.
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RESULTS AND DISCUSSIONS

The results presented in this chapter are divided in four 
sections. In the first section, the results obtained by the ANN is 
presented and compared with the experimental data. The second 
regards the comparison between the results provided by the equations 
and the experimental data, in order to point the equation that 
better generalize the definition of  the volumetric concentration at 
the limit of  deposition. The third section presents a performance 
evaluation of  the ANN model and the equations separating the 
experimental dataset into quartiles. The Fourth section presents a 
comparison of  the results obtained by the ANN and the equation 
with the best performance.

Determination of  the volumetric concentration at 
the limit of  deposition in storm sewers using ANN

The capacity to determine the volumetric concentration 
at the limit of  deposition using the ANN model was evaluated 
considering different combinations of  input variables through 

eighteen ANN models presented in Table 4. For each ANN model, 
200 different topologies were analyzed with different numbers of  
neurons in the hidden layers. The number of  topologies was needed 
to verify whether the number of  neurons in the hidden layers could 
improve, or not, the goodness of  the fit of  model comparing 
the calculated and the experimental volumetric concentration at 
the limit of  deposition. This procedure was also used to avoid 
overfitting in addition with the early stopping method.

For each combination of  the input variables shown in 
Table 4, the 200 topologies were trained and evaluated using the 
statistical measures presented.

The best topology for each ANN model is presented in 
Table 5, which also presents the topology (number of  neurons) 
that provided the best performances. The statistical measures 
presented in Table 5 is separated for the training dataset, evaluation 
dataset and for all experimental data gathered from the literature 
. The best values for each statistical parameter and dataset are 
highlighted in bold and underlined.

Analyzing Table 5, it is possible to observe that all evaluated 
models had better performance for the training dataset, than the 

Table 5. Topology of  the best evaluated ANN model for each combination of  input data with the related statistical measures.
ANN model

I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI XVII XVIII
Neurons in first 

layer* 5 11 9 18 15 7 22 23 23 15 8 14 22 21 17 21 16 10

Neurons in 
second layer* 12 5 7 8 5 9 5 5 7 5 9 10 6 6 10 11 9 12

Numbers of  input 
variables 11 9 9 8 10 10 6 7 8 8 5 4 6 5 3 5 6 4

R2

Training 
dataset 0.78 0.88 0.88 0.92 0.86 0.88 0.72 0.80 0.80 0.85 0.73 0.82 0.76 0.82 0.74 0.81 0.91 0.76

Evaluation 
dataset 0.70 0.76 0.57 0.90 0.65 0.85 0.77 0.77 0.70 0.90 0.45 0.60 0.41 0.50 0.42 0.42 0.89 0.35

All data 0.78 0.88 0.89 0.92 0.86 0.87 0.72 0.80 0.80 0.86 0.73 0.82 0.76 0.81 0.74 0.81 0.90 0.75

MAPE

Training 
dataset 39.47 41.56 45.27 34.24 40.57 37.66 66.73 49.30 52.08 34.20 75.72 64.22 49.41 51.22 66.79 60.79 41.17 61.86

Evaluation 
dataset 57.52 47.45 51.48 39.63 52.80 47.65 168.41 91.64 88.30 44.97 77.11 57.58 73.78 58.76 64.21 54.78 65.22 66.06

All data 41.14 44.90 47.76 35.09 42.28 39.06 77.88 57.53 58.81 35.99 81.23 67.43 60.30 54.11 68.75 64.52 45.24 69.30

RMSE

Training 
dataset 175.25 176.26 222.97 143.73 171.55 148.22 182.74 164.61 170.56 152.19 353.27 224.25 217.99 233.40 353.72 231.94 253.26 349.14

Evaluation 
dataset 238.11 218.29 305.84 167.11 225.04 180.77 218.32 218.65 227.00 187.43 462.04 303.92 301.40 317.52 463.95 323.74 330.70 456.39

All data 184.84 183.35 231.38 146.32 180.99 153.16 190.90 172.71 179.89 159.61 374.41 230.61 224.59 240.70 376.19 240.96 277.42 370.01

MAE

Training 
dataset 70.40 71.29 83.11 57.18 70.15 60.76 83.91 70.40 74.40 62.66 134.79 94.20 90.41 94.87 137.92 92.53 92.58 135.64

Evaluation 
dataset 112.23 101.43 140.23 73.85 106.40 86.40 111.46 107.69 111.83 89.97 205.34 143.17 146.19 150.62 208.69 150.17 133.98 205.72

All data 77.44 76.51 89.94 59.84 76.34 64.89 90.16 76.09 80.94 68.54 146.91 98.82 96.11 100.83 150.14 98.48 104.05 147.91

MBE

Training 
dataset 39.70 33.25 47.68 13.61 36.78 23.00 43.00 32.60 30.52 32.30 97.76 37.47 47.13 51.00 102.99 48.42 52.91 100.00

Evaluation 
dataset 95.89 86.89 131.27 49.91 88.72 63.69 61.75 82.54 83.51 66.05 193.22 126.25 134.21 135.29 194.97 142.91 104.68 190.74

All data 50.12 43.09 57.98 20.47 46.62 31.87 49.79 41.10 39.31 41.58 110.95 46.40 55.80 59.51 116.67 58.17 66.87 112.43

SI

Training 
dataset 0.65 0.65 0.82 0.53 0.63 0.55 0.67 0.61 0.63 0.56 1.30 0.83 0.80 0.86 1.30 0.85 0.93 1.29

Evaluation 
dataset 0.78 0.72 1.00 0.55 0.74 0.59 0.72 0.72 0.75 0.62 1.52 1.00 0.99 1.04 1.52 1.06 1.09 1.50

All data 0.66 0.66 0.83 0.52 0.65 0.55 0.68 0.62 0.64 0.57 1.34 0.82 0.80 0.86 1.35 0.86 0.99 1.32

AIC

Training 
dataset 4238 4238 4430 4070 4218 4099 4262 4179 4210 4117 4798 4425 4406 4459 4795 4454 4528 4786

Evaluation 
dataset 1511 1483 1575 1408 1493 1434 1477 1479 1492 1439 1679 1563 1565 1576 1676 1582 1590 1674

All data 5701 5688 5941 5441 5676 5494 5726 5619 5665 5535 6457 5928 5903 5976 6458 5977 6133 6442
*Number of  neurons which produced the best results for each combination of  input variables.
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evaluation dataset. This behavior was already expected once the 
training dataset were known by the model, differently from the 
evaluation dataset, which is composed with data that was not 
presented to the ANN during the training phase.

With an exception of  the MAPE for the training dataset, 
the ANN-IV showed the best performance for all the calculated 
statistical measures, including the lowest AIC, showing that was the 
best model evaluated. The best evaluated topology configuration 
of  the ANN-IV was with 18 neurons in the first hidden layer and 
8 in the second hidden layer. The input parameters used in the 
model were the D , /y D , 50d , k , hR , S , ψ  and * Re .

The ANN-IV model presented good R2 values, corresponding 
to 0.92, 0.90 and 0.92 for the training, evaluation and all data, 
respectively. The RMSE values obtained for the training, evaluation 
and all the data were 143.73, 167.11 and, 146.32 respectively, the 
lowest among all the others ANN models evaluated. In terms 
of  MAPE, the ANN model presented a value equal to 35.09%, 
considering all the evaluated data. This means that the predictions 
performed by the model present, an average deviation of  35.09 % 
from the real data. In terms of  ppm, this can be evaluated with 
MAE, which show us a value of  59.84 ppm, for all the data. 
Through MBE values, it is possible to notice that for all the 
datasets the ANN model tends to overestimate the volumetric 
concentration at the limit of  deposition, since the values were all 
positives (13.61 for the training dataset, 49.91 for the evaluation 
dataset and 20.47 using all the data). ANN-IV showed SI values 
of  0.53, 0.55 and 0.52 for the training, evaluation and all the data.

In addition, Table 5 show how the topology and the input 
parameters can be decisive. Is interesting to notice that, more 
neurons are not correlated with better predictions and, with 
exception of  ANN-I, ANN-VI, ANN-XI and ANN-XVIII, all 
the models presented better performance with more neurons in 
the first hidden layer than in the second.

In terms of  the number of  input variables, through Table 5 it 
is possible to observe that the models with less than 7 showed worse 
performance in relation of  the other models, indicating that the ANN 
model can provide better results with more predictors than less.

In addition, with the performed analysis it was possible to 
notice that ANN-XI to ANN-XIV do not showed good predictions 
of  the volumetric concentration at the limit of  deposition. In these 
models it was used the same parameters applied in other researches 
that estimates the Froude number at the limit of  deposition, 
presented in Table 2. Between the evaluated models that used 
same variables as the numerical models presented in Table 2, the 
ANN-XIII showed the best performance. This model had 6 input 
variables ( D , 50d , hR , V , grD , sλ ) which correspond with the same 
variables adopted by Ebtehaj & Bonakdari (2014b, 2015), with the 
exception of  the volumetric concentration, once it was the dependent 
variable in analyzed case. For all the data, ANN-XIII showed values 
of  R2 equal to 0.76, MAPE of  60.3%, RMSE of  224.59 ppm, MAE 
of  96.11 ppm, MBE indicating the overestimation of  the predictions 
equal to 55.8 and an SI indicating an expected error of  80%.

The models ANN-XV to ANN-XVIII evaluated the 
volumetric concentration at the limit of  deposition using input 
variables which corresponded with the same parameters used in 
equations presented in the literature review and summarized in 
Table 1. It was interesting to observe that models ANN-XVI and 
ANN-XVII presented good results, even with only 5 and 6 variables 
in the input layer, respectively. The parameters used as input variables 
in the model ANN-XVI was D , 50d , A , V , y , and in the model 
ANN-XVII was 50d , k , hR , S , 0λ , ξ , corresponding with the 
same parameters presented by May et  al. (1996) (Equation 5), 
Ota (1999) (Equation 11) and Romero (2018) (Equation 15). 
The performance of  both models was close. For the entire dataset 
ANN-XVI showed R2 = 0.81, MAPE = 54.82%, RMSE = 240.96 ppm, 
MAE = 98.48 ppm, MBE = 58.17 and SI = 0.86. As ANN-XVII 
presented R2 = 0.90, MAPE = 45.24 %, RMSE = 277.42 ppm, 
MAE = 104.05 ppm, MBE = 66.87 and SI = 0.99. These results 
may indicate that the equations of  May et al. (1996), Ota (1999) 
and Romero (2018) could have the better performances when 
evaluating the volumetric concentration at the limit of  deposition.

Figure 4 presents the correlation between the experimental 
data and the values obtained by ANN-IV (the best evaluated 
ANN model) and by the models ANN-XVI and ANN-XVII, 

Figure 4. Comparison between the volumetric concentration at the limit of  deposition obtained by the experimental data with the 
ANN-IV (best ANN model), ANN-XVI and ANN-XVII.
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which shows the best performance using the same predictors as 
the equations presented in Table 1. From Figure 4 it is possible 
to notice that, highest deviations in terms of  percentage between 
calculated and experimental value lies within Cv below 30 ppm, 
a condition that the experiment is very difficult to perform and 
is not interested in real storm sewers.

Determination of  the volumetric concentration at 
the limit of  deposition in storm sewers using the 
equations presented in the literature

After analyzing the performance of  the ANN models 
in determining the volumetric concentration at the limit of  
deposition in storm sewers, another analysis was performed using 
the results provided by the equations of  Mayerle et al. (1991), Ab 
Ghani (1993), May et al. (1996), Ota (1999), Vongvisessomjai et al. 
(2010), Ebtehaj et al. (2014), Najafzadeh et al. (2017), Romero 
(2018), Montes et al. (2020a) and Tafarojnoruz & Sharafati (2020). 
The data used in this analysis were the same for the training and 
evaluating the performance of  the ANN.

The objective of  this analysis was to evaluate the performance 
of  the equations using a larger and different set of  data, and 
determine which of  the equations presents the best performance 
when comparing the results provided and the experimental data set.

Thus, as for the neural networks, after calculating the 
volumetric concentration at the limit of  deposition using the 
abovementioned equations, statistical quantities were calculated 
for each one. These values are listed in Table 6, where the best 
values for each statistical parameter is highlighted in bold and 
underlined. Figure  5 and Figure  6 shows the performance of  
each equation in determining the volumetric concentration at the 
limit of  deposition, by comparing the values calculated with the 
values obtained experimentally in log-log scale which was used 
to calculate the R2 presented.

By analyzing the results presented in Table 6, Figure 5 and 
Figure 6, it can be observed that the results obtained by Equations 
5 and 11 showed better performances, with close values of  R2, 
MAPE, RMSE, and MAE, confirming the observation raised at the 
performance evaluation of  the ANN models. Equation 15 showed 
a slightly worse results than Equation 5 and 11, but still presented 
a good result between the evaluated equations.

Equation 11 presented a coefficient of  determination 
higher than all the other equations, corresponding to 0.88, lower 
MAPE, RMSE and MAE, equal to 53.69 %, 328.38 ppm and 
130.75 ppm, respectively. The MBE however resulted in 14.11, 
indicating an overestimation of  the predicted data, higher than the 
MBE presented by Equation 2, of  -6.32. For Equation 11 the SI 
corresponded to 1.17, and the lower value of  AIC between analyzed 
models, indicating that this equation present better estimations 
of  the volumetric concentration at the limit of  deposition than 
the other equations evaluated, and should be used.

Besides the better values of  the statistical measures 
analyzed, the better performance of  Equation 11 can be associated 
with the stronger theoretical basis used to obtain it, regarding 
the relationship between the shear stress at the bottom of  the 
pipe and the mean shear stress ( ξ ) and the influence of  the pipe 
roughness ( k ), expressed in terms of  the relationship with the 
sediment grain diameter ( 50d ).

Equation 5 presented a R2 equal to 0.84, MAPE of  56.53 %, 
RMSE of  342.28 ppm and MAE of  133.42 ppm. As Equation 11, 
the MBE was also positive, indicating an overestimation of  the 
volumetric concentration at the limit of  deposition, however, a 
higher value, equal to 66.95. The SI was equal to 1.22, indicating 
worse predictions than Equation 11.

The equations that were algebraically modified to calculate the 
volumetric concentration at the limit of  deposition as a dependent 
variable, showed worse predictions, indicating that these equations 
can be good estimators for the Froude number, but when used to 
predict the volumetric concentration at the limit of  deposition, 
these equations do not show the same performance observed in 
the determination of  the Froude number.

Evaluation of  ANN model and equations 
performances into quartiles

Additionally, the performance of  the equations and the 
ANN-IV model was analyzed separating the experimental dataset 
into 4 subsets, defined by the volumetric concentration quartiles. 
The importance of  this analysis relies on the need to observe how the 
models perform with a limited range of  volumetric concentrations, 
and if  there is a range of  volumetric concentration that other 
equation outperforms Equation 11 and the ANN. For this analysis, 
MAPE, MAE and RMSE was used, which are summarized in 

Table 6. Statistical quantities obtained comparing the results of  the equations and the experimental data.
Author R2 MAPE RMSE MAE MBE SI AIC

Mayerle et al. (1991)* – Equation 1 0.61 59.22 367.13 163.34 113.17 1.31 6435
Ab Ghani (1993) – Equation 2 0.83 79.71 352.43 144.50 -6.32 1.26 6395
May et al. (1996) – Equation 5 0.84 56.53 342.28 133.42 66.95 1.22 6363

Ota (1999) – Equation 11 0.88 53.69 328.38 130.75 14.11 1.17 6318
Vongvisessomjai et al. (2010)* – Equation 12 0.82 69.95 484.42 173.56 -32.03 1.73 6735

Ebtehaj et al. (2014)* – Equation 13 0.72 119.63 901.50 258.50 -158.30 3.22 7411
Najafzadeh et al. (2017)* – Equation 14 0.38 228.29 463.09 243.46 -175.08 1.66 6686

Romero (2018) – Equation 15 0.86 73.16 352.44 151.24 -33.99 1.26 6395
Montes et al. (2020a)* – Equation 16 0.80 84.01 727.45 220.22 -113.24 2.60 7181

Tafarojnoruz & Sharafati (2020)* – Equation 17 0.78 75.73 804.04 231.52 -118.36 2.87 7286
*Cv as dependent variable.
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Table 7, Table 8, and Table 9, respectively. Figure 7, Figure 8 and 
Figure 9 presents the result of  these statistical measures for all 
the equations and the ANN for each quartile.

The values presented in Table 7 to Table 9 and in Figure 7 to 
Figure 9 can give a better understanding of  the residuals between the 
calculated and the experimental volumetric concentration at the limit 
of  deposition using the quartiles of  the experimental data. As already 
observed when analyzing the entire dataset, the Equations 5 and 
11 presented better performance than the other equations.

Regarding the MAPE, analyzing the first quartile, 
Equation 1 presented the best value for MAPE, equal to 71.84 %. 
Equation 11 showed the lower percentiles deviations in the 
predictions for the second and third quartile, with values of  
90.68 %, 39.10 % and 40.44 %, respectively. In the fourth quartile, 

Equation 5 showed better results for MAPE, resulting in a mean 
percentile error of  40.97 %.

For the MAE, Equation 11 also showed a better 
performance in the first, third and fourth quartile, with values 
of  6.82 ppm, 73.51 ppm and 422.20 ppm. In the second quartile, 
Equation 5 presented a MAE of  20.42 ppm.

For the RMSE the better results were divided between 
Equation 5 and 11. Equation 5 showed the lower RMSE in 
the second and third quartile of  29.06 ppm and 111.01 ppm, 
respectively, as Equation 11 presented the lower values for the 
first and fourth quartile, resulting in RMSE values of  10.06 ppm 
and 646.29 ppm, respectively.

Is interesting to observe that equations obtained from algebraic 
modifications still presented the worse results when analyzing the 

Figure 5. Correlation between calculated and experimental volumetric concentrations at the limit of  deposition for Equations 1, 2, 
5, 11 and 12.



RBRH, Porto Alegre, v. 26, e23, 2021

Romero & Ota

19/26

Figure 6. Correlation between calculated and experimental volumetric concentrations at the limit of  deposition for Equations 13, 
14, 15, 16 and 17.

Table 7. MAPE analyzed for each quartile of  the experimental data.

Equation First Quartile Second Quartile Third Quartile Fourth Quartile
(0.31 ppm – 28.82 ppm) (29 ppm – 86.9 ppm) (87.3 ppm – 320 ppm) (290 ppm – 3,410 ppm)

(1) 71.84 53.48 55.45 56.09
(2) 162.00 51.74 54.94 50.18
(5) 99.25 40.51 45.39 40.97
(11) 90.68 39.10 40.44 44.52
(12) 102.39 48.78 65.92 62.69
(13) 168.77 100.28 118.84 90.62
(14) 383.57 269.10 187.72 72.75
(15) 132.51 52.10 54.30 53.75
(16) 105.44 62.12 86.77 81.70
(17) 87.16 51.22 77.47 87.05

ANN-IV 66.00 29.81 24.82 19.71
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dataset separated in quartiles, reinforcing that they should not be used 
for estimating the volumetric concentration at the limit of  deposition.

Observing the ANN-IV results it was clear that the model 
outperformed all the equations in determining the volumetric 
concentration at the limit of  deposition. For all the analyzed 

statistical measures and quartiles, the ANN showed lower deviations 
from the experimental data than the equations, except for the 
MAE in the first quartile, where the ANN-IV presented a value 
of  6.93 ppm and Equation 11 presented a slightly lower value, 
equal to 6.82 ppm.

Table 8. MAE analyzed for each quartile of  the experimental data.

Equation First Quartile Second Quartile Third Quartile Fourth Quartile
(0.31 ppm – 28.82 ppm) (29 ppm – 86.9 ppm) (87.3 ppm – 320 ppm) (290 ppm – 3,410 ppm)

(1) 7.63 28.20 102.19 515.35
(2) 12.53 26.45 95.75 443.26
(5) 8.84 20.42 80.36 424.06
(11) 6.82 20.47 73.51 422.20
(12) 8.73 25.04 114.78 545.68
(13) 16.60 50.14 200.15 767.10
(14) 49.37 132.76 306.94 484.78
(15) 9.95 27.52 98.58 468.91
(16) 9.71 31.59 150.48 689.12
(17) 8.47 26.50 136.38 754.71

ANN-IV 6.93 15.44 43.84 173.16

Table 9. RMSE analyzed for each quartile of  the experimental data.

Equation First Quartile Second Quartile Third Quartile Fourth Quartile
(0.31 ppm – 28.82 ppm) (29 ppm – 86.9 ppm) (87.3 ppm – 320 ppm) (290 ppm – 3,410 ppm)

(1) 9.54 31.70 125.70 722.66
(2) 22.34 35.38 154.94 686.34
(5) 15.76 29.06 111.01 674.70
(11) 10.06 33.16 111.57 646.29
(12) 14.85 36.16 176.54 951.82
(13) 31.12 90.74 329.58 1770.01
(14) 88.90 216.00 469.71 763.30
(15) 14.82 45.10 149.36 687.25
(16) 17.59 50.48 243.17 1433.44
(17) 12.90 36.31 227.00 1591.5

ANN-IV 9.84 22.50 60.60 285.25

Figure 7. MAPE calculated separately in the quartiles of  the experimental dataset. 
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In addition, the ranges of  volumetric concentrations in 
the first quartile do not match with real operational conditions 
observed in a storm sewer. In this range of  volumetric concentration 
the experiments are difficult to perform due to the low transport 
capacity of  the flow. This is the reason of  the higher MAPE values 
observed in the results in this quartile.

The increasing residuals pointed by the MAE and RMSE are 
related with the increased values of  the volumetric conccentration 
in each quartile. These increasing deviations, do not reflect in terms 
of  percentage, as observed in the MAPE results.

It is difficult to point just to one equation that provides 
the best results when compared with the experimental dataset. 
Equations 11 and 5 presented the best results in terms of  MAPE 
and R2 when analyzing the entire dataset, as well when analysing 
the dataset separeted into quartiles.

However, owning to the theoretical basis utilized to obtain 
Equation 11, it is reasonable affirm that this equation can produce 
better estimations of  the volumetric concentration at the limit of  
deposition than the others equations analyzed. In addition, due 
to the same reason, Equation 11 is also the most indicated model 
to use for calculating the limit of  deposition in extrapolations.

Comparison between volumetric concentration at the 
limit of  deposition obtained by the ANN-IV and by 
Equation 11

The best model analyzed was the ANN-IV, with 8 input 
variables ( D , /y D , 50d , k , hR , S , ψ , * Re ), 18 neurons in the 
first hidden layer and 8 in the second. When analyzing the proposed 

Figure 8. MAE calculated separately in the quartiles of  the experimental dataset.

Figure 9. RMSE calculated separately in the quartiles of  the experimental dataset.
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equations, Equation 11 showed the best performance in determining 
the volumetric concentration at the limit of  deposition inside storm 
sewers, leading to the indication that this equation is the most 
recommended equation for the generalization and extrapolation 
when determining the volumetric concentration at the limit of  
deposition. Table 10 and Table 11 presents a summary of  the 
statistical measures obtained by ANN-IV and Equation 11 analysing 
all the data and separating the data into quartiles.

Analysing both of  the models it is clear that the ANN 
model can outperform the Equation 11 in all aspects. But, due 
to the limitations of  the method, the ANN is not indicated in 
extrapolation cases. For extrapolation, Equation 11 is recommended. 
Figure 10 shows a comparison between the volumetric concentration 
values obtained experimentally with the values calculated by ANN-IV 
and those calculated by Equation 11. It can be noted that there is 
a greater dispersion in the volumetric concentrations calculated by 
Equation 11 when compared to the values calculated by ANN-IV, 
more frequently in regions with volumetric concentrations around 
1,000 ppm. It is also observed that both methods lead to larger 
dispersions for smaller volumetric concentrations, less than 30 ppm, 

although as commented, this range of  volumetric concentration 
not match with the operational conditions of  storm sewer.

CONCLUSIONS

The determination of  the volumetric concentration at the 
limit of  deposition inside storm sewers is highly important, since 
it defines a sediment rate which the flow can transport without 
deposition, thus, avoiding obstructions and reducing the discharge 
capacity of  the pipes. In addition, as stated by Montes  et  al. 
(2021) and Ebtehaj et al. (2020), the volumetric concentration 
is the most important variable used in defining when predicting 
the self-cleaning velocity in sewers, and a good estimation of  this 
parameter can improve the design of  new self-cleaning sewers.

In the present research, it was demonstrated using seven 
different statistical measures (R2, MAPE, MAE, RMSE, MBE, 
SI and AIC) that ANN outperformed existing equations to 
determine the volumetric concentration at the limit of  deposition. 
Through analyzing the results obtained by the ANN models, it 

Figure 10. Comparison between the results obtained through the ANN analysis and Equation 11.

Table 10. Summary of  the statistical measures presented by the ANN-IV and Equation 11 using the entire dataset.
Model R2 MAPE RMSE MAE MBE SI AIC

ANN-IV 0.92 35.09 146.32 59.84 20.47 0.52 5441
Equation 11 0.88 53.69 328.38 130.75 14.11 1.17 6318

Table 11. Summary of  the statistical measures calculated for the ANN-IV and Equation 11 for the experimental data quartiles.
Model Variable First Quartile Second Quartile Third Quartile Fourth Quartile

ANN-IV MAPE 66 29.81 24.82 19.71
MAE 6.93 15.44 43.84 173.16
RMSE 9.84 22.5 60.6 285.25

Equation 11 MAPE 90.68 39.1 40.44 44.52
MAE 6.82 20.47 73.51 422.2
RMSE 10.06 33.16 111.57 646.29
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was clear that the best predictions was achieved using a larger 
set of  input variables, since the evaluated ANN models with 
less than 7 predictors showed, in general, worse predictions. 
This observation shows that the volumetric concentration can 
be harder to define than the Froude number at the limit of  
deposition, since the ANN and other numerical models presented 
in the literature that define it use less than 6 variables. Several 
equations presented in the literature, developed to determine 
the Froude number, uses only 50d ,  and vC , and yet present 
satisfactory predictions.

However, the ANN-XVI and ANN-XVII models with 5 and 
6 input parameters respectively shown good results. Is interesting 
notice that, these ANN models had the same input parameters 
than the equations of  May et al. (1996) (Equation 5), Ota (1999) 
(Equation 11) and Romero (2018) (Equation 15), the equations 
which showed the best predictions.

The best results regarding the evaluated ANN 
models were achieved with ANN-IV, which had 
D , /y D , 50d , k , hR , S , ψ , * Re  as input parameters, and 
showed R2 = 0.92, MAPE = 35.95 %, RMSE = 146.32 ppm, 
MAE = 59.84 ppm, MBE = 20.47 ppm, SI = 0.52 and the 
lower AIC between the analyzed ANN models. Is interesting 
to note that reports from the literature review in researches 
that used artificial intelligence and soft computing methods 
to predict the Froude number, show MAPE values ranging 
from 3% to 14% approximately. But, for the volumetric 
concentration, the minimum MAPE achieved was 35.95%, 
confirming the higher difficulty associated in determining it.

The study also showed that the equations obtained to 
predict the Froude number do not show a satisfactory performance 
when used to calculate the volumetric concentration at the limit 
of  deposition. This could be seen also in the ANN analysis, where 
the ANN models that used the same parameters of  models used 
to predict the Froude Number do not had a good performance 
as well.

Sustaining the hypothesis presented, Ota’s (1999) model 
(Equation 11) showed the best performance among all the 
presented equations. The better performance of  Equation 11 in 
determining the volumetric concentration at the limit of  deposition 
could be associated due to the stronger theoretical basis 
used to obtain it. The Equation 11 presented a R2 = 0.88, 
MAPE = 53.69 %, RMSE = 328.38 ppm, MAE = 130.75 ppm, 
MBE = 14.11 ppm, SI = 1.17 and the lower AIC between 
the evaluated equations. When analyzing the performance at 
the volumetric concentration quartiles, the performance of  
Equation 11 was in most of  the cases the best one, followed 
by Equation 5, of  May et al. (1996), confirming the observed 
when analyzing the ANN models. These results suggest that 
Equation 11 should be used for extrapolations.

In addition, through the quartiles analysis, it was observed 
that all methods converged to better results in higher ranges 
of  concentration. This analysis demonstrate that it is hard to 
ensure the volumetric concentrations at the limit of  deposition 
for low values, despite the method applied. The higher MAPE 
observed in this range of  volumetric concentration is related 
with the more difficulties involved to perform the experiments. 

Fortunately, this condition is not important for real storm 
sewer design.
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