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ABSTRACT
The Human Genome Project has significantly broadened our understanding of the molecular aspects 
regulating the homeostasis and the pathophysiology of different clinical conditions. Consequently, 
the field of nutrition has been strongly influenced by such improvements in knowledge – especially 
for determining how nutrients act at the molecular level in different conditions, such as obesity, 
type 2 diabetes, cardiovascular disease, and cancer. In this manner, characterizing how the genome 
influences the diet and vice-versa provides insights about the molecular mechanisms involved in 
chronic inflammation-related diseases. Therefore, the present review aims to discuss the potential 
application of Nutritional Genomics to modulate obesity-related inflammatory responses. Arch 
Endocrinol Metab. 2020;64(3):205-22
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NUTRITIONAL GENOMICS

The Human Genome Project (HGP), formally launched 
in 1990 and finished in 2003, triggered a relevant 

foundation for research in the health field. However, 
translating whole genome sequencing into therapies that 
will benefit an individual will require strategies to handle 
large amounts of biological and medical data and the 
ability to identify significant and clinically meaningful 
results. It should be noted that nutrition science was 
strongly influenced by HGP, through the consolidation 
of Nutritional Genomics (1-3). 

Nutritional Genomics is a field of nutrition science 
that encompasses areas such as Nutrigenomics, 
Nutrigenetics, and Nutritional Epigenomics. These 
subjects address the interactions between the 
environment, nutrients, bioactive compounds in foods, 
and genes, as well as how these interactions influence 
phenotype, including disease-development risks (1).

Nutrigenomics studies aim at verifying how 
gene expression is regulated by nutrients and food 

components, since specific nutrients and food 
components may increase or decrease the expression 
of a given gene. In this manner, interactions between 
such nutrients and genes may occur either through 
direct or indirect means. Regulation through indirect 
means occurs by the ability of nutrients and bioactive 
compounds to activate intracellular signaling pathways. 
Intracellular signaling activation, in turn, promotes 
the translocation of specific transcription factors from 
the cytoplasm to the cell nucleus. Several transcription 
factors bind to the promoter region of specific genes 
to induce gene transcription (2). On the other hand, 
regulation through direct means involves the direct 
interaction between nuclear receptors (or transcription 
factors) and nutrients or bioactive compounds, whose 
fact promotes changes in gene expression (3-5). 

Genetic variability, i.e., the differences in the 
sequence of nucleotides, influences how individuals 
interact with environmental factors. Therefore, 
Nutrigenetics assesses the influence of individual 
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genetic variability to that of diet and the resultant risk 
of developing nutrition-related diseases. Nutrigenetics 
encompasses studies on variations observed in DNA, 
such as single nucleotide polymorphisms (SNP), 
copy number variation (CNV), and insertions and 
deletions (INDELs) (1,2,6). In addition, Nutritional 
Epigenomics is the third subarea within Nutritional 
Genomics. This area deals with assessing the influence 
of diet on epigenetic mechanisms that regulate gene 
activity and expression. Epigenetics encompasses 
DNA methylation, histone modifications (histone 
methylation, acetylation, and phosphorylation), and 
noncoding RNA activity (mainly microRNAs). 

NUTRIGENOMICS, INFLAMMATION, AND OBESITY

Obesity is related to chronic low-grade inflammation. 
Macrophages and T cells infiltrate the adipose tissue 
stimulating the release of inflammatory molecules, such as 
tumor necrosis factor-α (TNF-α), plasminogen activator 
inhibitor-1 (PAI-1), interleukins (IL-6, IL-1β, IL-8) 
and inflammatory modulators, such as leptin, resistin, 
and adiponectin (7). Chronic inflammation disrupts a 
whole range of metabolic pathways – these being insulin 
signaling, glucose homeostasis, and lipid metabolism.

Dietary intake and nutritional status are relevant 
environmental factors that can modulate metabolic 
inflammation. Western diets rich in saturated fatty acids 
(SFA), sugar, and refined grains are linked to cardiovascular 
diseases, type 2 diabetes (T2D), obesity, and other 
metabolic disorders. Moreover, Western diets may increase 
postprandial expression of proinflammatory cytokines and 
the nuclear factor kappa B (NF-kB) activation in human 
peripheral blood mononuclear cells (PBMC) (8,9). 
NF-kB can regulate the expression of adhesion molecules 
in response to inflammatory stimuli such as E- and 
P-selectins, intercellular adhesion molecule-1 (ICAM-1), 
and vascular cell adhesion molecule-1 (VCAM-1). NF-kB 
also induces the expression of proinflammatory cytokines, 
including IL-6 and TNF-α (10).

Conversely, the Mediterranean diet (MedDiet) is rich 
in monounsaturated fatty acids (MUFA) and polyphenols 
(9). In a study conducted by Esmaillzadeh and cols. (11), 
a dietary pattern similar to MedDiet reduced plasma 
C-reactive protein (CRP) and sVCAM-1 levels, while 
the Western diet increased plasma serum amyloid A 
(SAA) and IL-6 levels. The results indicated that dietary 
patterns are associated with the plasma concentration 
of inflammatory biomarkers. The main inflammatory 
biomarkers related to obesity are shown in Table 1.

Table 1. Main inflammatory biomarkers in obesity-associated low-grade inflammation and associated mechanisms

Population Inflammatory biomarkers Mechanisms Ref.

Obese subjects TNF-α M1 macrophages infiltration in the adipose tissue → ↑ 
TNF-α which binds to its receptor (TNFR1) → NF-kB and 
AP-1 activation → ↑ pro-inflammatory cytokines 
production.

(24)

Obese subjects submitted to bariatric 
surgery 

IL-6 and hsCRP TNF-α and IL-1 → ↑ IL-6 which is produced from 
several sites, including adipose tissue.

IL-6 induces hepatic synthesis of CRP and fibrinogen.

Weight loss: ↓ IL-6 and CRP.

(130)

Obese women who underwent a 4-week 
caloric restriction (800 kcal/day)

hsCRP Weight loss reduced gut permeability and LBP level, 
possibly reducing plasma hsCRP.

(131)

Healthy subjects and subjects with T2D 
submitted to an oral glucose tolerance 
test (OGTT)

hsCRP, IL-6, TNF-α, sICAM-1, sVCAM-1, 
and sE-selectin

Glucose load: ↑ biomarkers of low-grade inflammation in 
both groups. 

Subjects with T2D: higher increase in TNF-α and 
sE-selectin.

(132)

Healthy subjects who received an oral fat 
load

sICAM-1, sVCAM-1, hsCRP, sE-selectin, 
IL-6, TNF-α

Fat load: ↑ inflammatory biomarkers.

Free fatty acids activate pro-inflammatory serine kinase 
cascades (IkB kinase and c-Jun N-terminal kinase) which 
stimulate adipose tissue to release IL-6.

(133)

Elderly subjects at high risk for 
cardiovascular disease

IL-6, IL-8, MCP-1 Long-term adherence to MedDiet reduced plasma 
inflammatory biomarkers probably due the inhibition of 
the NF-kB pathway activation by MedDiet polyphenols.

(13)

AP-1: hsCRP: high sensitivity C-reactive protein; IL: interleukins; LBP: lipopolysaccharide binding protein; MCP-1: monocyte chemoattractant protein-1; NF-kB: nuclear factor kappa B; sE-selectin: 
soluble E-selectin; sICAM: soluble intercellular adhesion molecule-1; sVCAM-1: soluble vascular cell adhesion molecule-1; T2D: type 2 diabetes; TNF-α: tumor necrosis factor alpha. ↑: increase.
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Mediterranean diet and gene expression

MedDiet is characterized by high consumption of olive 
oil, fruits, vegetables, whole grains, beans, nuts, seeds, 
and legumes. It also involves a moderate consumption 
of fish and wine, as well as a low intake of red meat, 
sweets, and dairy products (12). Such diet exerts 
anti-inflammatory and immunomodulating activities, 
thus decreasing pro-inflammatory molecules such 
as interleukins (IL-6, IL-8, IL-18), TNF-α and its 
receptor, CRP, monocyte chemoattractant protein-1 
(MCP-1), and endothelial adhesion molecules 
(VCAM-1, ICAM-1, and E- and P-selectins) (13). 
Accordingly, studies have also shown that MedDiet may 
reduce the risk of disorders related to oxidative stress, 
chronic inflammation, and the immune system (9,13). 

In a clinical trial conducted by Camargo and 
cols. (9), the effects of dietary fat on the postprandial 
proinflammatory gene expression were verified in twenty 
elderly subjects. The authors observed that a MedDiet 
enriched in MUFA with virgin olive oil downregulated 
NF-kB p65 gene expression and up-regulated IkBα 
gene expression in PBMC when compared with SFA-
rich and low-fat diets. The low-fat regimen was a high 
carbohydrate, n-3 polyunsaturated fatty acid-enriched diet 
(CHO-PUFA). Regarding proinflammatory cytokines, 
the individuals on MedDiet presented a downregulation 
of MCP-1 and TNF-α gene expression when compared 
with SFA and CHO-PUFA diets, respectively. 

The PREDIMED study assigned elderly subjects 
(55-80 years of age) at high cardiovascular risk to three 
diets: either the MedDiet supplemented with extra 
virgin olive oil (EVOO), MedDiet supplemented with 
nuts, or a low-fat control diet (14). In the PREDIMED 
population, MedDiet supplemented with EVOO 
attenuated the increase in cyclooxygenase-1 (COX-1) 
and low-density lipoprotein receptor-related protein 
(LRP1) gene expression. In human monocyte-derived 
macrophages, MedDiet resulted in a decreased MCP-1 
gene expression when compared to either MedDiet 
supplemented with nuts, or a control diet (15). 

The effects of both the MedDiet and the Western 
diet were tested by replacing SFA with MUFA in 
abdominally obese men and women for eight weeks. 
Consumption of MUFA on MedDiet attenuated 
oxidative phosphorylation gene expression, plasma 
connective tissue growth factor, and apolipoprotein B 
levels in PBMC when compared to the SFA diet. The 
MUFA diet also modulated gene expression involved 

in B-cell receptor signaling and endocytosis. The 
MedDiet group showed reduced plasma levels of pro-
inflammatory proteins, such as IL-1β, macrophage 
inflammatory protein 1-α, serum amyloid P, and 
vascular endothelial growth factor (VEGF) (16). 

Olive oil and inflammation in obesity 

In the MedDiet, olive oil (especially EVOO) is the 
primary source of dietary lipids and is rich in MUFA – 
especially oleic acid and phenolic compounds. Olive oil 
is also a bioactive food, which may be responsible for 
anti-atherogenic, anti-inflammatory, anti-diabetes, and 
immunomodulatory activity (12,17). 

Olive oil consumption is related to improvements 
in lipid profile, insulin resistance, oxidative damage, 
inflammatory biomarkers, endothelial function, and 
blood pressure. Some of these effects are dose-dependent 
on olive oil’s phenolic content (18-20). Furthermore, 
olive oil has also been linked to decreased levels of 
inflammatory biomarkers such as IL-6, CRP, E- and 
P-selectin, sVCAM-1, and sICAM-1 (12). Bioactive 
compounds of olive oil may modulate different levels of 
gene expression, such as transcription, maturation, and 
stability of RNA – in addition to translation in proteins, 
and other post-transcriptional events (19). 

The composition and concentration of polyphenols 
in olive oil, as well as their bioavailability and how it 
is metabolized in the human body, are all essential to 
determine their health effects. The intake of olive oil 
in the MedDiet is 30 to 50 g/day, which results in 
an intake of 4-9 mg/day of polyphenols (21). Olive 
oil has over 30 polyphenols, of which oleuropein and 
hydroxytyrosol may influence obesity-related genes. 
Hydroxytyrosol can modulate genes related to adipocyte 
maturation and differentiation. This polyphenol is also 
responsible for inhibiting lipid synthesis. In addition, 
hydroxytyrosol and oleuropein may reduce the fat-cell 
size and, consequently, decrease the risk of obesity. 
In this context, polyphenols in adipose tissue can 
downregulate genes related to adipogenesis such as 
peroxisome proliferator-activated receptor (PPAR)
γ, CCAAT enhancer-binding protein-α (C/EBPα), 
and sterol regulatory element-binding transcription  
factor 1c (SREBP-1c) transcription factors. This is also 
the case for downstream genes such as CD36, FASN, 
and glucose transporter 4 (GLUT4) (21). 

EVOO polyphenols can also reduce the risk of 
metabolic syndrome. In a study conducted with 
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abdominally overweight subjects at risk of metabolic 
syndrome, the replacement of SFA by MUFA (olive 
oil) led to a greater anti-inflammatory gene expression 
profile in adipose tissue. Considering that adipose tissue 
has a crucial role in lipid metabolism and inflammation, 
the replacement of SFA by MUFA prevented adipose 
tissue inflammation and consequently reduced the risk of 
inflammatory diseases, such as metabolic syndrome (22).

Eicosapentaenoic acid (EPA) and docosahexaenoic 
acid (DHA)

EPA and DHA may attenuate obesity-related 
inflammation. The proposed mechanism for this effect 
is the inhibition of the NF-kB in several tissues by 
activating PPAR-γ and other signaling proteins (23). 
PPAR-γ activation decreases the expression of genes 
that code for pro-inflammatory proteins through 
the inhibition of NF-kB activation. Also, EPA and 
DHA present another mechanism to modulate the 
inflammatory response by binding to G-protein coupled 
receptor 120 (GPR120). GPR120 activation induced 
by EPA or DHA leads to the reduced expression of 
genes with pro-inflammatory actions, such as TNF-α 
and IL-6. The interaction between EPA, DHA, and 
PPARs modulates the expression of genes involved in 
lipid metabolism, thus reducing both adipogenesis and 
fat deposition in the adipose tissue (24). 

A recent clinical trial compared the effects of EPA 
and DHA on inflammatory biomarkers in subjects 
with abdominal obesity and subclinical inflammation. 
Participants were supplemented with capsules 
containing either EPA (2.7 g/day), DHA (2.7 g/
day), or corn oil (3 g/day; control) for eight weeks. 
Both EPA and DHA were more effective than corn 
oil in reducing inflammation. However, DHA was 
more potent in modulating inflammation biomarkers 
in comparison to EPA. In this way, DHA induced a 
more significant reduction of serum IL-18 and greater 
increased adiponectin compared with EPA. DHA 
also reduced plasma levels of CRP, IL-6, IL-18, and 
TNF-α while increased plasma adiponectin levels when 
compared to the control (23).

In another study from the same group (25), 
abdominal obesity and low-grade inflammation 
subjects were supplemented with the same amounts of 
EPA, DHA, or corn oil for ten weeks. The authors did 
not observe any difference between EPA and DHA in 
the expression of inflammation-related genes in whole 

blood cells. However, EPA increased PPARα expression 
and reduced CD14 expression relative to the control, 
while DHA upregulated the expression of PPARα 
and TNFα, and downregulated CD14 expression. The 
supplementation with DHA (3 g/day) for ten weeks 
also decreased gene expression and secretion of TNF-α 
and MCP-1, while EPA increased serum IL-10 and 
reduced TNFα expression in monocytes of subjects 
with chronic inflammation (26). Despite the beneficial 
effects on inflammatory biomarkers, DHA had 
increased plasma LDL-c (26). Evidence also indicates 
that DHA is more potent than EPA in increasing 
LDL-c concentrations (27). 

The effect of olive oil on gene expression was also 
compared to EPA and DHA. Subjects with mildly 
elevated plasma lipoprotein-phospholipase A2 were 
supplemented with either olive oil (6 g/day), EPA  
(1.8 g/day), or DHA (1.8 g/day) for six weeks. Only 
EPA supplementation was associated with changes in 
gene expression in the IFN pathway and downregulation 
of cyclic adenosine monophosphate (cAMP) responsive 
element protein 1 (CREB1) and hypoxia-inducible factor 
1 alpha subunit (HIF1A) (28).

NUTRIGENETICS AND OBESITY

An individual’s genetic profile may influence the 
sensitivity to the development of obesity (29). Studies 
have identified genetic variants that participate in 
complex interactions between genes and nutritional 
factors responsible for influencing weight and body 
composition. In this context, nutrigenetics, which 
is the study of the effect of genetic variation on an 
individual’s nutritional needs, can potentially improve 
the understanding of weight control and contribute to 
personalized dietary management of obesity (30).

Obesity is a multifactorial and polygenic condition 
and represents a significant public health issue in both 
developed and developing countries. Cardiovascular 
disease, T2D, non-alcoholic fatty liver disease, 
metabolic syndrome, and cancer are among the leading 
health issues accounting for morbidity associated with 
an increased prevalence of obesity. From the 1990s 
onwards, it has been possible evidence of how obesity 
influences inflammatory conditions, which are directly 
involved in the etiology of cardiovascular disease, T2D, 
and certain types of cancer (31).

Obesity can be either monogenic, meaning it can 
be caused by genetic variations in either a single gene 
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or in a specific disease-related chromosomal region, 
or polygenic, where the sum of SNPs in several genes 
(each accounting for a minimal effect) determine 
an individual’s weight. Many genes associated with 
obesity are involved in regulating energy intake, 
lipid metabolism, adipogenesis, thermogenesis, 
adipocytokine synthesis, and transcription factors (32).

Importantly, the genetic basis of polygenic obesity 
is diffuse, multifactorial, and non-deterministic. Many 
variants are spread throughout the genome and have a 
small contribution to obesity onset – thus making it a 
challenge for clinical practice. A set of genetic variant 
information is needed to characterize susceptibility 
to obesity (33). For this reason, several authors have 
employed the “polygenic risk scores” or “genetic risk 
scores” (GRS) based on the sum of the number of 
risk alleles, sometimes multiplied by their effect sizes 
(34-36). These polygenic scores have been useful for 
risk assessment in various diseases (37,38), including 
metabolic syndrome (39), and obesity (47-49). 
Estimating an individual’s susceptibility to a disease can 
be a powerful tool for prevention and treatment if well-
communicated and understood (40).

Regarding adiposity, advances in nutrigenetics have 
sought to determine the interaction of nutritional and 
genetic factors that affect body fat deposition (41-
43). The design of nutrigenetic studies can involve an 
analysis of complete dietary patterns (44), in which the 
MedDiet stands out amongst the most studied ones. 

A study with a sample of Iranian individuals, 
using GRS from six FTO polymorphisms showed that 
higher adherence to the MedDiet decreased the risk of 
developing obesity in individuals with higher risk alleles 
when compared to those with a lower diet adherence 
and a lower genetic susceptibility to obesity. These 
results highlight the beneficial effects of this dietary 
pattern (45). These results are in accordance with the 
ones from other reports (Table 2). 

In this context, genetic factors are not only 
responsible for 45%-75% of interindividual variations 
in Body Mass Index (BMI) (46), and adiposity (which 
can be influenced at a rate of 75%-80%) (47), but 
weight loss in response to dietary interventions is also 
determined by genetic variants (35,48). The different 
strategies used in the treatment of obesity can result in 
significant weight loss; however, the individual response 
is variable, and it is possible to identify the hypo- or 
hyper-responders to specific treatments (49,50). Thus, 
according to the literature, genetic variations, including 

SNPs, may at least in part explain this interindividual 
variation in response to a dietary pattern, including the 
MedDiet (44).

As mentioned before, the GRS calculation includes 
a combination of different genetic variants at the same 
time. Although studies of interactions between genes 
and MedDiet are initial, some results are promising 
and suggest that individuals with greater genetic 
susceptibility to certain diseases may benefit from the 
effects of this diet (51,52). Corella & Ordovas (53) 
were pioneers in establishing how diet can modulate the 
genetic risk of the disease, and several authors have been 
studying the association between MedDiet and genetic 
variants in different populations and phenotypes, 
including obesity (Table 2).

Ortega-Azorin and cols. (54) investigated the 
influence of MedDiet and the effects of T2D risk alleles 
on rs9939609 SNPs for the FTO gene and rs17782313 
for the MC4R gene. The authors demonstrated that 
individuals with both poor adherence to the diet 
and allelic variants of risk had a higher risk of disease 
development. On the other hand, the same variants for 
both genes – alone or in combination – were no longer 
related to a higher risk of disease development when 
dietary compliance was high.

A study with Puerto Rican individuals living in 
Boston, USA, with risk genotypes for T2D located 
in the transcription factor 7-like 2 (TCF7L2) gene 
(rs7903146 and rs12255372), showed a better 
anthropometric profile under complete adherence to 
the MedDiet. This suggested that unfavorable genetic 
predisposition can be offset by a healthy diet. Moreover, 
haplotype analysis based on the combination of two risk 
alleles showed that individuals with higher genetic risk 
had lower BMI when adhering to the MedDiet (55).

San-Cristobal and cols. (36) evaluated associations 
and possible interactions between adherence to the 
MedDiet and the genetic background of the Food4Me 
study. The authors developed a GRS from risk alleles 
and a MedDiet score (DMS) based on food intake data. 
At the baseline, there were no correlations between 
scores and metabolic characteristics. However, after 6 
months, there was a significantly greater decrease in 
total cholesterol in individuals with low GRS when 
compared to those with high GRS. In addition, a high 
DMS was linked to greater reductions in BMI, waist 
circumference, and blood glucose. This suggested that 
increased dietary compliance induces beneficial effects 
on metabolic outcomes, which may be affected by the 
genetic profile in some specific markers.
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Within this context, studies on the interactions 
between genes and diet can better elucidate the 
heterogeneity of responses to dietary interventions, 
showing that these responses are often individual. 
Importantly, the MedDiet has interactions with several 
genes that act in both obesity-related pathways and 
other associated diseases, including cardiovascular 
disease, T2D, and cancer (51).

The authors highlighted that some existing results 
are promising and suggested that individuals with 
greater genetic susceptibility to certain diseases may 
benefit from the effects of the MedDiet, thus making 
it extremely useful for precision nutrition (52). A 
recent review has also presented an up-to-date view of 
the influence of the MedDiet on different phenotypes 
with associated diseases, including cardiovascular, 
neurodegenerative, cancer, and obesity. The report 
shows that studies involving Mediterranean gene-diet 
interactions are extraordinarily complex and scarce (51). 
In Brazil, there are also few studies evaluating the 
association between polymorphisms and MedDiet 
(56,57). 

Therefore, one of the biggest challenges of 
nutritional genomics in obesity, besides integrating 
all information from the “omic” strands (genomics, 
metabolomics, proteomics, and transcriptomics), is to 
extrapolate the findings on the interactions between 
genes and diet for different populations (58-60). There 
is already evidence that suggests the reproducibility of 
these genomic results in various cohorts (60,61). Large-
scale studies with replication in varying populations 
are likely required to provide significant and detailed 
evidence, including the various types of weight-loss 
interventions, phenotypes, obesity genetic risk scores, 
and genetic variants that determine eating preferences 
and behaviors.

In the context of gene-diet interaction and 
inflammation, variants located in ADIPOQ, CRP, 
TNF, and APOE genes are the most frequently studied, 
and the ones for which interaction with diet has been 
tested in more than one population. 

The ADIPOQ gene encodes for the adiponectin 
protein, secreted mainly in adipose tissue. This 
protein has critical hormonal functions in the muscle, 
liver, adipose tissue, hypothalamus, and vasculature 
cells, where it exerts anti-inflammatory, antioxidant, 
and insulin sensitizer effects (62). Accordingly, 
low adiponectin blood levels have been related 
to metabolic inflammation-related diseases, such 

as metabolic syndrome, T2D, and cardiovascular  
diseases (63).

Adiponectin blood levels are a heritable trait 
(heritability ranging from 42%-88%) (64-67). 
Specifically, ADIPOQ SNP, rs1501299 G>T, located 
in intron 2, which is in linkage disequilibrium 
with rs2241766 T>G, located in exon 2, has been 
positively and inversely linked to adiponectin blood 
levels depending on the studied population (68,69). 
Concerning these two ADIPOQ genetic variants, the 
number of studies aiming to investigate the influence of 
their interaction with the MedDiet or its components 
on inflammation has increased. For instance, a cross-
sectional study conducted with a representative sample 
of Greek children found an association between dietary 
fiber intake and rs1501299 G>T influencing serum 
adiponectin concentration. It should be noted that the 
T allele carriers had lower adiponectin concentration. 
However, when dietary fiber was above the highest 
tertile of intake, the effect of the T allele was no longer 
observed (70). Furthermore, a randomized clinical trial 
with Spanish obese adults observed an increase in serum 
adiponectin concentration after a 9-month intervention 
with hypocaloric diets only in GG homozygotes for the 
rs1501299 SNP (71). However, no similar interactions 
were observed in other populations (72-74). 

ADIPOQ rs2241766 T>G, in turn, seems to interact 
with omega-3 fatty acids not only impacts serum 
adiponectin concentration but other inflammatory 
biomarkers as well (72,74). In a cross-sectional 
population-based study, an adult Brazilian population 
was dichotomized into two clusters according to 
the plasma concentration of eleven inflammatory 
biomarkers. The authors found that a higher total 
plasma omega-3 fatty acids content was protective 
against inflammation only in G allele carriers of the 
rs2241766 SNP (72). Likewise, in a randomized, 
controlled trial with UK adults, TT homozygotes for 
the rs2241766 had a decrease in serum adiponectin 
concentration after a 12-month intervention with daily 
intakes of 0.9 g of highly unsaturated omega-3 fatty 
acids (EPA and DHA)

CRP is an acute-phase protein that has been 
extensively used as an important inflammatory marker, 
in addition to being a cardiovascular risk indicator 
(75). The CRP rs1205 T>C SNP, located in the 
untranslated region 3’, has been associated with higher 
levels of blood CRP in many populations (76-80). In 
a clinical trial with 1,584 US adults, the higher plasma 
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CRP concentration of CC homozygotes vs. T allele 
carriers at baseline was no longer observed after 12 
months following personalized healthy lifestyle advice 
(dietary advice based in the Dietary Approach to Stop 
Hypertension) (77). Similarly, in a cross-sectional 
population-based study with Brazilian adults, only the 
T allele carriers had lower odds for low-grade systemic 
inflammation when their highly unsaturated omega-3 
fatty acid plasma content was above the median 
(80). Nevertheless, some studies have not found any 
associations between rs1205 and diet components 
(78,79), nor MedDiet (76), in other populations.

For the TNF gene, no other SNP stands out as much 
as rs1800629 G>A. Located in the TNF gene promoter 
region, the AA genotype for the SNP has been 
associated with higher levels of its encoding protein – 
the pro-inflammatory cytokine TNF-α – in addition to 
auto-immune and inflammatory diseases susceptibility 
(81). Furthermore, when the gene-diet interaction 
was investigated for this SNP, only GG homozygotes 
had a decrease in plasma CRP concentration after a 
12-month intervention with MedDiet in metabolic 
syndrome patients from Spain (82). In a study with 
Canadian adults, the same decrease in plasma CRP 
concentration was observed in GG carriers after a 
6-week supplementation with fish oil (79). Moreover, 
in a Brazilian study group, only A allele carriers had 
higher odds for an inflammatory cluster when both 
plasma stearic acid and total saturated fatty acid contents 
were higher overall (83).

In contrast to other genes cited so far, the APOE 
gene does not encode for a protein directly involved 
with inflammation, but rather encodes for the 
apolipoprotein E. This protein is mainly related to 
lipids and lipoprotein metabolism (84). Recently, novel 
functions for the apolipoprotein E have emerged: anti-
inflammatory properties, anti-platelet aggregation, 
and maintenance of the mitochondrial function (84). 
Two SNP located in the coding region of APOE gene 
(rs7412 and rs429358) modify apolipoprotein E 
mRNA codon 112 and 158, respectively. In this case, 
cysteine is replaced by arginine in both positions, and 
hence forms three possible isoforms of the protein 
according to the resultant salt-bridges: ε2, ε3, and ε4. 
Therefore, the six possible genotype combinations 
are ε2/ ε2, ε2/ ε3, ε2/ ε4, ε3/ ε3, ε3/ ε4, and ε4/ ε4. 
However, the combinations ε2/ ε2, ε2/ ε4, and ε4/ ε4 
are very rare (84). APOE ε4 carriers have a higher risk 

for Alzheimer’s disease, while the APOE ε2 genotype 
has been associated with longevity (84).

Studies have shown that APOE ε2 and ε3/ ε3 
genotypes have been associated with higher plasma 
CRP concentration and that these variants interact with 
dietary components in the context of inflammation 
(85-87). In a cross-sectional study with 4,265 US 
adults, only APOE ε4 carriers had higher plasma 
CRP concentrations with higher intakes of alcoholic 
beverages (85). Likewise, in a crossover clinical trial 
conducted in 176 British adults, only APOE ε4 carriers 
showed an increase in plasma CRP after eight weeks 
of a high-saturated fatty acid diet (86). In another 
UK sample, there was a reduction in plasma CRP 
concentration only in APOE ε4 carriers, as opposed to 
an observed increase in APOE ε3/ ε3 carriers after a 16-
week dietary intervention with the substitution of 9.5% 
energy from saturated fatty acid with monounsaturated 
or omega-6 fatty acids (87). Thus, for APOE ε4 carriers, 
the recommendation of reducing saturated fatty acid 
intake (possibly substituting it with other unsaturated 
fatty acids) appears to be protective against metabolic 
inflammation in the British population. 

Recently, a CRP-GRS was developed to sum up 
the effect of 20 SNP with the strongest association 
with plasma CRP concentration (88). The CRP-GRS 
explains 4%-5% of the variation in plasma CRP – more 
than twice the effect of the strongest associated SNP 
alone (APOC1 rs4420638) (88). However, no GRS for 
metabolic inflammation has been tested so far in relation 
to its interaction with dietary components. Therefore, 
studies aiming to test the relationship between diet and 
GRS for inflammation are needed and may be a subject 
for future investigations.

NUTRITIONAL EPIGENOMICS, INFLAMMATION, 
AND OBESITY

Epigenetics are reversible alterations in gene expression 
that do not involve changes in DNA sequence. The 
most studied epigenetic modifications are DNA 
methylation, covalent histone modifications, and 
microRNAs (miRNAs). Epigenetic mechanisms can 
silence genes, regulate gene expression, and modify 
chromatin architecture (89). 

Epigenetic modifications are related to metabolic 
diseases such as obesity, metabolic syndrome, and 
T2D. These modifications modulate critical genes 
involved in appetite regulation, adipogenesis, glucose 
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homeostasis, body weight, inflammatory response, and 
lipid storage. For example, the promoter of the PPARG 
gene – a key transcriptional regulator of adipogenesis 
– is hypermethylated in 3T3-L1 preadipocytes but 
is demethylated upon induction of differentiation. 
Furthermore, the expression of the insulin gene is 
regulated by cytosine methylation, which can contribute 
to the development of T2D (90). Nutrients can 
regulate DNA methylation and histone modifications 
by directly inhibiting epigenetic enzymes or changing 
the availability of substrates required for the enzymatic 
reactions (89). The MedDiet effects on epigenetic 
modifications were investigated by Arpón and cols. 
(91), who followed subjects from the PREDIMED 
study for five years. The MedDiet was linked to the 
differential methylation of inflammation-related genes 
such as EEF2, COL18A1, IL4I1, LEPR, PPARGC1B, 
MAPKAPK2, IFRD1, and PLAGL1 in peripheral 
blood cells. The authors concluded that the MedDiet 
could exert an anti-inflammatory activity that might 
be mediated by epigenetic mechanisms. A Greek study 
evaluated the effects of the ratio of PUFA to SFA, the 
ratio of MUFA to SFA, and the ratio of PUFA+MUFA 
to SFA on genome-wide DNA methylation pattern in 
whole peripheral blood of eutrophic and obese children. 
DNA methylation was related more to the quality than 
to the quantity of fat intake. In this, omega-3 (n-3) 
PUFA showed a contribution to histone modifications 
involved in leptin regulation – a pro-inflammatory 
adipokine – on obesity (92). 

miRNAs are involved in several diseases, and their 
imbalance may play a role in the development of 
obesity and other related metabolic complications. 
In this review concerning nutritional epigenomics, 
we have focused on the functions of miRNAs in their 
relationship with obesity and inflammation (93,94).

miRNAs: biogenesis and biological function

miRNAs are non-coding endogenous RNA 
molecules (~18-25 nucleotides) that are involved in 
post-transcriptional gene regulation by binding to the 
3’ untranslated region (UTR) of a target messenger 
RNA (mRNA), resulting in degradation or inhibition 
of translation (95). miRNAs can also bind to the 5’-
UTR, or coding region, and activate, rather than 
suppress, mRNA translation (96). 

Other roles of miRNAs are also described in the 
literature. miRNAs can modulate the transcriptional 

processes by interfering in histone and DNA 
methylation, where they target vital enzymes 
responsible for epigenetic reactions. These key 
enzymes are the following: DNA methyltransferases 
(DNMTs); methylation-related proteins, including 
methyl CpG binding protein 2 (MeCP2) and methyl-
CpG binding domain proteins 2 and 4 (MBD2 and 
MBD4); histone deacetylases (HDACs); and histone 
methyltransferases (EZH) (97,98). Furthermore, 
miRNAs can downregulate other types of RNAs that 
are responsible for inhibiting transcription to then 
increase gene expression (99,100). 

The biogenesis of miRNAs occurs through a 
sequential process that involves a variety of enzymes 
and proteins (101). miRNAs biogenesis is shown in 
Figure 1. Under most conditions, the mature RNA-
induced silencing complex (RISC) represses gene 
expression post-transcriptionally. This occurs by 
binding the 3’-UTR of specific mRNAs and mediating 
mRNA degradation, destabilization, or translational 
inhibition according to sequence complementarity to 
the target (101-104). 

miRNAs act not only within cells but also as 
hormones controlling gene expression in distant 
tissues. This is achieved through the transport of 
secreted miRNA by membrane-vesicles as exosomes 
(extracellular vesicles of endosomal origin), or bound 
to lipoproteins (LDL or HDL), proteins, apoptotic 
bodies, and ribonucleoprotein complexes (linked to 
Argonaut) (105,106). miRNAs are present in both 
tissues and body fluids, such as plasma, serum, urine, and 
saliva, in which they are in a stable form and protected 
from endogenous RNAse activity (107). About 10% of 
all human miRNAs’ particles can be found in plasma, 
and are called circulating miRNAs (108).

The importance of regulating gene expression 
through miRNA is highlighted because a single miRNA 
can act on several target genes, and the same mRNA 
can pair with different miRNAs. Thus, according to 
Friedman and cols. (109), more than 60% of the human 
genes can be regulated by miRNA.

microRNAs and inflammation in obesity 

Changes in miRNAs levels have been shown in several 
pathophysiological disorders related to obesity. These 
include disorders such as inflammation, oxidative stress, 
impaired adipogenesis, insulin signaling, apoptosis, and 
angiogenesis (110-114). miRNAs can act as potential 
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Figure 1.  MicroRNA biogenesis and cellular release mechanisms. MicroRNAs (miRNA) is transcribed by RNA polymerase II from miRNA genes, first 
forming the ‘primary miRNA transcript’ (pri-miRNA), which is then cleaved by the DROSHA/ DiGeorge syndrome critical region 8 (DGCR8) microprocessor 
complex to form the ‘miRNA precursor’ (pre-miRNA). Pre-miRNA is then exported from the nucleus to the cytoplasm by exportin 5 and further processed 
by DICER to originate the mature miRNA. Mature miRNA is loaded into the miRNA-induced silencing complex (miRISC), which contains Argonaute (AGO) 
proteins, that targets mRNA by sequence complementary binding and mediates gene suppression by targeted mRNA degradation. The cellular release 
mechanisms include pre-miRNA or mature miRNA associated to RNA-binding proteins, such as Ago2 or their binding to high-density lipoproteins (HDL). 
Furthermore, pre-miRNA or mature miRNA can be incorporated into small vesicles called exosomes, which are extracellular vesicles of endosomal origin 
that have emerged as key mediators of intercellular communication.

diagnostic biomarkers since they are rapidly and 
accurately detected by non-invasive methods. As such, 
they allow for early detection and have a long half-life 
in the sample (115-117). 

In this context, Lorente-Cebrián and cols. (118) 
verified that obese individuals have a different miRNA 
expression plasma profile when compared to eutrophic 
individuals. This indicates the possible role of miRNAs 
in metabolic inflammation. Such inflammation is 
characterized by a chronic, systemic, low-intensity 
inflammation which differs from that caused by external 
agents (e.g., bacterial infection and tissue injury) (24). 
For example, obese individuals have lower miR-145 
plasma levels than lean individuals, and, regarding 
the inflammatory process mediated by this miRNA, a 
higher expression of both TNF-α and IL-6 in white 
adipose tissue (WAT) was observed when this miRNA 
was downregulated (119,120). miR-181a-5p and miR-

23a-3p were reduced in adipose tissue from obese 
subjects, and its overexpression contributed to TNF-α 
downregulation in visceral WAT (121). miRNAs 
can modulate the inflammation in adipose tissue by 
regulating macrophage activation. Treatment with 
miR-10a-5p was associated with altering macrophage 
polarization to an anti-inflammatory phenotype 
(121,122). 

Overweight subjects without T2D at baseline from 
CORDIOPREV trial were followed by four years 
to evaluate whether plasma miRNAs were related to 
the risk of T2D. This study showed that deregulated 
plasma levels of miR-150, miR-30a-5p, miR-15a, and 
miR-375 were observed years before the onset of T2D 
and pre-diabetes. In this way, these miRNAs could 
be used to evaluate the risk of developing the disease, 
which may improve prediction and prevention among 
individuals at high risk for T2D (123).
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Diet and microRNAs modulation

Nutrimiromics describes the influence of diet on the 
modification of gene expression. The term refers 
specifically to the epigenetic processes relating to 
miRNAs that influence an individual’s risk of developing 
chronic diseases (104).

Nutrients and bioactive compounds of food 
can modulate the miRNAs expression, regulating 
inflammation in the WAT of obese subjects. Within 
bioactive compounds, polyphenols receive special 
attention, although the mechanism involved in this 
regulation is not precise. One hypothesis is that 
polyphenols could influence miRNA functionality by 
changing its binding to mRNA related to the target 
gene. Polyphenols could also bind to a component of 
miRNA biogenesis (7).

An interventional study with healthy Brazilian 
women showed that miR-145a-5p – which is related 
to the inflammatory pathway – was altered in the 
postprandial period after a single intake of a high-fat 
meal rich in SFA. This is an example of a potential 
biomarker for a Western diet pattern and its effect on 
inflammation (124).

In a randomized, placebo-controlled study, the 
authors observed modulation of miRNAs after 
treating 35 diabetic hypertensive men. The treatment 
was undertaken for a one-year period and involved 
administering a grape extract containing 8 mg of 
resveratrol. According to the author, these miRNAs are 
related to a regulatory role in inflammatory responses. 
Upregulation was observed for miR-21, miR-181b, 
miR-663, and miR-30c2, whereas others such as miR-
34a and miR-155 were downregulated in PBMC (125). 

Ortega and cols. (126) showed that an intake of 
nuts (30 g/day of almonds and walnuts) modulated 
the expression of plasma miRNAs. Nuts downregulated 
the expression of miR-328, miR-330-3p, miR-221, and 
miR-125a-5p, and upregulated the expression of miR-
192, miR-486-5p, miR-19b, miR-106a, miR-769-
5p, miR-130b, and miR-18a in obese subjects. Also, 
miR-130b and miR-221 were related to a reduction in 
plasma CRP levels. The downregulation of miR-125a-
5p was linked to a reduction of plasma triacylglycerols 
and increased adiponectin levels. The effect of nuts 
on circulating miRNA expression was also shown in 
a very recent study in which obese women consumed 
Brazil nut for two months. The intake of Brazil nut 
upregulated the expression of miR-454-3p and miR-
584-5p (127). 

Recently, a clinical trial (128) showed the effect of 
a hypoenergetic diet based on MedDiet (30% energy 
restriction) for eight weeks in subjects with metabolic 
syndrome. Nutritional intervention downregulated 
the expression of miR-155-3p in white blood cells 
and upregulated the let-7b expression. The increased 
expression of let-7b was linked to a low intake of lipids 
and saturated fats. 

Current studies that link nutrition to miRNAs in 
humans are scarce and do not show a cause-effect 
relationship. Thus, further studies are needed to 
elucidate the molecular mechanism by which nutrients 
and bioactive compounds modulate miRNA expression 
and the metabolic pathways affected by miRNAs (129).

We conclude that the search for nutritional 
biomarkers for applications in clinical practice remains 
a challenge. However, these findings will allow for 
the early diagnosis of diseases, facilitate appropriate 
interventions, and even predict responses to different 
types of treatment (83). In recent years, great efforts 
have been made to identify the biomarkers that 
may influence the treatment of the obesity-related 
inflammatory process. The knowledge gained from 
nutritional genomics requires an evidence-based 
approach for personalized recommendations to be 
validated and proven beneficial for individuals (7,84).

Despite the great deal of progress made so far, this 
is a relatively new field, and the use of nutrigenetic 
tests requires careful attention from professionals with 
deep knowledge, ethics, and experience. In addition, 
studies aiming at investigating gene-diet interaction 
in the context of inflammation are mainly candidate-
gene studies, and all polymorphisms that have been 
investigated in at least two independent samples still 
need replication. This lack of replication is often 
attributed to the large variation in study designs and 
the small effect of a single genetic variant on complex 
outcomes, such as inflammation. Therefore, it is 
important to highlight the use of GRS as an important 
tool in the application, handling, and administration of 
personalized nutrition (identifying a diet based on this 
score), thus bringing significant benefits to the obese.
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