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Abstract
Congenital muscular dystrophies (CMDs) are inherited, progressive and heterogeneous muscle disorders. A group of CMDs are 
dystroglycanopathies, also called α-dystroglycanopathies, where there is an abnormal glycosylation of protein α-dystroglycan. 
Hypoglycosylation of α-DG results in different severities of congenital muscular dystrophies and they present with progressive 
muscle weakness and loss of motor functions. This article first focuses on the CMDs, their classification according to the observed 
symptoms or the protein involved in the resulting phenotype. We then focus on dystroglycanopathies, the importance of its 
correct O-glycosylation of the α-dystroglycan given its important structural function, considering the enzymes involved in said 
glycosylation and the phenotypes that can result, to finally address current therapeutics for these diseases with the aim of increasing 
current knowledge.
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Introduction

Congenital muscular dystrophies (CMDs) are inherited, 
progressive and heterogeneous muscle disorders [1]. They affect 
children at birth or appear during the first months of life with a 
predominant autosomal recessive mode of inheritance, except for 
laminopathies (L-CMD) and some Ullrich congenital muscular 
dystrophies (U-CMDs) [2]. These disorders are characterized 
by congenital hypotonia, delayed motor development and early 
onset of progressive muscle weakness, and they can comprise 
the involvement of brain and eyes [1].

In principle, the CMDs were classified by histological and 
clinical criteria. 

The classification of these diseases is complex [2], and in 
general it is based on phenotype characteristics defined by 
clinical criteria and histochemical analysis considering the 
following criteria: 

1. Involvement or non-involvement of the Central Nervous 
System. 

2. Increased muscle enzyme, Creatine Kinase (CK). 
3. Neuro-radiological abnormalities.
4. Protein expression (Laminin α2, Dytroglycan, collagen). 

Clinical features, immunohistochemical staining, Western 
blot, brain and muscle’s Magnetic Resonance Imaging (MRI) 
are all useful tools to direct genetic testing. 

They can be also classified according to the subcellular 
location of the mutated protein and/or the consequences at the 
skeletal muscle level (extracellular matrix, sarcolemma, basal 
lamina, endoplasmic reticulum, and nuclear envelope). The CK 
levels are low or remain unchanged [1,3]. 

In 2018, Quijano-Roy et al set out a global algorithm that 
facilitates the classification into five main forms of CMDs 
according to the affected gene [1] but there are several genes that 
have been discovered in the last years [1,4] (Figure 1).
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A summary proposal by Zambon and Mutoni considers the 
subcellular location of the mutated protein and they classified 
CMDs as follows [4]:

Defective structural proteins of basal membrane or 
extracellular matrix of muscle fibers

LAMA2-RD: The laminin α2–related muscular dystrophies 
(LAMA2-RDs), previously known as merosin-deficient congenital 
muscular dystrophy type 1A (MDC1A), are autosomal recessive 
disorders caused by pathogenic variants in the LAMA2 gene 
[5–6]. LAMA2 encodes for the alpha-2 subunit of heterotrimeric 
laminin-2 protein (made up of α2, β1, and γ1 subunits) with the 
α2 subunit called laminin-211 or merosin serving as a tissue-
specific component of the extracellular matrix with a key role in 
myotubes stability and apoptosis [7]. The spectrum of LAMA2-
RD ranges from severe CMD (90% of cases) to milder, later 
childhood-onset LGMD largely due to the amount of residual 
Lm-211 protein in muscle (complete vs partial deficiency, CD vs 
PD) [4]. To date, there are no effective treatments for LAMA2-
RDs [7]. With an estimated prevalence of 0.6-0.7/100,000, 
LAMA2-RD is one of the most common types of CMDs. It is 
clinically manifested by hypotonia and weakness at birth, the 
development of contractures of large joints, and progressive 
respiratory involvement. Muscle atrophy and severe weakness 
typically prevent independent ambulation [7–9]. 

COL6-RD: Collagen VI-related myopathies are hereditary 
myopathies caused by mutations in either COL6A1, COL6A2 

or COL6A gene, each encoding a subunit of collagen VI 
[10–11]. The clinicopathological hallmarks include distal 
hyperlaxity, proximal joint contractures, protruding calcanei, 
skin hyperkeratosis, scoliosis and respiratory insufficiency [12]. 
Approximately three quarters of individuals with congenital/
severe COL6-RD acquire the ability to walk independently, but 
subsequently their motor skills decline, with loss of ambulation 
occurring around 9–11 years of age [4].

Integrin α-7 deficient CMD: This CMD is caused by mutation 
in integrin α7 (ITGA7) and it is a rare subtype. This gene has 28 
exons, among which 26 code for protein [13]. Only a few patients 
diagnosed with CMD were found to have ITGA7 mutation 
[6,13–16] and it is not clear whether all variants are pathogenic 
mutations. Variants of ITGA7 present microcephaly, agenesis of 
the corpus callosum, cerebellar hypoplasia, seizures, scoliosis, 
hemivertebrae, asymmetric extremities, and hypopigmented 
skin macules [16]. These had various symptoms and different 
grades of severity. The consistent clinical features were muscle 
weakness and increased CK level [13]. 

Integrin α-9 deficient CMD: The α-9 integrin is one of 
the younger evolutionary additions to the integrin family of 
receptors. This integrin subunit is expressed in a variety of 
cell types and binds to a plethora of ligands, some of which 
are restricted to specific tissues, or are upregulated during 
development or in pathophysiological conditions. There have 
not been many reports describing mutations in integrin α-9 [17]. 
This could indicate that mutations in α-9 is a rare event, and that 
it is the α-9 expression level (or a lack of it) that is important in 

Figure 1. Classification of Congenital Muscular Dystrophies. Adapted from Quijano et al 2018.
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developing pathophysiological conditions, which was already 
suggested when ITGA9 was first cloned [18]. 

Dystroglycanopathies (DGP)/defects of α-DG glycosylation: 
They are a group of muscular dystrophies where there is an 
abnormal glycosylation of α-dystroglycan protein (α-DG). 
This protein is a fundamental component of the Dystrophin 
glycoprotein complex (DGC), which is essential to link the 
extracellular matrix (ECM) to the intracellular actin cytoskeleton 
[4]. The clinical symptoms are diverse, ranging from severe 
congenital to adult-onset limb-girdle types [19–20]. Primary 
dystroglycanopathy is due to defects in the coding sequence 
of a-DG [21–22]. Around 20 genes have been associated with 
secondary dystroglycanopathies, including glycosyltransferases 
for O-mannitol type glycosylation, a kinase, enzymes involved 
in nucleotide sugar synthesis (dolichol—P-Mannose), proteins 
necessary for joining the α-DG-linked core glycan structure with 
distal ligand-binding region and Golgi membrane trafficking 
proteins [23–24]. 

Endoplasmic reticulum protein 

SEPN1-related Myopathy: SEPN1 or SELENON is a ubiquitous 
endoplasmic/sarcoplasmic reticulum (ER/SR) protein encoded 
by the SELENON (or SEPN1) gene. It protects cells against 
oxidative stress or ER-stress and defends calcium homeostasis 
by counteracting ERO1-mediated oxidation of the ATP-
dependent Ca2+ pump SERCA [25].Mutations of the SEPN1 
gene are characterized by muscle weakness and fatigue leading 
to scoliosis and life-threatening respiratory failure. Core lesions 
and focal areas of mitochondria depletion in skeletal muscle 
fibers are the most common histopathological lesions [26].This 
myopathy comprises a spectrum of pathological conditions 
encompassing rigid spine muscular dystrophy, multi-minicore 
disease, congenital fiber-type disproportion and desmin-related 
myopathy with Mallory body-like inclusions [4]. This a Study 
reveals SEPN1-RM as a more severe and progressive disease 
than previously thought. While motor abilities were reported 
to be stable, it was found loss of ambulation in 10% of the 
cases with full follow-up data. Muscle functional performance 
and respiratory function (particularly diaphragmatic fatigue) 
declined systematically from the end of the third decade, even 
in mild cases. But lifespan was reduced even in 2 mild cases 
with optimum respiratory support [27].

Nuclear envelope proteins

LMNA-Related CMD: A-type lamins (lamin A and C) are 
intermediate filament proteins expressed in differentiated 
cells [28]. Together with B-type lamins, they form the nuclear 
lamina, an organized meshwork found under neath the inner 
nuclear envelope [29]. Laminopathies are a heterogeneous 
group of disorders caused by mutations in the LMNA gene 
encoding lamin A/C. This includes striated skeletal and cardiac 
muscles, and it includes Emery–Dreifuss muscular dystrophy 
(EDMD), limb-girdle muscular dystrophy type 1B (previously 

known as LGMD1B) and isolated dilated cardiomyopathy 
with conduction system defects and arrhythmias (DCMCD). 
LMNA-related congenital muscular dystrophy (L-CMD) has 
been described as an autosomal dominant muscle disorder 
related to a dominant de novo mutation in LMNA, so far, the 
most severe form of striated muscle laminopathies [30]. L-CMD 
group can operationally be defined as having an onset of skeletal 
muscle manifestations within the first two years of life, when 
early motor development, that includes walking and running, 
should be typically attained. It is of great medical importance 
to distinguish this group of patients due to the potential of early 
life-threatening complications involving nutritional, respiratory 
and cardiac compromise [31].

SYNE-Related CMD (nesprin): EDMD is associated with 
at least seven gene mutations, of which SYNE1 mutation is 
relatively less common [32]. The SYNE1 ( Spectrin Repeat 
Containing Nuclear Envelope Protein 1) gene has an autosomal 
dominant inheritance pattern, and its mutations might result 
in defects in the expression product nesprin-1 [33], a protein 
characterized by the presence of multiple spectrin repeats 
which is highly expressed in striated muscles [34]. Besides, the 
mutations in the SYNE1 gene cause spinocerebellar ataxia type 
8, myogenic multiplex arthrogryposis congenital with features 
of EDMD, intellectual disability with spastic paraplegia, and 
axonal neuropathy [35–37].

Proteins involved in ER to Golgi apparatus trafficking

There are two genes that represent the first membrane trafficking 
proteins implicated in α-DG hypoglycosylation. TRAPPC11 
and GOSR2, that each have a role in membrane trafficking in 
the biosynthetic pathway, have been implicated as candidate 
dystroglycanopathy genes [4].

TRAPPC11: Transport protein particle (TRAPP) is a 
supramolecular protein complex that functions in the localization 
of proteins to the Golgi compartment. The TRAPPC11 subunit 
has been implicated in muscle disease through the identification 
of homozygous and compound heterozygous deleterious 
mutations in individuals with limb girdle muscular dystrophy 
and congenital muscular dystrophy. These individuals also 
display membrane trafficking defects in cultured fibroblasts; 
this gene should be considered in the diagnostic evaluation of 
patients with CMD [24,38].

GOSR2: Pathogenic variants in the Golgi SNAP receptor 
complex 2 gene (GOSR2, also known as Membrin) are well-
known to be associated with autosomal recessive progressive 
myoclonic epilepsy (PME) [39], but some new compound 
heterozygous variants in the GOSR2 gene have expanded the 
clinical spectrum [24,40]. This variant has progressive muscle 
weakness and areflexia, and it developed seizures in early 
childhood. Muscle biopsy showed an active dystrophic process 
and hypoglycosylation of alpha-dystroglycan. This is suggestive 
of a dystroglycanopathy, which is a known cause of congenital 
muscular dystrophy [41]. 
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There are another condition (called CMD PLUS) that share 
clinical features with CMD, for example, Megaconial CMD or 
Marinesco-Sjogren Syndrome (MSS) [4]. These conditions have 
overlapping pathological and clinical changes that often lead to 
diagnostic difficulties with CMD. Some of them are listed in Table 1. 

This review focuses on dystroglycanopathies, also called 
α-dystroglycanopathies (CMD-αDG).

Dystroglycanopathies 

These pathologies owe their etiology to mutations in genes 
involved in the O-glycosylation of α-DG protein [42]. At 
least 20 genes are involved in the correct O-glycosylation 
of α-DG. They are classified into primary and secondary 
dystroglycanopathies [20] (Table 2). The first ones are due to 
mutations of the DAG1 gene that alter the state of the DG core 
protein with potential repercussions on the glycosylation state 
of α-DG. The second ones are due to mutations in the genes that 
participate in the O-glycosylation of α-DG including enzymes 
involved in nucleotide sugar synthesis and Golgi membrane 
trafficking proteins [23–24]. Primary dystroglycanopathies are 
comparatively less studied due to the small number of cases 
identified so far. DAG1 mutations are rare, recessive mutations 
that are found in consanguineous families. Dystroglycanopathies 
exhibit a broad clinical spectrum [43], because of the mutation 
on the activity of the protein involved. One of the characteristics 
of these dystrophies is the involvement of central nervous 
system disorders, such as malformation of the brain (type II 
lissencephaly) and mental retardation (although there are times 
that this occurs without structural abnormalities). Cases with 
heart failure and eye symptoms have also been observed [44–48]. 

The glycosylation status of α-DG is strictly regulated with 
respect to both developmental stage and tissue (in brain, heart, 
skeletal muscle, and kidney, α-DG is modified in a way that it 
can function as an ECM-receptor) [49].

Functional Importance and Genetic Bases of 
α-Dystroglycan

The dystrophin glycoprotein complex (DGC), which is essential 
to link the extracellular matrix (ECM) to the intracellular actin 
cytoskeleton, takes center stage in several physiological and 
pathological contexts, playing a particularly important role in 
skeletal muscle. This gives stability to a big number of tissues, 
such as skeletal and smooth muscles, the brain and peripheral 
nervous system, the neuromuscular junction, the interface 
between endothelial cells and the surrounding astrocytes end-
feet at the blood-brain barrier, the kidney glomeruli basement 
membrane, and the lungs at the epithelia-connective border 
[20,50–51]. 

DAG1 gene has a highly conserved sequence between species 
and has been mapped to human chromosome 3p21 [52]. Coding 
sequence is organized into two exons, separated by a large 
intron. The derived 5.8 kb transcript contains an 895-residue 
open reading frame. This propeptide is post-translationally 
cleaved by an unknown protease at residue 653 (P) to yield α- 
and β-dystroglycan(α-DG and β-DG) [51,53–54]. β-DG protein 
contains a single transmembrane domain, one potential N-linked 
glycosylation site, and a 121-residue C-terminal cytoplasmic 
tail that is enriched in proline. α-DG is an extracellular protein 
that contains three potential N-linked glycosylation sites. DGC 
complexes associated with various proteins via α-DG y β-DG. 

Table 1. Genes and Protein implicated in CMDs called CMD plus.

OtherCMDs/CMD spectrum Gene symbol OMIN ref Protein/Function

Mitochondrial CMD CHKB 602,541 Choline kinase

MD withcerebellarinvolmente MSTO1 617,675 Mitocondrial fusion

MD with extrapiramidal signs MICUI 615,673 Mitochondrial Ca2+uptake/ 
mitochondria mediated sarcolema repair

CMD with cataracts and intellectual disability INPP5K 617,404 Inositol polyphosphate-5-phosphatase K

Marinesco-Sjogren syndrome SIL-1 248,800 Protein Folding

Mucolipidosis type IV MCOLN1 252,650 Nonselective cation chanel  
in lysosomal endosomal trafficking

MD/hearing Loss/Ovarian insufficiency Syndrme GGPSI 606,982 Mevalonat/isoprenoid pathway
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β-DG (Figure 2) subunit binds intracellularly to dystrophin, that 
joins to the intracellular actin cytoskeleton; and it extracellularly 
binds to α-DG, which in turn binds via Laminin 2 to the 
extracellular matrix [20,54] (Figure 3). The core skeletal muscle 
DGC also contains the sarcoglycans (α-SG, β-SG, δ-SG and 
γ-SG [50–51]), the sarcospan [55] and the syntrophins [56]. In 
addition, several extra- and intracellular proteins are less tightly 
associated with the DGC, such as nitric oxide synthase (nNOS) 
and dystrobrevin [54,57–59].

Sugar Chain Structure of α-DG

α-DG has a mucin-type O-glycosylation site in the central 
region of the molecule and it contains more than 40 Ser/Thr 
residues that form an O-glycan cluster [53]. O-glycosylation 
is an even more complex process [60]. α -DG is heavily N- and 
O-glycosylated, as well as O-mannosylated [61–62]. The first 
18 amino acids of the mucin-like domain have been shown to 
be important for this O-mannosylation of α-DG to be carried 

out correctly [21]. The sequential O-glycosylation process of 
α-DG forms different structures called nuclei or Core (Core 
1 to 3). Core 1 is crucial for the binding of the extracellular 
components [50]. 

Core M1 and Core M2

The O-mannosylation initiates in the endoplasmic reticulum 
where POMT1 and POMT2 (O-mannosyl-transferases) form 
a complex that transfer a O-Man in an alpha linkage to serine 
and threonine residues of α-DG [63]. POMT1-POMT2 complex 
uses dolichol phosphate mannose (Dol-P-Man) as a donor 
substrate. The synthesis of Dol-P-Man is carried out by GMPPB 
(GDP-mannose pyrophosphorylase), DPM1/2/3 (Dolichol-
phosphate-mannos synthase), and DOLK (Dolichol Kinase) 
[43]. POMGnT1 acts in the Golgi, where it transfers β2-linked 
GlcNAc residues to the mannose residues added by POMT1 
and POMT2 during synthesis of the core M1 and M2 glycans 
[64]. Core M2 structure is found specifically in the brain [65].

Table 2. Genes associated to dystroglycanopathies.

Gene OMIM ref Protein Functions

Primary dystroglycanopathy

DAG1 616,538 Dystroglycan

Secondary dystroglycanopathy

POMT1 607,423 Protein O-mannosyltransferase

POMT2 607,439 Protein O-mannosyltransferase

POMGnT1 606,822 Protein O-mannose β 1,2-N-acetylglucosaminyltransferase;  
Core M1 synthesis

POMGnT2 614,828 Protein O-mannose β 1,2-N-acetylglucosaminyltransferase;  
Core M3 synthesis

B3GALT2 610,194 β-1,3-N-acetylgalactosaminyltransferase;  
Comre M3 synthesis

POMK 615,247 Protein O-mannose kinase;  
Phosphorylation of Core M3

FKTN 607,440 Ribitol phosphate transferase,  
tandem ribitol synthesis

FKRP 606,596 Ribitol phosphate transferase,  
tandem ribitol synthesis

ISPD/CRPPA 614,631 CDP-ribitolpyrophosphorylase; synthesis of  
CDP-ribitol (donor substrate of FKTN/FKRP)

TMEM5/RXYLT1 605,862 β-1,4-xylosyltrnasferase; synthesis of linker structure  
between tandem ribitol and matriglycan

B4GAT1 615,287 β-1,4-Glucuronyltransferase; synthesis of linker structure  
between tandem ribitol and matriglycan

LARGE1 603,590 α3-Xylosyl and β3-glucuronyltransferase; matriglycan synthesis

GMPPB 615,320 GDP-mannose pyrophosphorylase required for the formation  
of GDP-Man; Dolichol-phosphate-mannose synthesis

DPM1 603,503 Dolichol-phosphate-mannose synthase;  
Dolichol-phosphate-mannose synthesis

DPM2 603,564 Dolichol-phosphate-mannose synthase;  
Dolichol-phosphate-mannose synthesis

DPM3 605,951 Dolichol-phosphate-mannose synthase;  
Dolichol-phosphate-mannose synthesis

DOLK 610,768 Dolichol kinase required for formation of dolichol -phosphate;  
Dolichol-phosphate-mannose synthesis
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Figure 2. Schematic representation of the Dystrophin glycoprotein complex (CDGP) in skeletal muscle. The two dystroglycan subunits (α-DG 
and β-DG) interact non-covalently to form a bridge between the extracellular matrix and the actin cytoskeleton. The cytosolic domain of β-DG 
is anchored to actin through interaction with dystrophin. α-DG interacts with the ectodomain of β-DG on the extracellular side of the plasma 
membrane. DG acts as a receptor for extracellular matrix proteins such as laminins. Adapted from Brancaccio 2019.

Figure 3. Scheme of genes implicated in CMDs and their localization in skeletal muscle cell. Adapted from Zambon and Mutoni 2021. LAMA2, 
Laminin-2 protein; COL6A1, COLA2 and COL6A3, α-chains of Callagen VI monomers and tetramers; ITGA7, integrin α-7; ITGA9, integrin 
α-9; SEPN1, Selenoprotein 1; SYNE, Spectrin Repeat Containing Nuclear Envelope Protein 1; LMNA, Laminin a/c; TRAPPC11, Transport 
protein particle 11; GOSR2, Golgi SNAP receptor complex 2; DAG1, Dytroglycan; POMT1, Protein O-mannosyl-transferase 1; POMT2, 
Protein O-mannosyl- transferase 2; POMGNT1, Protein O-mannose β1,2-N-acetylglucosminytranferase 1; POMGNT2, Protein O-mannose 
β1,4-N-acetylglucosminytranferase 2; TMEM 5, transmembrane protein 5; RXYLT1, ribitol-5-phosphate xylosyltransferase 1; B4GAT1, β1,4-
glucuronyltransferase; B3GALNT2, β1,3-N_acetylgalactosaminyltransferase; POMK, Protein O-mannose Kinase; FKTN, Fukutin; FKRP, Fukutin 
related protein; LARGE1, like-acetylglucosaminyltransferase/LARGE xylosyl-and glucoronyltransferase 1; ISPD, isoprenoid synthase domain-containing 
protein; CDP-ribitopyrophosphorylse A.
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Core M3 and Matriglycan Importance

A small subset of O-Man modified sites, apparently exclusively on 
α-DG, are extended in the endoplasmic reticulum by a GlcNAc 
in a beta-1,4 linkage by POMGNT2 to generate the Core M3 
glycans [49]. This is further elaborated into a trisaccharide 
by the action of a beta-1,3-N-acetylgalactosamine (GalNAc) 
transferase, B3GALNT2 [53,66]. Core M3 has a phosphorylation 
at the C6 position of O-mannose, being POMK [67] the one that 
transfers a phosphate group from adenosine 5’-triphosphate 
(ATP), forming the phospho-nucleus structure [68]. 

The β1,4 branch is subsequently modified by a series 
of Golgi enzymes [69] that include B3GALNT2 (β1,3-N-
acetylgalactosaminyl transferase), the ribitol transferases FKTN 
(Fukutin) and FKRP (fukutin-related protein), TMEM5 (Ribitol-

5-phosphate xylosylransferase), and B4GAT1 (β1,4-glucoronic 
acid transferase). Finally, the LARGE1 lengthens the previous 
linear carbohydrate branch by synthesizing a unique repeating 
disaccharide structure [–3-xylose–α1,3-glucuronic acid-β1–]n, 
called matriglycan [53] (Figure 4). This complex mediates α-DG 
interactions with LG domains of extracellular matrix (ECM) 
proteins such as laminins, agrin and perlecan and pikachurin 
[50–51,70].

This unique heteropolysaccharide is expressed in most 
tissues and it plays diverse roles, from acting as viral receptor 
to neuronal development [71–76]. 

Multiple studies, carried out in cultured cells and mouse 
skeletal muscles, have demonstrated that forced expression of 
LARGE increases the MW of α-DG and its binding ability to 
LG domains [77–78].

Figure 4. Representation of the sequence of genes involved in the O-Glycosylation of α-DG and matriglycan formation. Man, mannose; 
GlcNAc, N-acetylglucosamine; GalNac, N-acetylgalactosamine: RboP, ribitol phosphate; Xyl, xylose; GlcA, glucronic acid; Gal, galactose; Rbo5P, 
ribitol-5-phosphate; POMT1, Protein O-mannosyl-transferase 1; POMT2, Protein O-mannosyl-transferase 2; POMGNT1, Protein O-mannose 
β1,2-N-acetylglucosminytranferase 1; POMGNT2, Protein O-mannose β1,4-N-acetylglucosminytranferase 2; TMEM 5, transmembrane protein 
5; RXYLT1, ribitol-5-phosphate xylosyltransferase 1; B4GAT1, β1,4-glucuronyltransferase; B3GALNT2, β1,3-N_acetylgalactosaminyltransferase; 
POMK, Protein O-mannose Kinase; FKTN, Fukutin; FKRP, Fukutin related protein; LARGE1, like-acetylglucosaminyltransferase/LARGE xylosyl-and 
glucoronyltransferase 1; ISPD, isoprenoid synthase domain-containing protein; CDP-ribitopyrophosphorylse A. 
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LARGE is a type II transmembrane protein that contains two 
distinct domains: one with homology to β3GNT1, and another 
with homology to proteins belonging to glycosyltransferase 
family 8. LARGE has two glycosyltransferase activities: a α3-
xylosyltransferase activity and a β3-glucuronyltransferase 
activity. The LARGE paralog, LARGE2, possesses the same 
enzymatic function, although its optimal pH and pattern of 
expression differ from those of LARGE [79–80].

Dystroglycanopathies & Congenital 
Disorders of Glycosylation

Congenital Disorders of Glycosylation (CDG) are a group of 
rare inborn errors of metabolism and include some forms of 
dystroglycanopathies [60]. 

These disorders (CDG) are genetic diseases caused by deficient 
glycoprotein and glycolipid glycan synthesis and attachment 
[81–82]. Most are multisystem disorders with variable phenotype 
severity and neurological involvement. CMDs due to CDG are 
clinically and genetically heterogeneous diseases and present 
progressive muscle weakness and loss of motor functions [1–2]. 
These present a stereotyped phenotype with early-onset muscle 
deficit with or without central nervous system involvement [83–85]. 

The glycosylation is a complex biological process involving 
many pathways. CDG are sub-grouped into defects of protein 
N-glycosylation, protein O-glycosylation, lipid glycosylation, 
GDP-anchor glycosylation and multiple glycosylation defects 
[81,86]. O-glycosylation is a common covalent modification of 
serine and threonine residues of mammalian glycoproteins [53].

Many of the described mutations for muscular dystrophy 
affect the O-glycosylation pathways for the biosynthesis of 
α-dystroglycan. It has been described that new types of CDG 
result in defects in the O-mannosyl glycosylation pathway [87–92].

The multitude of clinical phenotypes resulting from defective 
O-mannosylation highlights the biomedical significance 
of this unique modification [47,93]. The understanding of 
this modification is important for the development of novel 
therapeutics [91,94–96].

Elucidation of the molecular pathological mechanisms 
of CDG associated with DG glycosylation abnormalities will 
be an important issue in understanding the mechanisms of 
dystroglycanopathies. Characterizing a glycoproteome profile of 
patients prior to and on treatment will help to better understand 
the changes of a plethora of glycoproteins and related clinical 
observations in dystroglycanopathies [81–82,86,97].

Phenotypes Resulting from Defects in α-Dg 
Glycosylation

When the enzymes that participate in the O-glycosylation 
pathway of the α-DG subunit show failures [98–99] or a 

pathogenic variant is observed in DAG1 gene, a decrease in the 
binding capacity of α-DG to the other proteins of the CDGP 
complex is observed, including in laminin. This generates a severe 
clinical phenotype of muscular dystrophy, brain abnormalities, 
and often optic abnormalities. DMCs such as Walker-Warburg 
Syndrome (WWS), Muscle-Eye-Brain disease (SEM) and 
Fukuyama Congenital Muscular Dystrophy (FC-CMD) [100] 
are assumed to be α-dystroglycanopathies. They all present a 
severe degree of muscular dystrophy with deterioration in the 
muscles, brain, and eye, and they have overlapping phenotypes 
that make their specific diagnosis difficult.

Dystroglycanopathies present a broad phenotypic spectrum 
that can even overlap, making diagnosis difficult. This is probably 
because of mutations involving the functions of gene products 
(enzyme activity), rather than variation in the causative genes 
[43]. In addition to the changes in the DAG1 gene, changes in 
the enzymes involved in the glycosylation of α-DG must be 
considered. Moreover, it is important not to forget the effect 
of variations in genes (such as ISPD or GMPPB) and their 
corresponding enzymes responsible for the manufacture of 
carbohydrate building blocks in the cytosol, indirectly modifying 
α-DG glycosylation [20,24,91,101].

There is a clinical-radiological imaging technology 
classification that divides dystroglycanopathies into seven groups, 
including CMDs and limb girdle dystrophies [22,102–103,106].

1. Walker-Warburg Syndrome (WWS): onset prenatally or 
at birth. With eye abnormalities and severe structural 
brain abnormalities, including complete agyria or severe 
lissencephaly with only rudimentary cortical folding, it 
marked hydrocephalus, severe cerebellar involvement 
and complete or partial absence of the corpus callous. 
Patients assigned to this category are incompatible with 
life or have very limited survival.

2. CMDs muscle-eye-brain/Fukuyama (MEB/CMD-
FC) type: multiple malformations of the CNS (brain, 
cerebellum, or trunk) of less severity than the previous 
group.

3. CMDs with mental retardation and localized structural 
CNS involvement (CRB-CMD).

4. CMDs with intellectual disability and without CNS 
morphological abnormality (MR-CMD), possible 
microcephaly and/or moderate involvement of the 
cerebral white matter.

5. CMDs without intellectual disability (no MR-CMD): 
this category includes CMD-1C.

6. Girdle dystrophies with intellectual disability (LGMD-
MR). It may include microcephaly and/or moderate 
brain and white matter abnormalities.

7. Limb Girdle muscular dystrophies without intellectual 
impairment (LGMD-not MR). It includes LGMD2I 
(FKRP), 2L (ISPD [107–112]) and 2M (FKTN).
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Walker-Warburg Syndrome: WWS

It is the most severe phenotype, and clinical manifestations 
appear early and can be detected in the prenatal stage by 
imaging techniques [113]. The clinical manifestations include 
congenital muscular dystrophy, brain, and eye anomalies: 
hydrocephalus, abnormal migration, retinal dysplasia and 
encephalocele [45,114]. The eye anomalies involve both anterior 
and posterior chambers with retinal detachment and blindness. 
Microphthalmia, thalamus, optic nerve hypoplasia, colobomas 
and iris malformation, cataract, and cornea defects may also be 
found. Mutations in B3GLNT2, B4GAT1, DAG1, FKRP, FKTN, 
GMPPB, ISPD, or LARGE are associated to Walker-Warburg 
Syndrome with brain and eye abnormalities [48].The clinical 
features may also be associated, even if not frequently, to facial 
dysmorphism and cleft lip or palate [19]. It has been shown that 
mutations in POMT1 [115], FKTN, FKRP [116] and B3GALNT2 
[117–118] can each give rise to the clinical WWS phenotype, 
even this phenotype should also be suspected when mutations in 
POMGnT1 and LARGE1[45] are present [119]. The most common 
known causes of WWS are mutations in glycosyltransferases 
protein O-mannosyltransferase 1 and 2 (POMT1 and POMT2 
[120]) [45,63,121]; these mutations have been observed in a few 
patients [114,122]. 

Muscle-Eye-Brain Syndrome: MEB

This disease is characterized by structural ophthalmological 
abnormalities and brain malformation. It was first reported in 
Finnish patients with poor psychomotor development, hypotonia 
and loss of reflexes at the age of 1 [123]. Patients are unable to sit 
still and they have seizures, and high levels of CK are detected [124]. 

Ophthalmologic abnormalities are very common. The EMG 
usually shows myopia, corneal opacity, cataracts and dysgenesis of 
the anterior chamber, congenital glaucoma, hypoplastic choroid 
and optic atrophy, among other alterations. Brain malformations 
such as argyric hemispheres, polymicrogyria in various cortical 
segments, and severe cortical disorganization are observed on MRI 
[125–127]. Muscle Eye Brain disease involves genetic mutations 
in B3GLNT2, B4GAT1, DAG1, FKRP, FKTN, GMPPB, ISPD, or 
LARGE. There are frequent mutations [103–106,128–129] in 
genes that have been associated with this pathology [116,130]. 

CMD Fukuyama (CMD-F)

This pathology is caused by mutations in the FKTN [131] gene. 
This disease is highly prevalent in Japan, where the founder 
mutation was detected, a 3 kb insertion in 3’UTR [127], although 
there are others associated with this phenotype. This homozygous 
mutation is present in 80% of patients [131]. Other mutations 
in non-Japanese patients have been detected and involve a loss 
of localization in the Golgi or missense mutations [132–133]. 

Some mutations involve total or partial loss of function. This 
depends on how involved it is its glycosyltransferase enzymatic 
domain, which is essential in the binding of the first Rob 5 to 
the M3 core of α-DG [93].

This phenotype is characterized by the appearance of 
congenital muscle weakness, severe mental retardation and 
delayed motor development with severe epilepsy associated 
with significant muscle involvement of the facial muscles and 
marked hypotonia in the extremities [134].

Muscular Dystrophy 1C (CMD-1C)

This subtype of CMD was first reported by Brockington et al, who 
identified a new member of the fukutin family of proteins, FKRP 
[135–136]. The clinical manifestations appear in the first weeks 
of life with a pronounced increase in CK. Some patients present 
normal brain structure, cardiac anomalies and respiratory 
failure, severe weakness in the muscles of the shoulder girdle, 
calves, and thighs in young age with null ambulation [19]. 

Although there is a decrease in α-DG levels, there would be 
a mechanism by which this deficiency would be compensated in 
the brain, so there is no significant impact on the CNS, although 
there would be a subgroup that would present neurological 
abnormalities resulting from mutations in FKRP [19].

Muscular Dystrophy 1D (CMD-1D)

It is caused by mutations in the LARGE1 gene [137–138], which 
encodes the enzyme acetyl-glusosaminyl transferase. In this 
pathology, there is profound mental retardation and sometimes 
retinopathy [19,77]. The first human mutation reported for 
LARGE1 gave rise to the new classification of (DMC-1D) [19]. 
It was reported in a 17-year-old girl with congenital muscular 
dystrophy, profound mental retardation, white matter changes, 
and very subtle structural abnormalities on MRI of the brain. 
A significant reduction in α-DG was observed at biopsy [139].  
A missense mutation (c.G1525A) and a 1 bp insert (c.1999insT) 
in the human LARGE1 gene homologous to mouse LARGE were 
described in this patient [48,139–140].

Limb Girdle Muscular Dystrophy LGMD2I

It is caused by mutations in the FKRP gene [141], which also 
implies a secondary deficit of α-DG and merosin [139]. In patients 
with LGMD2I, symptoms appear between the ages of 6 and 13 
[142]. Frequent muscular pseudohypertrophy (calves, tongue) is 
observed. There are cases of severe respiratory failure that can 
precede loss of gait with an elevated risk of cardiomyopathy. 
Near half of the patients develop weakness in the ventricles [143]. 

In Table 3 we list some disease-causing variants associated 
to phenotypes more frequent to dystroglycanopathies. 
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Table 3. DISEASE-CAUSING VARIANTS associated to dystroglycanopathies Phenotypes. These variants are interpreted as pathogenic in ClinVar 
(Genomic variation as it relates to human health). NM_ correspond to NCBI Reference Sequence used in the construction of this table.

Gene Phenotype Disease-causing variants Reference

DAG1
NM_004393.6

WWS
MEB

CMD-1C 
CMD-1D

c.15G>A (p.Val5=); 
c.41C>A(p.Ser14Ter); 
c.235C>T (p.Arg79Ter); 
c.285+1G>A
c.330G>A (p.Trp110Ter); 
c.440del(p.Gln147fs); 
c.454_467del (p.Phe152fs)
c.556G>T (p.Glu186Ter)
c.721_722del (p.Phe241fs)
c.743del (p.Ala248fs)
c.839del (p.Pro280fs)

[164]
[165]
[166]
[167]

POMT2
NM_013382.7

WWS
CMD-MR
LGMD 2N

c.49_50delinsA (p.Arg18fs)
c.248+1G>C; c.248+2T>C; c.248+5G>C
c.311A>T (p.Asp104Val)
c.431T>G (p.Met144Arg)
c.462G>A (p.Trp154Ter)
c.648C>A (p.Cys216Ter)
c.673del (p.Trp225fs)
c.678del (p.Trp226fs)
c.737G>A (p.Gly246Asp)
c.791del (p.Leu264fs)
c.879_880del (p.Thr295fs)
c.881A>G (p.Tyr294Cys)
c.924-2A>C; c.958C>T (p.Gln320Ter)
c.1006+1G>A
c.1034_1035del (p.Val345fs)
c.1117G>T (p.Val373Phe)
c.1123_1124dup (p.Tyr376fs)
c.1237C>T (p.Arg413Ter)
c.1253+1G>A
c.1261del (p.Arg421fs)
c.1261C>T (p.Arg421Trp)
c.1293dup (p.Met432fs)
c.1300del (p.Arg434fs)
c.1417C>T (p.Arg473Ter)
c.1445G>T (p.Gly482Val)
c.1555G>T (p.Glu519Ter)
c.1577-5_1577-1delinsTGA
c.1912C>T (p.Arg638Ter)
c.1941G>A (p.Trp647Ter)
c.1997A>G (p.Tyr666Cys)
c.2177G>A (p.Gly726Glu)

[120]
[168]
[169]
[170]
[171]
[172]
[173]
[174]
[175]
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Gene Phenotype Disease-causing variants Reference

POMT1
NM_001077365.2

WWS
LGMD

c.58dup (p.Val20fs)
c.72del (p.Met25fs)
c.97C>T (p.Arg33Ter)
c.130G>A (p.Glu44Lys)
c.193G>A (p.Gly65Arg)
c.264G>A (p.Trp88Ter)
c.270_280delAATTGGAGCAG (p.Gly92fs)
c.280+1G>T
c.414del (p.Leu138_Leu139insTer)
c.418_420del (p.Met140del)
c.430A>G (p.Asn144Asp)
c.443C>A (p.Thr148Asn)
c.579_580del (p.Val195fs)
c.598G>C (p.Ala200Pro)
c.606del (p.Ile203fs)
c.699+62del; c.699+67G>A
c.841C>T (p.Gln281Ter)
c.859_871del (p.Gly287fs)
c.978C>A (p.Tyr326Ter)
c.990T>A (p.Tyr330Ter)
c.1087C>T (p.Gln363Ter)
c.1091del (p.Leu364fs)
c.1093_1094insGGAGCACGGTGTGGAACGTGGG 
(p.Val365fs)
c.1175C>T (p.Thr392Met)
c.1175+3del
c.1195_1196del (p.Leu399fs)
c.1204dup (p.His402fs)
c.1272+1G>A
c.1361T>G (p.Leu454Ter)
c.1364del (p.Lys455fs)
c.1391G>C (p.Trp464Ser)
c.1417G>C (p.Gly473Arg)
c.1457G>A (p.Trp486Ter)
c.1474C>T (p.Arg492Ter)
c.1671del (p.Ile557fs)
c.1680G>C (p.Trp560Cys)
c.1798C>T (p.Arg600Ter)
c.1837_1852dup (p.Gly618fs)
c.1892C>T (p.Pro631Leu)
c.1921C>T (p.Leu641Phe)
c.1939G>A (p.Ala647Thr)
c.2097C>A (p.Tyr699Ter)
c.2101dup (p.Asp701fs)
c.2144_2147dup (p.Asp716fs)

[22]
[45]
[60]
[96]
[97]
[104]
[112]
[116]
[98]

Table 3. Cont.
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Gene Phenotype Disease-causing variants Reference

POMGNT1
NM_017739.4

MEB
LGMD

c.187C>T (p.Arg63Ter)
c.593del (p.Ser198fs)
c.595C>T (p.Gln199Ter)
c.643C>T (p.Arg215Ter)
c.931C>T (p.Arg311Ter)
c.932G>A (p.Arg311Gln)
c.1282C>T (p.Gln428Ter)
c.1324C>T (p.Arg442Cys)
c.1325G>A (p.Arg442His)
c.1350_1354del (p.Trp451fs)
c.1469G>A (p.Cys490Tyr)
c.1478C>G (p.Pro493Arg)
c.1694_1695del (p.Ser565fs)
c.1738C>T (p.Arg580Ter)
c.1769G>A (p.Trp590Ter)
c.1719del (p.His573fs)
c.1814G>A (p.Arg605His)
c.1832del (p.Leu611fs)
c.1895+1G>A
c.1895C>G (p.Ser632Ter)
c.1876del (p.Val626fs)

[47]
[102]
[103]
[104]
[105]
[106]
[128]

POMGNT2
NM_032806.6 LGMD

c.118C>T (p.Arg40Ter)
c.410_411delinsG (p.Ala137fs)
c.494T>C (p.Met165Thr)
c.503T>C (p.Phe168Ser)
c.509del (p.Asp170fs)
c.590G>A (p.Trp197Ter)
c.745C>T (p.Gln249Ter)
c.758C>T (p.Pro253Leu)
c.820_821del (p.Lys274fs)
c.1000_1003del (p.Leu334fs)
c.1232_1233del (p.Gln411fs)
c.1333C>T (p.Arg445Ter)
c.494T˃C; c.758C˃T

[94]
[167]
[168]

B3GALNT2
NM_152490.5

WWS
MEB

LGMD

c.51_73dup (p.Ser25fs) 
c.199C>T (p.Arg67Ter)
c.308_309del (p.Val103fs)
c.448C>T (p.Arg150Ter)
c.753del (p.Val252fs)
c.755T>G (p.Val252Gly)
c.824_825dup (p.Ile276fs)
c.875G>C (p.Arg292Pro)
c.1066_1067del (p.Thr355_Asp356insTer)
c.1423C>T (p.Gln475Ter)

[178]
[117]
[179]
[180]
[181]
[118]

Table 3. Cont.
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Gene Phenotype Disease-causing variants Reference

POMK 
NM_032237.5

WWS
LGMD

c.10C>T (p.Gln4Ter)
c.43dup (p.Arg15fs)
c.152del (p.Asp51fs)
c.238_239del (p.Glu80fs)
c.288del (p.Leu97fs)
c.325C>T (p.Gln109Ter)
c.386_387del (p.Leu129fs)
c.410T>G (p.Leu137Arg)
c.452_455dup (p.His152fs)
c.907C>T (p.Arg303Ter)
c.917dup (p.Leu306fs)

[67]
[182]
[183]
[184]

Fukutin (FKTN)
NM_001079802.2

WWS
CMD-F

c.42del (p.Thr14_Leu15insTer)
c.78C>G (p.Tyr26Ter)
c.93T>A (p.Tyr31Ter)
c.139C>T (p.Arg47Ter)
c.180dup (p.Phe61fs)
c.187_188del (p.Met63fs)
c.330dup (p.Thr111fs)
c.346C>T (p.Gln116Ter)
c.369+1G>C
c.369+1G>T
c.411C>A (p.Cys137Ter)
c.454dup (p.Ser152fs)
c.456_457del (p.Ser154fs)
c.509C>A (p.Ala170Glu)
c.527T>C (p.Phe176Ser)
c.585dup (p.Asp196Ter)
c.607C>T (p.Arg203Ter)
c.642dup (p.Asp215Ter)
c.648-1243G>T
c.658C>T (p.Gln220Ter)
c.756T>A (p.Tyr252Ter)
c.766C>T (p.Arg256Ter)
c.868A>T (p.Lys290Ter)
c.914G>A (p.Trp305Ter)
c.919C>T (p.Arg307Ter)
c.920G>A (p.Arg307Gln)
c.942T>G (p.Tyr314Ter)
c.1022del (p.Pro341fs)
c.1099del (p.Val367fs)
c.1106del (p.Phe369fs)
c.1167_1168dup (p.Phe390fs)
c.1317_1318dup (p.Pro440fs)
c.1363del (p.Asp455fs)
c.5374_5846del

[45]
[131]
[93]
[134]
[132]
[133]

Table 3. Cont.
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Gene Phenotype Disease-causing variants Reference

FKRP
NM_024301.5

WWS
MEB

CMD-1C
LGMD 2I

c.77G>A (p.Trp26Ter)
c.151G>T (p.Val51Phe)
c.158_162dup (p.Glu55fs)
c.162_165dup (p.Phe56fs)
c.224del (p.Pro75fs)
c.266C>T (p.Pro89Leu)
c.313C>T (p.Gln105Ter)
c.511_523del (p.Leu171fs)
c.515dup (p.Asn172fs)
c.526C>T (p.Arg176Ter)
c.540_570dup (p.Cys191fs)
c.650dup (p.Val218fs)
c.826C>A (p.Leu276Ile)
c.919del (p.Tyr307fs)
c.919T>A (p.Tyr307Asn)
c.928G>T (p.Glu310Ter)
c.939G>A (p.Trp313Ter)
c.948del (p.Cys317fs)
c.970G>T (p.Glu324Ter)
c.1075del (p.Trp359fs)
c.1077_1078dup (p.Asp360fs)
c.1154C>A (p.Ser385Ter)
c.1170_1171del (p.Gly391fs)
c.1213G>T (p.Val405Leu)
c.1256_1257del (p.Pro419fs)
c.1335_1336del (p.Leu446fs)
c.1387A>G (p.Asn463Asp)
c.1394A>C (p.Tyr465Ser)

[22]
[45]
[69]
[141]
[116]
[185]
[127]
[143]
[144]

ISPD(CRPPA)
NM_001101426.4

LGMD
WWS

c.258-2A>G
c.364G>C (p.Ala122Pro)
c.466G>A (p.Asp156Asn)
c.550C>T (p.Arg184Ter)
c.638T>G (p.Met213Arg)
c.643C>T (p.Gln215Ter)
c.647C>A (p.Ala216Asp)
c.704_705del (p.Glu235fs)
c.773C>A (p.Ser258Ter)
c.789+2T>G
c.802C>T (p.Arg268Ter)
c.835+2T>C
c.(534+1_535-1)_(933+1_934-1)del
c.1120-1G>T
c.1123_1126del (p.His375fs)
c.1354T>A (p.Ter452Arg)

[107]
[122]
[108]
[110]
[111]
[112]
[109]

TMEM5/
RXYLT1
NM_014254.3

Cobblestome  
Lissencephaly

c.169+2T>C
c.279del (p.Gly94fs)
c.429-2A>G
c.649del (p.Arg217fs)
c.795del (p.Arg266fs)
c.1018C>T (p.Arg340Ter)
c.1064_1091del (p.Asp355fs)

[154]
[186]
[187]

B4GAT1
NM_006876.3
NM_006876.2

WWS

c.1207G>T (p.Glu403Ter)
c.1168A>G;
c.1217C>T
c.864T>A (p.Tyr288Ter)
c.821_822insTT (p.Glu274fs)

[188]
[189]

Table 3. Cont.
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Gene Phenotype Disease-causing variants Reference

LARGE1
NM_133642.5

WWS
MEB

CMD-1D

c.265C>T (p.Arg89Ter)
c.283C>T (p.Arg95Ter)
c.334G>T (p.Glu112Ter)
c.620_621del (p.Glu207fs)
c.871del (p.Gly292fs)
c.992C>T (p.Ser331Phe)
c.1102C>T (p.Gln368Ter)
c.1209del (p.Phe404fs)
c.1483T>C (p.Trp495Arg)
c.1525G>A (p.Glu509Lys)
c.1699del (p.Leu567fs) 
c.1811del (p.Leu604fs)
c.1999dup (p.Cys667fs)
c.2089G>T (p.Val697Leu)

[129]
[148]
[149]
[138]
[137]
[130]

GMPPB
NM_021971.4 LGMD

c.395C>G (p.S132C) 
c.64C>T (p.Pro22Ser)
c.79G>C (p.D27H)
c.94C>T (p.P32S)
c.109C>T (p.Gln37Ter)
c.220C>T (p.Arg74Ter)
c.271_283del (p.Ala91fs) 
c.294dup (p.Glu99Ter)
c.365_366dup (p.Phe123fs) 
c.458_459del (p.Thr153fs)
c.458C>T (p.Thr153Ile)
c.553C>T (p.Arg185Cys)
c.611_614del (p.Glu204fs)
c.640+1G>A
c.656T>C (p.Ile219Thr) c.721C>T(p.P241S);
c.728_746delinsACAGA (p.Arg243fs)
c.790C>T (p.Gln264Ter)
c.859C>T (p.Arg287Trp)
c.1034T>C(p.V345A)

[190]
[191]
[192]

Therapeutic Considerations 

Dystroglycanopathies are very heterogeneous diseases at a 
clinical and genetic level in which numerous genes are involved. 
Phenotypic identification and genetic characterization have 
made it possible to advance in the development of innovative 
therapies, currently in the preclinical phases, which could 
be implemented in the coming years [81]. Gene therapy is 
considered a simple treatment strategy. But the expression of 
glycosyltransferases may also be strictly controlled, and it must 
consider the glycosylation status in muscle progenitor cells and 
changes during differentiation. 

Gene Therapy

Several preclinical studies have investigated the use of 
recombinant adeno-associated virus (AAV) to deliver functional 
FKRP, as well as other genes involved in glycosylation, such 
as LARGE1 and Beta-1,4 N-acetylgalactosaminyltransferase 2 
(B4GALNT2 previously GALGT2) [144–145].

The use of CRISPR-Cas9 technology in combination with 
patient-specific iPS cells for the future development of autologous 
cell transplantation for FKRP has a big potential, because this 

approach uses functional α-DG(α-DG) glycosylation in gene-
edited WWS iPS cell-derived myotubes [146].

The expression of B4GALNT2 was shown to have a therapeutic 
effect on various types of muscular dystrophy models, such as 
dystrophin-deficient and laminin deficient mice [147]. 

Overexpression of the LARGE gene increases matriglycan 
modification and enhances laminin-binding activity [80,119,129]. 
LARGE1 gene therapy has called attention as a treatment method 
that does not depend on the type of causative gene [43,148–149].

Pharmacological Therapy

Corticosteroids are anti-inflammatory drugs used as palliatives 
in Duchenne muscular dystrophy (DMD), as they improve 
muscle strength and function. Bisphosphonates prevent loss of 
bone density [150]. Its combined use in FKRP mouse models has 
been shown to achieve a decrease in muscle degeneration. The 
use of selective estrogen receptor modulators, tamoxifen and 
raloxifene, have shown to inhibit fibrosis and improve muscle 
strength and respiratory function [151]. Using zebrafish as a 
model, it has been shown that pentic acid can rescue dystrophic 
pathology in DMD models [144].

Table 3. Cont.
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The effect of coenzyme nicotinamide adenine dinucleotide 
(NAD+) was tested in FKRP zebrafish morphants. The study 
reported decreased muscle degeneration and improved 
muscle organization and function when treatment occurred 
at gastrulation [152].

Many FCMD patients have a transposon insertion in the 
fukutin gene [127] that results in abnormal splicing of fukutin 
[153]. Administration of antisense nucleotides capable of 
correcting this splicing abnormality restores the normal function 
of fukutin in both fukutin KI mice and human patient-derived 
cells [43].

Ribitol Supplementation Therapy

Defects in the pathway for the incorporation of ribitol 5-phosphate 
into Core 3 of α-DG, which is carried out by or in the FCMD, 
FKRP and ISPD genes, bring together different pathologies 
associated with DMC [145]. Previous studies demonstrated 
that CDP-Rbo supplementation rescued the compromised 
O-glycosylation enzymatic pathway in an ISPD deficient cell 
line [154–155]. Ribitol supplementation [156–157], gene therapy 
targeting the LARGE1 gene [148], and the use of clinical-
grade induced pluripotent cells (iPSCs) [158] appear to be 
promising experimental models for studying the pathogenesis 
of α-dystroglycanopathies and for testing potential drugs or 
break throughs in the development of autologous therapies 
[155,159–160]. The application of the generation of embryoid 
bodies from human induced pluripotent stem cells that model 
the basal lamina to evaluate an experimental ribitol supplement 
therapy has been reported [161,176–177].

Cell Therapy

Since skeletal muscle is a highly regenerative tissue, cell-based 
therapeutic approaches focusing on the delivery of muscle stem 
cells/early progenitor cells to replace diseased muscle tissue with 
healthy myofibers and satellite cells are highly attractive. To date, 
two studies have been reported on the use of cell transplantation 
for FKRP-associated dystroglycanopathies [162–163]. 

Conclusions

The knowledge acquired about the dystroglycanopathies in 
recent years was of great importance. The elucidation of the 
genes involved in the formation of sugar chain structure of 
α-DG allowed opening steps to new research and new alternative 
therapies.

It will be the joint effort of different fields of biology that 
will enable us to assume research and strategies that will allow 
us to implement effective therapies and precise diagnoses for 
these pathologies.
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