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ABSTRACT

In Brazil, energy production predominantly relies on hydropower generation, necessitating precise hydrological planning tools to manage 
the uncertainty inherent in river flows. While traditional hydrological models provide valuable deterministic forecasts, addressing the need 
for probabilistic information remains crucial. This paper introduces a novel approach, the Hybrid Generator of  Synthetic Streamflow 
Scenarios (GHCen), which combines a conceptual SMAP/ONS model with stochastic simulation techniques to generate synthetic 
streamflow scenarios. The stochastic methodology employed in GHCen effectively reproduces the key characteristics of  precipitation 
processes on daily to annual scales. Through a comprehensive case study, conducted for 2021, GHCen demonstrates its capability 
to accurately replicate the hydrological behaviors from historical data. The analysis reveals a strong alignment between the synthetic 
scenarios and observed Natural Energy Inflow for the National Interconnected System, both monthly and in accumulated terms.

Keywords: Synthetic streamflow scenario generation; Hybrid model; Conceptual rainfall-runoff  model.

RESUMO

No Brasil, a produção de energia depende predominantemente da geração hidrelétrica, necessitando de ferramentas precisas de 
planejamento hidrológico para gerenciar a incerteza inerente às vazões afluentes. Embora modelos hidrológicos tradicionais forneçam 
previsões determinísticas valiosas, endereçar a necessidade de informações probabilística continua a ser crucial. Este artigo apresenta 
uma nova abordagem, o Gerador Híbrido de Cenários Sintéticos de Afluências (GHCen), que combina um modelo conceitual SMAP/
ONS com técnicas de simulação estocástica para gerar cenários sintéticos de vazões. A metodologia estocástica empregada no GHCen 
reproduz efetivamente as principais características dos processos de precipitação em escalas diárias a anuais. Através de um estudo de 
caso abrangente, realizado para 2021, o GHCen demonstra a sua capacidade de replicar com precisão os comportamentos hidrológicos 
a partir de dados históricos. A análise revela um forte alinhamento entre os cenários sintéticos e a Energia Natural Afluente observada 
para o Sistema Interligado Nacional, tanto mensalmente quanto em termos acumulados.

Palavras-chave: Geração de cenários sintéticos de vazões; Modelo híbrido; Modelo conceitual chuva-vazão.
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INTRODUCTION

Despite the growing penetration of  new renewable energy 
sources such as solar and wind, most of  the Brazilian energy 
production still comes from hydropower plants. For this reason, 
the Brazilian ISO (called ONS) has a significant need for accurate 
representations of  the uncertainty regarding river flows in its 
hydro plants for medium- and long-term planning operations.

Accurate runoff  forecasts are achievable by conceptual 
hydrological models, which mimic the real soil and streamflow dynamics 
and tend to perform well (Ávila et al., 2023). Although effective, 
such forecasts only provide a single estimate value. Probabilistic 
forecasts fill this gap by providing additional information about 
the uncertainty of  some pointwise forecasts. Some methods extend 
hydrological models directly to output probabilistic results, such as 
Tyralis & Papacharalampous (2021) but a more frequent approach 
is the employment of  post-processing. This post-processing can be 
done either by modeling the prediction errors as in Sikorska-Senoner 
& Quilty (2021) and Wani et al. (2017) or by feeding the actual 
pointwise forecasts into another model as in Zhou et al. (2022) or 
by Humphrey et al. (2016) that produces either confidence intervals 
or complete predictive probability density functions.

An alternative approach is ensemble forecasts, where multiple 
possible paths of  the forecast variable are simulated. The authors 
of  Troin et al. (2021) group ensemble forecast methods into three 
main categories, based on the forcing type: exclusively historical 
streamflow data; weather forecasts from Numerical Weather 
Prediction (NWP) models, and historical and pseudo-historical 
weather data (satellite images, reanalysis data, reforecasts, etc.). 
The first kind encompasses all methods discussed in the previous 
paragraph, and indeed most post-processing approaches.

Ensembles of  the second category, based on NWP forecasts, can 
be achieved by using ensemble weather forecasts, feeding deterministic 
forecasts into multiple hydrological models, or both. Ensemble 

forecasts, hydrological or weather, often demand post-processing to 
improve their skill. To this end, quantile mapping has been applied to 
hydrological ensembles by Wood & Schaake (2008) and to weather 
ensembles by Hamill & Scheuerer (2018). Also, the authors in Ye et al. 
(2015) propose a new method based on Generalized Linear Modelling 
which performs well in their case study. When combining multiple 
models with different levels of  accuracy, the final predictive PDF 
is obtained most often by Bayesian Model Averaging (BMA), as in 
Liang et al. (2013). Another technique is Quantile Model Averaging 
(QMA), which is shown by Schepen & Wang (2015) to perform 
better when ensemble members are spread out amongst themselves.

The final category assumes past weather conditions are 
suitable proxies for future ones, which is mostly centered on the 
assumption that rainfall processes have less memory than runoff  
ones. In this paper, we propose a hybrid model for multivariate 
streamflow scenario generation based on the stochastic simulation 
of  daily rainfall (Zhou et al., 2019), which is subsequently fed 
into a conceptual rainfall-runoff  SMAP/ONS model (Operador 
Nacional do Sistema Elétrico, 2017). The model is shown to 
precisely capture key features of  the historical data in a case study 
considering most of  the Brazilian hydropower plants.

METHODOLOGY

The proposed methodology merges the conceptual rainfall-
runoff  modeling of  the SMAP/ONS model with a stochastic 
methodology for the simulation of  synthetic daily precipitation 
scenarios, resulting in a Hybrid Generator of  Synthetic Streamflow 
Scenarios (GHCen). Based on the daily precipitation historical 
data, a stochastic model is estimated to generate daily precipitation 
synthetic scenarios, which are used as input to the SMAP/ONS 
for each subbasin, producing daily streamflow synthetic scenarios. 
Figure 1 shows the flowchart of  GHCen.

Figure 1. Flowchart of  GHCen.
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Methodology for generating daily precipitation 
scenarios

Stochastic modeling of  daily precipitation scenarios is 
based on the model presented by Zhou et al. (2019). After initial 
tests, the empirical orthogonal function analysis was removed and 
a statistical downscaling was included as the last step, culminating 
in the version presented in this paper. The process of  stochastic 
simulation of  daily precipitation can be divided into four main 
steps, as illustrated in Figure 2.

Pre-processing

Considering the high asymmetry and rate of  zeros (days 
without rain) in precipitation time series, it is necessary to apply pre-
processing to the data before proceeding. A censored latent Gaussian 
transformation (Allard & Bourotte, 2015) is used to normalize the series, 
converting the daily precipitation R into a latent Gaussian variable Z. 
Equation 1 defines this transformation. Null values of  precipitation 
correspond to values from the latent Normal below a determined 
quantile 0Z , while positive values are a non-linear function above 0Z
. This limit is defined as the quantile of  a normal distribution such 
that the cumulative probability up to it is equal to the unconditional 
probability of  zeros in the time series. The estimation of  the set of  
parameters θ  is done through the maximum likelihood defined by 
Equation 2. Once the θ  parameters have been estimated, Equation 
3 is used to transform each R value into Z.
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Figure 3 presents an example of  the cumulative distribution 
function of  a daily precipitation time series R (blue line) and its 
transformation into a normal variable Z (red line). In this example, 
the original series has approximately 75% of  values equal to zero.

Hilbert-Huang transform

The second stage of  the stochastic modeling of  the daily 
rainfall consists of  applying the Hilbert-Huang Transform (HHT) 

Figure 2. Flowchart from stochastic modeling of  daily precipitation scenarios.

Figure 3. Cumulative distribution function from a generic daily 
rainfall time series R (blue line) and its transformation in a latent 
Gaussian variable Z (red line).
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(Huang et al., 1998; Huang & Wu, 2008). Unlike other available 
techniques (such as Fourier transform or Wavelet), HHT can be 
used in non-linear and non-stationary time series. HHT consists 
of  the application of  two procedures:

1. Empirical Mode Decomposition (EMD), which disaggregates 
the original series into a finite number of  orthogonal 
functions, called IMFs (Intrinsic Mode Function);

2. Hilbert Spectral Analysis (HSA), applied to each IMF, 
whose product is a time-frequency-energy distribution, is 
called the Hilbert spectrum.
A function is called an IMF if  it satisfies two conditions:

1. The number of  extremes (peaks and valleys) and the number 
of  times the x-axis is crossed must be the same as in the 
original series (it can differ by a maximum of  one unit);

2. The local mean equals zero (the mean between the upper 
and lower envelopes equals zero).
By default, the number of  extremums decreases as the 

procedure is performed, and the original signal ( ) Z t  is decomposed 
into high-frequency to low-frequency components, until it is no 
longer possible to perform the procedure. Once the sifting process 
is over, when it is no longer possible to obtain a new IMF, the 
original time series can be reconstructed according to Equation 
4, adding the extracted IMFs, and a residue ( )r t .
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In GHCen it is used an improved version of  the 
EMD algorithm called Complete Ensemble Empirical Mode 
Decomposition with Adaptive Noise – CEEMDAN (Torres et al., 
2011; Colominas et al., 2014). Figure 4 presents an example of  
applying the CEEMDAN to a normalized time series, obtaining 
12 IMFs and a residual. Each IMF can be interpreted as one of  

the cycles that compose the stochastic process of  precipitation, 
from the movement of  cold fronts (high frequency) to inter-annual 
and multidecadal cycles (low frequency).

For each ( )kIMF t  obtained in the first step, its Hilbert 
transform, ( )H IMF t  , is calculated according to Equation 5:
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The ( )IMF t  (real signal) and its Hilbert transform 
( )H IMF t  form a complex conjugate pair of  the analytical signal 

( )S t , Equation 6, which can be represented in the form of  polar 
coordinates, Equation 7:
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where ( )a t  is the instantaneous amplitude obtained by Equation 
8, and ( )tθ  is the instantaneous phase calculated by Equation 9:
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Given the instantaneous phase, the instantaneous frequency 
( )f t  is defined by Equation 10:
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After applying the Hilbert transform to all IMFs obtained 
from the Gaussian time series ( )Z t , the latter can be reconstructed 

Figure 4. Result from the application of  CEEMD into a latent Gaussian variable (Z) obtaining 12 IMFs and a residue r(t).
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using Equation 12. This equation represents the end of  the 
HHT, highlighting the amplitude and frequency of  each IMF as 
a function of  time.
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where Re represents the real part of  the complex signal.

Stochastic simulation

In stochastic modeling, the time series under consideration 
can be perceived as a potential manifestation of  the underlying 
stochastic phenomenon. To produce alternative conceivable 
manifestations that retain the fundamental characteristics of  the 
historical data while accommodating the inherent unpredictability of  
the phenomenon, a random component is introduced as described 
in Equation 11 (Wen & Gu, 2009), resulting in Equation 12:
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where ( )'Z t  is the synthetic scenario of  the same size as the 
original historical series; kϕ  is a uniformly distributed phase noise 
between 0 and 2π.

To properly represent the most relevant characteristics of  the 
historical series, the IMFs can be divided into significant and non-
significant, applying a statistical significance (Wu & Huang, 2004), 
which compares the average energy of  each IMF to the energy of  
white noise of  the same average frequency. If  an IMF is classified 
as not significant, this IMF is simulated by assigning phase noise kϕ . 
The IMFs identified as significant remain unchanged in the stochastic 
simulation phase, thus preserving the main characteristics of  the 
historical series. A synthetic scenario of  the latent Gaussian variable 
can then be obtained by summing all the significant (preserved) IMFs, 
the non-significant (simulated) IMFs, and the residual (preserved).

The processes described by Equations 1-12 are performed 
univariately for each sub-basin modeled. To preserve the spatial 
correlation between sub-basins, generating multivariate precipitation 
scenarios, the random phase noise kϕ , applied to non-significant 
IMFs is the same for IMFs of  the same order in all sub-basins 
(Wen & Gu, 2009).

Post-processing

After the stochastic simulation stage and obtaining the 
synthetic scenarios ( )'Z t  (which have normal distribution), the 
inverse transformation described in Equation 1 is performed to 
obtain the precipitation scenarios ( )'R t . It should be noted that the 
censored latent Gaussian transformation also guarantee that all 
scenarios are positive. For the synthetic average of  precipitation 
to be as close as possible to the historical average, a statistical 
downscaling is performed in the synthetic scenarios, given by 
Equation 14. Finally, the synthetic precipitation scenarios are 
limited to twice the maximum daily precipitation observed in each 
month, so that unrealistic scenarios are not generated.

It is important to note that this type of  stochastic simulation 
can generate as many synthetic scenarios as necessary, with the 
same length as the original time series.
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Transformation of  synthetic scenarios of  daily 
precipitation in daily streamflow

After doing the processes described above, the daily 
precipitation scenarios can be used as input to the SMAP/
ONS model (Operador Nacional do Sistema Elétrico, 2017), 
thus generating synthetic scenarios of  daily streamflow. SMAP/
ONS is a rainfall-runoff  model, on a daily scale, based on SMAP 
(Lopes et al., 1982), with modifications aiming to better represent 
the specific characteristics of  some basins. Figure 5 shows a 
representation of  the SMAP/ONS model. The changes made 
to the SMAP/ONS model include:

• Addition of  a fourth reservoir called plain reservoir (Rsup2);
• Possibility of  using up to two recession coefficients in the 

surface runoff  reservoir (K2t and K2t2);
• Use of  precipitation adjustment coefficients for temporal 

representation;
• Use of  adjustment coefficients for precipitation and 

potential evapotranspiration;
• Data assimilation and optimization process, so that, in its 

operational phase, the model can correct its state variables 
to reduce the deviation between the simulated and observed 
flows in a period before the day of  the forecast.
The parameters for all calibrated sub-basins, which represent 

100% of  the HPPs in NIS, are published in Operador Nacional 
do Sistema Elétrico (2023). Given that the synthetic series of  
precipitation have the same size as the historical series, specific 
periods of  these synthetic series can be selected so that they 
reproduce the hydrological behavior of  years of  greater interest 
for the simulation with the SMAP/ONS model. The selection 
of  a specific period within the set of  scenarios generated by the 
GHCen can consider the similarity with the recent hydrological 
situation or with predicted climatic variables.

Later, if  it is necessary to reduce the size of  the generated 
sample, clustering techniques can be applied to the synthetic 
scenarios of  daily streamflow obtained at the end of  the processing 
of  the GHCen model (Operador Nacional do Sistema Elétrico, 
2022). Depending on the desired application, synthetic streamflow 
scenarios can be calculated in terms of  weekly or monthly averages.

DATA

Daily precipitation data

The daily precipitation data ranges from 1998 to 2021 and is 
a merging of  three datasets: a combination of  satellite and surface 
observation from Rozante et al. (2010); surface observations 
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from the National Center for Natural Disaster Monitoring and 
Alerts (CEMADEN) and Center for Weather Forecasting and 
Climate Studies/National Institute for Space Research (CPTEC/
INPE); and a combination of  satellite and surface observation 
from Operador Nacional do Sistema Elétrico (2020). For all 
sub-basins considered in the case study is calculated a mean daily 
precipitation over its area.

Streamflow data

The dataset used in this study includes natural daily 
and monthly streamflow readings from 146 hydropower plants 
across all major Brazilian river basins, dating from 1931 to 2021. 
The data was provided by ONS and can be accessed on their 
website (2023). To ensure that the readings only reflected natural 
streamflow, the anthropogenic effects of  regulation, diversions, 
and reservoir evaporation were removed. For this study, only 
incremental natural streamflow was considered, which is the 
difference between the total natural streamflow readings from 
two adjacent HPPs.

CASE STUDY

Evaluation of  the precipitation scenarios

To evaluate the potential of  the methodology for generating 
daily precipitation scenarios, 200 synthetic scenarios of  equal size 
to the evaluated historical record (1998 to 2021) were simulated 
for the 104 sub-basins currently calibrated with the SMAP/ONS 
model. This analysis will focus on the reproduction of  several 
statistics relevant to the stochastic process of  precipitation, namely:

• Mean, standard deviation, and skewness, on the daily (for 
each month), monthly and annual scales;

• Autocorrelations (lag1), on daily and annual scales;
• Spatial continuity ratio CR (Wilks, 1998);
• Sequences of  days with and without rainfall and monthly 

percentage of  days without rain;
• 95th percentile and daily maximum.

For all analyzed variables, it will be displayed a scatter plot 
comparing synthetic and historical values, and the correlation 
between both.

Figure 5. Representation of  SMAP/ONS model.
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Evaluation of  monthly streamflow and energy 
scenarios

To analyze the potential of  GHCen for monthly streamflow 
scenarios a generation of  200 synthetic scenarios was made, 
starting in January 2021 until December 2021, using as base years 
1998 until 2020. The synthetic scenarios generated by the GHCen 
model will be compared to the synthetic scenarios obtained with 
the historical rainfall as input to the SMAP/ONS model. This 
comparison aims to verify whether the synthetic scenarios generated 
with the GHCen model effectively capture the behavior simulated 
with the historical years.

Additionally, a comparison between the Natural Energy 
Inflow (NEI) scenarios for the NIS generated in the same case will 
be compared to the observed NEI and long-term mean (LTM), 
calculated from 1931 to 2021.

RESULTS AND DISCUSSIONS

Daily precipitation scenarios analysis

Figure 6 presents a comparison of  historical and synthetic 
statistics of  mean, standard deviation, and skewness on daily, 

monthly, and annual scales. There is a great adherence of  synthetic 
statistics to historical ones. Even with the generation of  synthetic 
scenarios being carried out daily, it is possible to notice that in the 
monthly and annual time scales, there is an adequate reproduction 
of  the analyzed variables, including the skewness, which is usually 
a difficult variable to reproduce. Notably, in the stochastic model 
used, there is no parameterization regarding these statistics.

Figure 7 compares historical and synthetic autocorrelation 
(lag 1) and spatial correlation statistics, on daily and annual scales. 
Again, there is a good reproduction of  the statistics evaluated in 
practically all locations, with a high correlation between synthetic and 
historical data. Figure 8 presents the spatial continuity ratio, which 
is a metric that measures the spatial intermittency of  precipitation. 
It is noted that the synthetic series manages to reproduce this 
important behavior of  the historical series, demonstrating that 
spatial coherence is maintained.

Figure 9 presents the comparison between the sequences 
of  days with or without precipitation, synthetic and historical. 
It is observed that even in longer sequences, lasting 8 days or 
more than 28 days, the GHCen model manages to adequately 
reproduce this characteristic.

Figure 10 displays the monthly percentage of  days without 
precipitation, indicating that the synthetic scenarios accurately replicate 
historical values. Furthermore, Figure 11 and 12 present the boxplot 

Figure 6. Comparison between historical and synthetic statistics on daily, monthly, and annual scales. In red, the correlation between 
historical and synthetic values is highlighted.
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of  the maximums and synthetic 95th percentile for scenarios from 
all sub-basins, compared to the historical values shown as red dots, 
to examine the tail of  the distributions of  the historical record. It is 
noticeable that the GHCen model can generate greater maximums 
than those observed in the historical series, which is a crucial attribute 
for a model to produce synthetic scenarios.

Monthly streamflow scenarios analysis 

This section presents an initial analysis of  the GHCen model’s 
streamflow scenario generation capability, monthly. To evaluate 
this, a total of  200 synthetic scenarios were generated, starting 
from January 2021 until December 2022, using the years from 
1998 until 2020 as the base. The main aim of  this comparison is 
to verify whether the synthetic scenarios generated by the GHCen 
model accurately capture the behavior observed in the selected 
hydrological years, in terms of  incremental streamflow.

Figures 13 to 16 show boxplots of  the scenarios generated 
for the Furnas, Itá, Tucuruí, and Capivara HPPs, based on the years 
2001, 2006, 2011, and 2020. These scenarios are then compared 
to the scenario obtained with the SMAP/ONS model simulated 
with historical rainfall (represented by red lines). The comparison 
reveals significant adherence between the simulated scenarios with 
historical rainfall and the scenarios obtained with the GHCen 
model. Furthermore, the GHCen model manages to generate 
scenarios that mimic the hydrological behavior of  each selected 
hydrological year, in addition to being able to generate both drier 
scenarios and scenarios with higher flows than those obtained 
with the simulation with historical precipitation.

Figure 17 shows the boxplot of  the transformation of  the 
streamflow scenarios to NEI scenarios for the NIS compared to 
the values observed in 2021 (black line) and LTM (red line). There 
is a good adherence to the NEI observed about the generated 
scenarios, mainly from April onwards. It should be noted that the 
year 2021 was one of  the worst hydrological years in the historical 
record of  Brazil, since 1931. Finally, Figure 18 presents the boxplot 
of  the synthetic mean NEI between 2021, compared with the 
observed values (black dots) and the MLT (red dots). It can be 
noted that the synthetic scenarios generated were able to effectively 
capture the accumulated ENA that occurred throughout 2021.

Figure 7. Comparison between autocorrelation and historical and synthetic spatial correlation on daily and annual scales.

Figure 8. Comparison between historical and synthetic statistics 
of  spatial continuity ratio.
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Figure 9. Comparison between historical and synthetic statistics of  sequences of  days with and without precipitation.

Figure 10. Comparison between the monthly percentage of  days without synthetic and historical precipitation.

Figure 11. Boxplot of  maximums obtained in each synthetic series, compared to historical values (red dots), by sub-basin.
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Figure 12. Boxplot of  95th percentile obtained in each synthetic series, compared to historical values (red dots), by sub-basin. Monthly 
streamflow scenarios analysis.

Figure 13. Boxplot of  synthetic scenarios obtained with the GHCen for Tucuruí HPP based on the years 2001, 2006, 2011, and 2020 
in comparison with the scenario obtained with the historical rainfall as input for the SMAP/ONS model (blue line).



RBRH, Porto Alegre, v. 28, e47, 2023

Treistman et al.

11/14

Figure 14. Boxplot of  synthetic scenarios obtained with the GHCen for Furnas HPP based on the years 2001, 2006, 2011, and 2020 
in comparison with the scenario obtained with the historical rainfall as input for the SMAP/ONS model (blue line).

Figure 15. Boxplot of  synthetic scenarios obtained with the GHCen for Itá HPP based on the years 2001, 2006, 2011, and 2020 in 
comparison with the scenario obtained with the historical rainfall as input for the SMAP/ONS model (blue line).
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Figure 16. Boxplot of  synthetic scenarios obtained with the GHCen for Capivara HPP based on the years 2001, 2006, 2011, and 2020 
in comparison with the scenario obtained with the historical rainfall as input for the SMAP/ONS model (blue line).

Figure 17. Boxplot of  synthetic scenarios obtained with the GHCen model for the NIS compared to the values observed in 2021 
(black line) and LTM (red line).
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CONCLUSIONS

This paper aimed to present a new model for generating 
synthetic streamflow scenarios. The proposed approach merges 
the conceptual SMAP/ONS model with a stochastic methodology 
for the simulation of  synthetic scenarios of  daily precipitation, 
resulting in a Hybrid Generator of  Synthetic Streamflow Scenarios 
(GHCen). As can be seen throughout the evaluations presented, 
the stochastic model used to generate synthetic daily precipitation 
scenarios can reproduce the main characteristics of  this stochastic 
process, in distinct time scales.

Furthermore, a case study from January 2021 was presented, 
demonstrating that the GHCen model can accurately replicate the 
hydrological behavior of  the years from which the scenarios are 
based. When compared in terms of  NEI, there is a close relation 
between the synthetic scenarios generated by the GHCen model 
and the observed series for the NIS. This holds for both monthly 
terms and the accumulated NEI during this period, which shows 
the potential of  using GHCen as a synthetic scenario generator 
of  monthly inflows.

Some improvements can be made to GHCen, such as 
selecting simulated years based on climate similarity to the current 
year. As the next steps, an exhaustive evaluation of  the GHCen 
model should be carried out, to quantitatively verify its potential 
capacity to generate synthetic scenarios of  monthly inflows, in 
comparison with the methodologies currently used.
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