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ABSTRACT
Objective: To conduct a systematic review and meta-analysis assessing the cardiorespiratory fitness 
(CRF) among individuals with and without type 2 diabetes Materials and methods: The current 
review was registered in PROSPERO under the number CRD42018082718. MEDLINE, EMBASE, and 
Cochrane Library databases were searched from inception through February 2022. Eligibility criteria 
consisted of observational or interventional studies that evaluated CRF through cardiopulmonary 
exercise testing or six-minute walk test in individuals with type 2 diabetes compared with individuals 
without type 2 diabetes. For data extraction, we used baseline CRF assessments of randomized clinical 
trials or follow-up CRF assessments in observational studies. We performed a meta-analysis using 
maximal oxygen consumption (VO2max), and distance walked in the 6MWT as primary outcomes. 
They were extracted and expressed as mean differences (MDs) and 95% CIs between treatment and 
comparator groups. The meta-analysis was conducted using Review Manager (RevMan) software. 
Results: Out of 8,347 studies retrieved, 77 were included. Compared with individuals without type 2 
diabetes, individuals with diabetes achieved a lower VO2max (-5.84 mL.kg-1.min-1, 95% CI -6.93, -4.76 
mL.kg-1.min-1, p = <0.0001; I2 = 91%, p for heterogeneity < 0.0001), and a smaller distance walked in 
6MWT (-93.30 meters, 95% CI -141.2, -45.4 meters, p > 0.0001; I2: 94%, p for heterogeneity < 0.0001). 
Conclusion: Type 2 diabetes was associated with lower cardiorespiratory fitness, as observed by 
lower VO2max on maximal tests, and smaller distance walked in 6MWT, however the quality of 
studies was low.
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INTRODUCTION 

Cardiorespiratory fitness (CRF) appraises an 
individual’s exercise capacity, it is directly linked 

to the integrated function of several body systems and 
may be a marker of total body health (1). Low CRF 
is associated with an increased risk of cardiovascular 
disease among patients with type 2 diabetes (2). Balducci 
and cols. (3) observed that increasing maximal oxygen 

consumption (VO2max) by approximately 2 mL.kg−1.
min−1 can significantly reduce 10-year risk of coronary 
heart disease in these individuals. Moreover, a 9% lower 
relative risk of all-cause mortality was shown among 
adult men with VO2max of 1 mL.kg−1.min−1 higher 
(4). The annual cost savings per person were $5,193 in 
type 2 diabetes for each 1-metabolic equivalent (MET) 
higher fitness (5).
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The cardiopulmonary exercise test – by gas analysis 
– is the gold standard assessment of CRF. It evaluates 
the VO2max or peak oxygen uptake (VO2 peak)  during 
an incremental exercise test (6). Several protocols use a 
cycle ergometer or a treadmill (7), but these devices are 
expensive and require a trained team, being unfeasible 
in some situations such as population-based studies and 
in clinical practice. Therefore, other tests, such as six-
minute walk test (6MWT), are also useful as they can 
estimate oxygen consumption (8).

Previous studies have shown controversial results 
when comparing CRF between individuals with and 
without diabetes: some showed comparable results (9-
11), whereas others showed lower CRF in individuals 
with diabetes compared to those without diabetes (12-
14). These differences could be methodological and 
derive from different protocols used for the evaluations. 
However, there are physiopathological mechanisms to 
justify the lower levels of exercise capacity observed 
among individuals with type 2 diabetes, which may 
occur from insulin action, mitochondrial dysfunction, 
skeletal muscle microvasculature, and cardiac 
dysfunction (15). Moreover, poor glycemic control 
can reduce CRF (15) because of diabetes itself or 
diabetes-associated sedentary behavior (16). Thus, it 
is essential to understand the magnitude of VO2max 
impairments observed in these individuals during 
planning of appropriate interventions to improve 
exercise performance and avoid increasing disability in 
this population. However, it is uncertain whether the 
magnitude of this difference and age, sex, body mass 
index (BMI), diabetes duration and control of the 
disease could negatively affect exercise capacity.

We aimed to conduct a systematic review with meta-
analysis to summarize studies that assessed CRF measured 
by VO2 peak or VO2max in individuals with and without 
type 2 diabetes. We also evaluated the differences in 
distance walked in the 6MWT among them. 

MATERIALS AND METHODS
A systematic review and meta-analysis was conducted 
according to the Cochrane Handbook for Systematic 
Reviews of Interventions (17) and Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines (18). This review was registered 
in the international prospective register of systematic 
reviews (PROSPERO: CRD42018082718).

Eligibility criteria
The eligibility criteria were as follows: 1) participants: 
adults with type 2 diabetes, > 18 years old; 2) outcomes: 
CRF measured by maximal exercise tests  and expressed 
as VO2 (peak or maximal), or distance walked evaluated 
by the 6MWT; and 3) control group: individuals 
without type 2 diabetes; 4) study design: observational 
design (i.e., cohort or cross-sectional studies) and 
baseline data from quasi-experimental, randomized, or 
non-randomized clinical trials. Only studies in English, 
Portuguese, and Spanish were included. Studies were 
excluded if the participants had peripheral arterial 
disease, heart failure, chronic neurological diseases. 
Also, studies reporting that individuals without diabetes 
took any medication were excluded as well as studies 
when groups were matched by CRF. 

Outcomes definition 
The primary outcome was VO2 (peak or maximal) 
measured by direct expired gas analysis. The secondary 
outcome was distance walked evaluated by the 6MWT. 

Databases and search strategy
Three electronic databases (i.e., PubMed/MEDLINE, 
EMBASE and Cochrane Library) were searched using 
a combination of MeSH headings, keywords and 
related entry terms, such as “type 2 diabetes” and 
“cardiorespiratory fitness”. The search strategies are 
presented in Supplementary File 1. Besides, the reference 
list of studies was manually searched. The search strategy 
was conducted from inception until December 2017, 
updated in March 2021 and February 2022.

Selection process
Two pairs of authors (ACPM/MBP and PMB/CEB) 
independently evaluated the titles and abstracts of all 
studies based on eligibility criteria. All studies with 
abstracts lacking enough information regarding the 
eligibility criteria were included to full text evaluation. 
Finally, the full-text studies were evaluated by the same 
reviewers according to the inclusion and exclusion 
criteria and any disagreement between them was 
resolved by a third reviewer (DU).

Data collection process
Data were extracted independently by two pairs of 
authors (ACPM/CWS and PMB/CEB) using a 
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standardized and pre-tested data extraction form 
(Microsoft Excel). Missing data were requested to 
the authors by email (two out of seven requests were 
answered).

The information extracted from the included studies 
were sex, age, body mass index (BMI), medications, 
diabetes duration, hemoglobin A1c (HbA1c), physical 
activity level, exercise capacity test used and evaluated 
outcomes.

Risk of bias and publication bias assessment
The risk of bias of the included studies was assessed 
by two pairs of authors (PMB/CEB and CWS/MBP), 
previously trained and qualified. The Newcastle-Ottawa 
Scale (NOS) version for cohort studies was adapted 
and used (19). The quality score was calculated by 
assessing three domains: selection of the study groups 
(0-3 points); comparability, which represent the quality 
of adjustment for confounding factors (0-2 points); 
evaluation of the outcomes of interest (0-3 points). 
The maximum score was eight and the classification 
of the studies were: (1) good quality: 2-3 points in 
the selection domain, 1-2 points in the comparability 
domain and 2-3 points in the outcome domain; (2) 
fair quality: 1 point in the selection domain, 1-2 
points in the comparability domain and 1-2 points in 
the outcome domain; and (3) poor quality: 0 points 
in any domains. Disagreement between reviewers 
were resolved by consensus, and, in cases of persistent 
disagreement, the assessment was made by a third 
reviewer (ACPM).

Publication bias was assessed using a contour-
enhanced funnel plot with each study effect size against 
the standard error of the estimate.

Synthesis methods 
The quantitative assessment of the included studies was 
performed by meta-analysis using the Review Manager 
(RevMan) software (Cochrane Review Manager, version 
5.3). Each outcome (VO2max/peak, and distance 
walked) was expressed as mean differences (MDs) and 
95% confidence interval (CI) between individuals with 
and without type 2 diabetes. The results were pooled 
using a random-effects model. 

Statistical heterogeneity was assessed by the 
Cochran’s Q test, at 0.1 significance level, and 
inconsistency I2 test. Considerable heterogeneity 

was indicated when I2 value was > 75%, according to 
the Cochrane Handbook for Systematic Reviews of 
Interventions (17). Heterogeneity among studies was 
investigated based on two strategies: (1) the meta-
analysis was re-run by removing each study to check 
if one specific study explained the heterogeneity and 
(2) stepwise meta-regression analyses were conducted. 
Univariate meta-regression models were performed 
in STATA software (version 20) to assess clinical and 
methodological variables associated with CRF, i.e., 
BMI, age, HbA1c, and diabetes duration, based on R2 
values and statistical significance p < 0.05. Subgroup 
analysis was conducted by type of ergometer (i.e., cycle 
ergometer and treadmill) and sex. 

Data treatment
In studies that presented the results as standard 
deviation (n = 31), the conversion to standard error 
was made by the equation SD = SEM.√sample size. The 
VO2max unit was converted from absolute (mL/min) 
to relative weight values (mL.kg−1.min−1)  in six studies. 
The metabolic equivalents were converted into relative 
weight values (mL.kg−1.min−1) in three studies, based 
on the standard equation (VO2 = METS × 3,5) (20). 

The data were combined in an unique group in 
studies with more than one group of individuals with 
and without type 2 diabetes (e.g., men and women), as 
suggested by the Cochrane’s handbook.

RESULTS
Study selection 
In total, 77 out of 8,347 studies identified in the data 
search (databases 7,146 + manual searching 13 + update 
1,188) met the eligibility criteria and were included in 
our review. Figure 1 shows the flowchart of inclusion 
and exclusion criteria of studies. Meta-analysis for the 
VO2max and distance walked in the 6MWT included 
72 and 5 studies, respectively. 

Study characteristics 
The included studies were published from 1984 
to 2022 and the sample sizes ranged from 10 
(21,22) to 3,770 participants (23). A total of 8,725 
individuals were included in the meta-analysis, 2,007 
in the diabetes group and 6,718 in the group without 
diabetes. The participants were aged < 60 years in 89% 
of the studies. Twenty-two studies included only men, 
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Records identi�ed from:
Databases (n = 7146)
• PubMed/MEDLINE (n = 3543)
• Cochrane (n = 1450) 
• Embase (n = 2153)

Manual searching (n = 13)

Database search update (March
2021) (n=912 records identi�ed)

Records removed before screening: 
Duplicate records removed (n = 1035)

Records removed betore screening: (n= 0)Database search update (February, 
2022) (n=276 records identi�ed)

Records excluded (n = 5309)
• Participants not eligible (n = 2270)
• Controls not eligible (n = 1412)
• Studies design not eligible studies (n =1587)
• Missing outcomes of interests (n = 28)
• Other languages (n = 12)

Records screened (n = 7312)

Reports not retrieved (n = 11)
Reports sought for retrieval
(n = 2003)

Reports excluded (n = 1915):
• Duplicates  (n = 10)
• Multiple publication (n = 5)
• Participants not eligible (n = 116)
• Controls not eligible (n = 378)
• Studies design not eligible studies (n = 322)
• Other languages (n= 187)
• Missing outcomes of interest (n = 897)

Reports assessed for eligibility 
(n = 1992)

Studies included in review (n = 77)
Reports of included studies (n = 77)
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Figure 1. Flow diagram of included studies.

eight studies included only women, and 42 studies 
included both men and women. The baseline HbA1c 
ranged from 5.8% to 12.2% in individuals with diabetes 
(data available in 64 studies) and the duration of the 
disease ranged from 2.5 to 12.5 years (data available 
in 54 studies). Most of the included studies (n = 43) 
presented matched groups by age, sex and/or BMI. 
Tables 1 and 2 show the characteristics of the studies 
included in the VO2max and distance walked meta-
analyses, respectively. 

A total of 73 included studies reported the BMI. 
Among the type 2 diabetes group, 1.3% (n = 1), 43.8% 
(n = 32), and 54.8% (n = 40) were classified as normal 
weight, overweight and obese, whereas lean and obese 
individuals with diabetes were pooled to be analyzed in 

four studies. We observed a high prevalence of patients 
classified as overweight (59.2%, n = 40) and obese 
(22.2%, n = 17) in the group without diabetes. 

A total of 46 out of the 77 included studies re-
ported habitual physical activity (PA). Eight studies 
reported that participants did not participate in regu-
lar exercise programs (21,24-30), 22 studies reported 
that participants were sedentary or physically inactive 
(9,11,12,31-49), 10 studies reported similar PA level in 
groups with and without diabetes (50-59), two studies 
reported that habitual PA scores were higher in the dia-
betes group (60,61), three studies showed higher levels 
of PA in the group without diabetes (13,62,63) and 
one study reported that individuals practiced physical 
exercises for more than six months (64). 



Co
py

rig
ht

©
 A

E&
M

 a
ll r

ig
ht

s r
es

er
ve

d.

5

Cardiorespiratory fitness in diabetes

Arch Endocrinol Metab, 2023, v.67(5), 1-19, e230040.

Table 1. Characteristics of the maximal cardiopulmonary test studies included in the VO2 meta-analysis (n = 70)

Study
Sample 
size (n) Sex

Diabetes 
duration 
(years)

Matched
groups Medication Ergometer Protocol VO2 peak/

max
DM C

Andrade-Mayorga and 
cols. (2020) (79) 

13 32 M/W NR NR NR Cycle ergometer Modified Astrand VO2 peak

Baldi and cols. (2003) 
(24)

11 12 M/W 5.4 ± 3.1 Age, BMI, and 
habitual physical 

activity

Antidiabetics and 
antihypertensives

Cycle ergometer Initial workloads 25 
or 50 Wt, 

increments 15-25 W

VO2 max

Baldi and cols. (2006) 
(80)

13 15 M/W 5.4 ± 3.1 Age and BMI Antidiabetics and 
antihypertensives

Cycle ergometer Initial workloads 25 
or 50 Wt, 

increments 15-25 W

VO2 max

Bauer and cols. (2007) 
(60)

11 11 M/W NR No NR Cycle ergometer Incremental 10-20 
Wt/min

VO2 peak

Baynard and cols. 
(2005) (50)

9 6 W NR Age Antidiabetics Treadmill Starting at 2.5 mph, 
increased 2%mph 
3.5mph reached

VO2 peak

Bergman and cols. 
(2015) (31)

15 14 M/W NR No Antidiabetics Cycle ergometer Workload adjusted 
to maintain 

determined intensity

VO2 max

Boon and cols. (2007) 
(32)

10 10 M 7.0 ± 3.1 Weight Antidiabetics Cycle ergometer Workload at 0.75 to 
1.5 W.KgFFM-1, 
cadence 60 rpm

VO2 max

Borghouts and cols. 
(2002) (12)

8 8 M NR Weight and body 
composition

Antidiabetics Cycle ergometer Workload at 0.75 to 
1.5 W.KgFFM-1, 
cadence 60 rpm

VO2 max

Brandenburg and cols. 
(1999) (33)

8 19 W 3.0 ± 2.0 Age and activity 
levels

NR Cycle ergometer Workload increases 
10Wt/min.

VO2 max

Chance and cols. 
(2008) (81)

69 45 M/W 7.8 ± 5.8 Age Antidiabetics and 
insulin

Cycle ergometer Incremental 20-30 
Wt/3 min.

VO2 peak

Colberg and cols. 
(2005) (35)

9 10 M/W NR No NR Cycle ergometer Initial workload 0 
Wt or 20 Wt, 

incremental 20 Wt/3 
min., cadence of 50 

rpm

VO2 peak

Colberg and cols. 
(2006) (34)

10 9 M/W
NR

No NR Cycle ergometer Initial workload 0 
Wt or 20 Wt, 

incremental 20 Wt/3 
min., cadence of 50 

rpm

VO2 peak

Cusi and cols. (2001) 
(25)

8 6 M/W NR No Antidiabetics Cycle ergometer NR VO2 max

Dela and cols. (1999) 
(21)

4 6 NR NR No Antidiabetics Cycle ergometer NR VO2 max

Devlin and cols. (1987) 
(26)

5 12 M NR No Antidiabetics Cycle ergometer NR VO2 max

Durrer and cols. (2017) 
(82)

10 9 M/W NR Age Antidiabetics Cycle ergometer Ramp protocol (15 
Wt/min at 50 rpm)

VO2 peak

Fluckey and cols. 
(1994) (83)

10 3 M/W 2.8 ± NR Age NR Treadmill Modified 
Naughton-Balke

VO2 max

Fujii and cols. (2017) 
(84)

12 12 M 7.5 ± 4.4 No Antidiabetics, 
insulin, statins, and 
antihypertensives

Cycle ergometer NR VO2 peak
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Study
Sample 
size (n) Sex

Diabetes 
duration 
(years)

Matched
groups Medication Ergometer Protocol VO2 peak/

max
DM C

Green and cols. (2003) 
(27)

15 16 NR NR No Antidiabetics, 
insulin, statins, and 
antihypertensives

Cycle ergometer Initial workload 20 
and 60 Wt, increased 
20-25 Wt increments 

each 3 min

VO2 peak

Groen and cols. (2019) 
(85)

9 8 M/W 8 ± 3 No Antidiabetics Cycle ergometer Initial workload 
50-100 Wt, 

increases 25 Wt 
each 1min

VO2 peak

Gulsin and cols. (2020) 
(86)

87 36 M/W 4.7 ± 3.8 No Antidiabetics, 
insulin, and 

antihypertensives

Cycle ergometer Incremental VO2 peak

Hansen and cols. 
(2014) (28)

33 18 M 5.2 ± 4.4 No Antidiabetics, 
insulin, statins, and 
antihypertensives

Cycle ergometer Initial workload 45 
Wt, increments 45 

Wt each 3-min.

VO2 peak

Hernández-Alvarez 
and cols. (2010) (9)

12 7 M/W 2.5 ± 1.9 Age and BMI Antidiabetics and 
insulin

Treadmill Stepwise VO2 max

Holton and cols. 
(2003) (36)

9 10 M/W NR Age, gender, and 
BMI

NR Cycle ergometer Initial workload 0 
Wt or 20 Wt, 20 Wt 
increment every 3 
min., cadence 50 

rpm.

VO2 peak

Huebschmann and 
cols. (2009) (37)

13 26 W 3.9 ± 3.9 No Antidiabetics Cycle ergometer Initial workload 0 
Wt, increments 10 

Wt/min., cadence at 
60 rpm

VO2 peak

Iborra and cols. (2008) 
(29)

14 12 M/W 9.0 ± 4.0 No Antidiabetics, 
insulin, and 

antihypertensives

Cycle ergometer Workload increased 
10-15 Wt/min.

VO2 peak

Jae and cols. (2016) 
(23)

170 3600 M NR No NR Treadmill Bruce VO2 peak

Karavelioglu and cols. 
(2013) (87)

67 68 M/W 5.2 ± 4.1 Age and gender Antidiabetics and 
insulin

Treadmill Bruce VO2 peak

Kasumov and cols. 
(2015) (38)

10 14 M/W NR No Insulin Treadmill Incremental VO2 max

Kennedy and cols. 
(1999) (22)

5 5 M/W NR No Antidiabetics Cycle ergometer Incremental (2-min. 
stages)

VO2 max

Lalande and cols. 
(2008) (39)

8 11 M 5.0 ± 8.4 Weight and 
habitual activity 

level

Antidiabetics Cycle ergometer Initial workload 40 
Wt, increases 15 

Wt/min.

VO2 max

Larsen and cols. 
(2009) (51)

8 15 M 4.0 ± 2.8 Age and BMI Antidiabetics Cycle ergometer NR VO2 max

Mac Ananey and cols. 
(2011) (40)

9 20 W
1-5years

No Antidiabetics, 
insulin, statins, and 
antihypertensives

Cycle ergometer Initial workload 40 
Wt, increases 20 Wt 

each 3 min., 
cadence 60 rpm

VO2 peak

Madsen and cols. 
(2015) (41)

10 13 M/W NR Age, height, and 
weight

Antidiabetics, 
statins, and 

antihypertensives

Cycle ergometer Initial workload 
80-100 Wt, 

increases 15 W/
min., cadence 60 

rpm.

VO2 max

Martin and cols. 
(1995) (10)

8 7 M 4.7 ± 3.6 Age and weight Antidiabetics Cycle ergometer NR VO2 max
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Study
Sample 
size (n) Sex

Diabetes 
duration 
(years)

Matched
groups Medication Ergometer Protocol VO2 peak/

max
DM C

Meex and cols. (2010) 
(42)

18 20 M 3.9 ± 16.5 Age, weight, and 
BMI

Antidiabetics Cycle ergometer Constant cadence 
80 ± 5 rpm. At 

Wmax previously 
estimated.

VO2 max

Meneilly and cols. 
(1996) (88)

33 25 M/W 3.0 ± 5.7 Age and weight Antidiabetics and 
antihypertensives

Cycle ergometer Workload increases 
16.6 Wt each 30s.

VO2 max

Meneilly and cols. 
(1999) (89)

34 19 M/W 3.0 ± 4.3 Age and weight Antidiabetics and 
antihypertensives

Cycle ergometer Workload increases 
16.6 Wt each 30s.

VO2 max

Mogensen and cols. 
(2009) (52)

12 11 M 3.9 ± 3.1 Age and weight Antidiabetics, 
statins, and 

antihypertensives

Cycle ergometer Initial workload 
60-70% HRmax, 
increases 30 Wt 

each 3 min., 
cadence of 60 rpm

VO2 max

Oberbach and cols. 
(2006) (67)

10 15 M/W NR Age and BMI NR Cycle ergometer Graded VO2 max

O’Connor and cols. 
(2012) (54)

32 32 M/W 5.1 ± 2.6 Age and BMI Antidiabetics Cycle ergometer Initial workload 40 
Wt, increases 30 Wt 

each 3 min., 
cadence 60 rpm

VO2 peak

O’Connor and cols. 
(2015) (53)

33 21 M 3.9 ± 2.5 Age Antidiabetics Cycle ergometer Incremental VO2 peak

Pinna and cols. (2021) 
(90)

13 13 M/W At least 1 
year

Age and sex Antidiabetics Cycle ergometer Incremental VO2 max

Regensteiner and cols. 
(1995) (55)

10 10 M/W 6.7 ± 6.8 Age, gender, 
weight, and 

physical activity

Antidiabetics Treadmill Modified Naughton VO2 max

Regensteiner and cols. 
(1998) (56)

10 20 W 3.0 ± 2.0 Age, gender, 
weight, and 

physical activity

Antidiabetics Cycle ergometer Workload increases 
10 Wt/min.

VO2 max

Regensteiner and cols. 
(2009) (57)

10 10 W 3.6 ± 0 No Antidiabetics Cycle ergometer Workload increases 
10 Wt/min.

VO2 peak

Regensteiner and cols. 
(2015) (43)

29 34 M/W 3.1 ± 2.8 No Antidiabetics and 
statins

Cycle ergometer Workload increases 
10-25 Wt/min.

VO2 peak

Ribeiro and cols. 
(2008) (11)

21 11 M/W 8.6 ± 8.2 No Antidiabetics, 
statins, and 

antihypertensives

Cycle ergometer Workload increases 
10-15 Wt/min.

VO2 max

Scalzo and cols. (2018) 
(44)

31 21 M/W NR BMI Antidiabetics Cycle ergometer Workload increases 
10-20 Wt/min.

VO2 peak

Scalzo and cols. (2022) 
(49)

19 22 M/W NR No Antidiabetics Cycle ergometer Incremental VO2 peak

Scheede-Bergdahl and 
cols. (2009) (91)

12 9 M 5.1 ± 3.8 Age, weight, and 
body fat

Antidiabetics, 
statins, and 

antihypertensives

Cycle ergometer NR VO2 peak

Scheede-Bergdahl and 
cols. (2014) (45)

12 9 M 5.1 ± 3.8 No Antidiabetics, 
statins and 

antihypertensives

Cycle ergometer NR VO2 peak

Schneider and cols. 
(1984) (46)

20 11 M NR Age, gender, and 
weight

None Cycle ergometer Workload 
increments of 25 
Wt, each 3 min.

VO2 max

Schneider and cols. 
(1988) (30)

16 9 M/W NR Age, gender, and 
weight

None Cycle ergometer NR VO2 max
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Study
Sample 
size (n) Sex

Diabetes 
duration 
(years)

Matched
groups Medication Ergometer Protocol VO2 peak/

max
DM C

Schreuder and cols. 
(2014) (68)

27 9 M NR Age, gender, and 
weight

Antidiabetics, 
insulin, statins, and 
antihypertensives

Cycle ergometer Initial workload 10 
Wt, increases 10 
Wt/min., cadence 

60-80 rpm

VO2 max

Segerstrom and cols. 
(2011) (69)

39 53 M NR Age Antidiabetics and 
insulin

Cycle ergometer Initial workload 30 
Wt, increases 15 
Wt/min., cadence 

60 rpm

VO2 peak

Simões and cols. 
(2010) (13)

10 10 NR NR No Antidiabetics Cycle ergometer Initial workload 15 
Wt, increases 15 Wt 

each 3 min.

VO2 max

Simões and cols. 
(2013) (47)

10 10 M/W 6.0 ±1.1 Age, weight, and 
BMI

Antidiabetics and 
antihypertensives

Cycle ergometer Initial workload 15 
Wt, increases 15 Wt 

each 3 min.

VO2 peak

Suk and cols. (2015) 
(92)

12 12 W 7.8 ± 2.1 BMI None Cycle ergometer Initial workload 
20% of Wmax, 

increments 30-60% 
Wmax each 3 min.

VO2 max

Tadic and cols. (2021) 
(65)

30 55 M/W NR No Antidiabetics and 
insulin

Treadmill Modified Bruce VO2 peak

Tobin and cols. (2008) 
(93)

8 7 M 4.9 ± 3.3 Age, gender, and 
BMI

Antidiabetics Cycle ergometer Graded VO2 max

Van Tienen and cols. 
(2012) (61)

8 12 M 12.5 ± 7.7 Age, weight, and 
BMI

NR Cycle ergometer Incremental VO2 peak

Vind and cols. (2011) 
(94)

13 13 M 3.7 ± 2.8 Age and BMI Antidiabetics and 
antihypertensives

Cycle ergometer Initial workload 
60-70% HRmax, 
increases 30 Wt 

each 3 min., 
cadence of 60 rpm

VO2 peak

Vukomanovic and cols. 
(2020) (95)

64 72 M/W NR No NR Treadmill Modified Bruce VO2 peak

Vukomanovic and cols. 
(2019) (96)

70 80 M/W 3 (1-5) No Antidiabetics and 
insulin

Treadmill Modified Bruce VO2 peak

Vukomanovic and cols. 
(2019) (97)

53 62 M/W NR No Antidiabetics Treadmill Modified Bruce VO2 peak

Wilkerson and cols. 
(2011) (48)

12 12 M <5 years Age and weight Antidiabetics and 
antihypertensives

Cycle ergometer Ramp (15 Wt/min.) VO2 max

Wilmot and cols. 
(2014) (14)

20 20 M/W 4.7 ± 4.0 Age Antidiabetics and 
antihypertensives

Cycle ergometer NR VO2 max

Wilson and cols. 
(2017) (58)

17 16 M/W 8.3 ± 9.5 Age, gender, BMI, 
physical activity

Antidiabetics and 
insulin

Cycle ergometer Initial workload 
25-50 Wt, increases 
25-50 Wt each 1min

VO2 peak

Yu and cols. (2016) 
(70)

180 1594 NR NR Age and gender NR Treadmill Bruce VO2 peak

Zbinden-Foncea and 
cols. (2013) (63)

10 5 NR NR No Antidiabetics Cycle ergometer Incremental VO2 max

Zierath and cols. 
(1996) (72)

7 7 M 5 ± 5.2 Age and BMI Antidiabetics Cycle ergometer Initial workload 50 
Wt, increases 50 Wt 

each 5 min.

VO2 max

Data are presented in mean ± SD or (range); DM: diabetes; C: control; W: women; M: men; NR: not reported; Wt: watts; min.: minutes; mph: miles per hour; KgFFM: kilogram of free fat mass; 
rpm: rotations per minute; Wmax: maximal workload; HRmax: maximal heart rate; Tmax.: maximal exercise test duration; VO2 peak: peak oxygen consumption; VO2max: maximal oxygen 
consumption.
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Table 2. Characteristics of the six-minute walk test studies included in the meta-analysis (n = 5)

Study
Sample Size

Sex Diabetes duration 
(years) Medications Protocol

Estim.VO2 (mL/kg/min)

DM C DM C

Awotidebe and cols. (2014) (98) 35 35 M/W NR NR ATS 10.2 ± 1.5 10.9 ± 1.3

Awotidebe and cols. (2016) (99) 125 125 M/W <5 years Antidiabetics ATS 7.6 ± 0.6 9.6 ± 0.6

Heberle and cols. (2021) (64) 13 13 W 11.92 ± 10.77 Antidiabetics and statins NR NR NR

IJzerman and cols. (2012) (59) 137 19 M/W NR NR NR NR NR

Ozdirenc and cols. (2003) (62) 30 30 M/W 7.1 ± 6.2 Antidiabetics and insulin NR 14.6 ± 2.9 17.0 ± 1.8

Data are presented in mean ± SD; DM: diabetes; C: control; M: men; W: women; NR: not reported; ATS: American Thoracic Society; VO2: maximal oxygen consumption; Estim.VO2 : Estimated VO2.

We classified all 77 included studies as poor quality 
and they achieved a mean score of 2.4/8 in the modified 
NOS (Supplementary File 2). No study has reached 
the maximum score (3 points) in the selection domain, 
although seven studies scored 2 points and 46 studies 
scored 1 point. Eight studies reached maximal score  
(2 points) and 33 scored 1 point in the comparability domain. 
Finally, 22 studies reached the maximal score (2 points) and 
35 studies scored 1 point in the outcome domain. Mac 
Ananey and cols. (40) reached the highest score (5 points), 
whereas four studies scored zero points (9,21,25,65). 

We evaluated the publication bias using a funnel plot 
for the VO2max (Supplementary File 3). The points for 
the missing studies would be on the bottom of the plot. 
Since most of this area contains regions of small sample 
size, publication bias is unlikely to be the cause of this 
asymmetry. The analyzed studies did not run further 
tests to distinguish chance from real asymmetry.

Results of syntheses
Figure 2 shows the data about the meta-analysis of 
VO2max, which shows that individuals with diabetes 
had lower VO2max/peak [−5.84 mL.kg−1.min−1 (95% 
CI −6.93, −4.76 mL.kg−1.min−1, p = <0.0001); I2 = 
91%, p for heterogeneity < 0.0001] compared to the 
group without diabetes. We included 8,183 individuals 
from 72 studies in this analysis. Most studies used cycle 
ergometer (n = 44) and 26 studies reported VO2max.

Heterogeneity in VO2max analyses was classified 
as high (I2 = 91%). We did not observe substantial 
change in heterogeneity at each study removal. 
Subgroup analyses (Supplementary File 4) showed that 
heterogeneity remained unchanged when studies were 
exclusively conducted with men (I2 = 82.6%; p < 0.001) 
or women (I2 = 93.9%; p < 0.001). 

Meta-regression analyses of studies included in 
VO2max analyses indicated that BMI partly explained 
the heterogeneity among studies [adjusted R2 = 
10.75%; coefficient −0.4988; 95%CI (−0.94; −0.05); 
p=0.03]. Age (adjusted R2 = −2.10%; p = 0.99), HbA1c 
(adjusted R2 = 4.48%; p = 0.08), and diabetes duration 
(adjusted R2 = −4.21%; p = 0.69) were not associated 
with differences among studies (Supplementary File 5). 

We included five studies in the meta-analysis of the 
distance walked evaluated by 6MWT. Subjects with 
diabetes walked −93.30 meters (95% CI −141.2, −45.4 
meters, p > 0.0001; I2 = 94%, p for heterogeneity < 
0.0001) compared to the group without diabetes 
(Figure 3). 

DISCUSSION
To our knowledge, this systematic review with meta-
analysis was the first study comparing CRF between 
individuals with and without diabetes, in which we 
observed that individuals with type 2 diabetes presented 
lower CRF evaluated by VO2max. This is essential 
because VO2max is a measure associated with health 
and this review included studies with different designs 
to broadly analyze this variable in diabetes and non 
diabetes groups. The lower VO2max values indicated 
may be useful to qualify future studies about physical 
rehabilitation and physical activity for individuals with 
type 2 diabetes. 

Cardiac, respiratory, and skeletal muscular systems 
determine VO2max (66). This assumption is supported 
by studies that indicate that VO2max reduction is 
associated with diastolic dysfunction and/or impaired 
myocardium perfusion during exercise (57), as well as 
with abnormalities in skeletal muscle morphology (67), 
VO2 kinetics (O2 uptake/use) (54,56), endothelial 
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Figure 2. Forest plot of the maximal oxygen consumption (VO2max) evaluated in maximal cardiopulmonary exercise tests. 

Absolute changes in VO2max in studies conducted with type 2 diabetes patients compared with group without type 2 diabetes. Squares represent 
study-specific estimates; diamonds represent pooled estimates of random-effects meta-analyses
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dysfunction (43,68,69), blood viscosity (55), and 
glycemic profile/control (69). Changes in these 
components and in their integration can lead to VO2max 
impairment. Our study only assessed glycemic control 
based on HbA1c. However, meta-regression results 
did not associate HbA1c with VO2max in patients with 
diabetes. 

We observed lower values of VO2max in individuals 
with diabetes compared with the other group, 
however, 22 out of the 70 included studies did not 
show differences between the groups. This could 
be explained by: 1. One study had a diabetes group 
with higher levels of physical activity than the group 
without diabetes (61); 2. Another study included only 
individuals with obesity in the group without diabetes 
with VO2max values lower than predicted for normal 
weight individuals (25); 3. One study included a 10 
times smaller sample size in the diabetes group than in 
the group without diabetes (70); and 4. Four studies did 
not control for comorbidities, such as cardiovascular, 
endocrine or renal diseases, in groups with and without 
diabetes (14,25,71,72). 

The 6MWT has been used to estimate exercise 
capacity in adults with diabetes. However, results 
have shown moderate correlation between estimated 
VO2max and 6MWT (73), which suggest that 6MWT 
can be used to assess the patients’ ability to maintain 
the exercise, but not to estimate VO2max. We observed 
a mean reduction of 93 meters in the distance walked 
among individuals with diabetes compared to the group 
without diabetes. Studies showed that reductions of 25-
30 meters in distance walked in patients with coronary 
artery diseases and pulmonary diseases were associated 
with increased risk of death (74,75). However, the 
minimal clinically significant difference values of 

distance walked are not established among patients 
with diabetes. Although our study found significant 
reduction in distance walked evaluated by 6MWT 
in patients with diabetes, our results have limited 
generalizability due to few included studies. 

The first strategy adopted to explore heterogeneity 
was to remove each study from the analyses, which did 
not cause changes. Despite the group without diabetes 
being restricted to individuals without diabetes, we 
cannot assert their health status. Moreover, factors such 
as obesity and/or age could explain similar VO2max 
between the diabetes group and the group without 
diabetes in one third of the analyzed studies. 

The high heterogeneity in the VO2max meta-
analysis was explored by sensitive analyses considering 
the ergometer and sex and also by performing a meta-
regression analysis. The type of ergometer used in the 
tests did not change the results of the meta-analysis, 
as well as the subgroup analyses based on sex. Besides, 
meta-regression analysis applied to VO2max showed 
that age, HbA1c and diabetes duration could not 
explain the high heterogeneity presented in VO2max 
meta-analysis, but BMI partly explained it. We believe 
that the high I2 in the VO2max analysis is related to 
different magnitudes of these effects in the different 
studies shown. However, most of them present the same 
direction of effects. Therefore, the practical/clinical 
implications are that despite the high heterogeneity, the 
direction of effect shows lower cardiorespiratory fitness 
in individuals with diabetes, but we cannot estimate 
the exact magnitude of the difference between type 2 
diabetes and control groups.

Higher levels of CRF may coexist with higher BMI 
(76). Hemmingsson and cols. observed a reduction of 
the normal weight and high CRF category (relative 

Figure 3. Forest plot of the distance walked in the six minute walk test (6MWT). 

Absolute changes in the distance walked in the 6MWT in studies conducted with type 2 diabetes patients compared with control group. Squares 
represent study-specific estimates; diamonds represent pooled estimates of random-effects meta-analyses
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change −30%) when analyzing time trends combinations 
between CRF and BMI (1995-2020), an increase 
in overweight and low CRF (relative change +34%) 
and in obesity and low CRF (relative change +154%) 
categories. Studies show that the risk of cardiovascular 
disease and all-cause mortality in individuals with 
obesity varied by CRF (77), such as among individuals 
with diabetes (78). 

Our study has some limitations. Although the 
search was not limited by language, the included studies 
were only in Portuguese, English, and Spanish. It was 
a challenge to summarize the results of this review, 
since different protocols were used to evaluate CRF. 
Moreover, there was a considerable variation among the 
studies about pharmacological treatments that diabetes 
patients received, some studies did not mention the 
drugs used to treat health conditions other than 
diabetes, and most studies did not mention the drug 
doses used. Most of the included studies were carried 
out in participants with a mean age of less than 60 years, 
and the highest prevalence of type 2 diabetes is found in 
older adults. Another challenge was the wide range of 
duration of diabetes, because the CRF can change along 
with diabetes duration. Therefore, these are limitations 
that could affect the generalization of our outcomes. 
Additionally, the overall quality of the studies was 
low, indicating increased risk of bias in many of them, 
however, there are fewer instruments to evaluate risk of 
bias of observational studies and they are less accurate 
compared to those evaluating clinical trials. 

The strength of this systematic review is that we 
could summarize how lower the VO2max is reduced 
in individuals with type 2 diabetes compared with the 
group without type 2 diabetes, due to many included 
studies (n = 77). Furthermore, the exploratory analyses 
to explore the high heterogeneity followed all guidelines 
for systematic reviews. 

In conclusion, individuals with type 2 diabetes 
showed lower CRF than the group without diabetes. 
CRF was evaluated by the VO2max individuals attained 
in maximal cardiopulmonary exercise testing, and was 
partially influenced by the BMI, but not influenced by 
age or sex of this population. Moreover, lower distance 
walked was observed in the group with diabetes. This 
review emphasizes exercise as a component to treat 
and to control diabetes that should be evaluated and 
prescribed individually.
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Supplemental file 1. Literature search strategy 

PubMed

#1(“Diabetes Mellitus, Type 2”[title] OR “Diabetes Mellitus”[title] OR “Diabetes Mellitus, Noninsulin-Dependent”[title] OR “Diabetes Mellitus, Ketosis-
Resistant”[title] OR “Diabetes Mellitus, Ketosis Resistant”[title] OR “Ketosis-Resistant Diabetes Mellitus”[title] OR “Diabetes Mellitus, Non Insulin 
Dependent”[title] OR “Diabetes Mellitus, Non-Insulin-Dependent”[title] OR “Non-Insulin-Dependent Diabetes Mellitus”[title] OR “Diabetes Mellitus, Stable”[title] 
OR “Stable Diabetes Mellitus”[title] OR “Diabetes Mellitus, Type II”[title] OR “NIDDM”[title] OR “Diabetes Mellitus, Noninsulin Dependent”[title] OR “Diabetes 
Mellitus, Maturity-Onset”[title] OR “Diabetes Mellitus, Maturity Onset”[title] OR “Maturity-Onset Diabetes Mellitus”[title] OR “Maturity Onset Diabetes 
Mellitus”[title] OR “MODY”[title] OR “Diabetes Mellitus, Slow-Onset”[title] OR “Diabetes Mellitus, Slow Onset”[title] OR “Slow-Onset Diabetes Mellitus”[title] OR 
“Type 2 Diabetes Mellitus”[title] OR “Noninsulin-Dependent Diabetes Mellitus”[title] OR “Noninsulin Dependent Diabetes Mellitus”[title] OR “Maturity-Onset 
Diabetes”[title] OR “Diabetes, Maturity-Onset”[title] OR “Maturity Onset Diabetes”[title] OR “Type 2 Diabetes”[title] OR “Diabetes, Type 2”[title] OR “Diabetes 
Mellitus, Adult-Onset”[title] OR “Adult-Onset Diabetes Mellitus”[title] OR “Diabetes Mellitus, Adult Onset”[title] OR “DM2”[title] OR “diabetics”[tiab]) 

#2(“Exercise Therapy”[Mesh] OR “Resistance Training”[Mesh] OR “Muscle Stretching Exercises”[Mesh] OR “Exercise Movement Techniques”[Mesh] OR 
“Exercise”[Mesh] OR “Cardiorespiratory Fitness”[Mesh] OR “evaluation cardiopulmonary” OR “Ergospirometry” OR “Functional capacity” OR “Tests of exercise 
endurance” OR “six-minute walk” OR “Exercise testing” OR “stress testing” OR “Oxygen Consumption” OR “Cardiopulmonary exercise testing” OR “Exercises” OR 
“Physical Exercise” OR “Physical Exercise” OR “Physical Exercises” OR “Isometric Exercises” OR “Isometric Exercise” OR “Warm Up Exercise” OR “Aerobic 
Exercises” OR “Aerobic Exercise” OR “Exercise Therapies” OR “Pilates Training” OR “Strength Training” OR “Strengthening Programs” OR “Weight Lifting Exercise 
Program” OR “Weight Bearing Strengthening Program” OR “Weight Bearing Exercise Program” OR “Effort test” OR “Fitness, Cardiorespiratory” OR “peak oxygen 
uptake” OR “maximal oxygen consumption” OR “peak oxygen consumption”)

#1 AND #2

Embase

#1 ‘non insulin dependent diabetes mellitus’/exp

#2‘exercise’/exp OR ‘exercise tests’/exp OR ‘cardiorespiratory fistness’/exp OR cardiopulmonary exercise test’/exp OR ‘ergoespirometry’/exp OR ‘six-minute walk 
test’/exp OR ‘maximal oxygen uptake’/exp OR functional status assessment’/exp or ‘treadmill exercise test’/exp

#3‘non diabetic patient’/exp OR ‘control group’/exp OR ‘normal human’/exp

#1 AND #2 AND #3

Cochrane

“exercise”

AND 

“diabetes mellitus, type 2”
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Supplemental file 2. Risk of bias by Newcastle-Ottawa Scale (n = 77 studies) 

Study Year Selection Comparability Outcome Total score

Andrade-Mayorga and cols. (79) 2020 1 0 2 3

Awotidebe and cols. (98) 2014 1 1 1 3

Awotidebe and cols. (99) 2016 2 0 1 3

Baldi and cols. (24) 2003 0 0 1 1

Baldi and cols. (80) 2006 1 0 0 1

Bauer and cols. (60) 2007 1 0 1 2

Baynard and cols. (50) 2005 1 0 1 2

Bergman and cols. (31) 2015 0 0 1 1

Boon and cols. (32) 2007 1 0 1 2

Borghouts and cols. (12) 2002 0 0 1 1

Brandenburg and cols. (33) 1999 2 2 0 4

Chance and cols. (81) 2008 0 1 0 1

Colberg and cols. (35) 2005 0 0 1 1

Colberg and cols. (34) 2006 0 0 1 1

Cusi and cols. (25) 2001 0 0 0 0

Dela and cols. (21) 1999 0 0 0 0

Devlin and cols. (26) 1987 0 1 0 1

Durrer and cols. (82) 2017 2 0 2 4

Fluckey and cols. (83) 1994 1 1 0 2

Fujii and cols. (84) 2017 0 0 2 2

Green and cols. (27) 2003 2 0 1 3

Groen and cols. (85) 2019 1 0 2 3

Gulsin and cols. (86) 2020 1 0 1 1

Hansen and cols. (28) 2014 0 0 2 2

Heberle and cols. (64) 2021 1 1 1 3

Hernández-Alvarez and cols. (9) 2010 0 0 0 0

Holton and cols. (36) 2003 1 1 1 3

Huebschmann (37) 2009 1 0 1 2

Iborra and cols. (29) 2008 1 1 1 3

IJzerman and cols. (59) 2012 1 1 1 3

Jae and cols. (23) 2016 1 0 1 2

Karavelioglu and cols. (87) 2013 1 0 1 2

Kasumov and cols. (38) 2015 1 0 0 1

Kennedy and cols. (22) 1999 1 0 1 2

Lalande and cols. (39) 2008 0 0 1 1

Larsen and cols. (51) 2009 0 2 0 2

Mac Ananey and cols. (40) 2011 2 2 1 5

Madsen and cols. (41) 2015 0 2 1 3

Martin and cols. (10) 1995 0 2 0 2

Meex and cols. (42) 2010 1 2 0 3

Meneilly and cols. (88) 1996 1 1 1 3

Meneilly and cols. (89) 1999 0 1 1 2

Mogensen and cols. (52) 2009 2 1 1 4
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Study Year Selection Comparability Outcome Total score

Oberbach and cols. (67) 2006 1 1 1 3

O’Connor and cols. (54) 2012 0 1 2 3

O’Connor and cols. (53) 2015 1 1 2 4

Ozdirenc and cols. (62) 2003 1 1 2 4

Pinna and cols. (90) 2021 1 1 2 4

Regensteiner and cols. (55) 1995 1 2 0 3

Regensteiner and cols. (56) 1998 1 1 2 4

Regensteiner and cols. (57) 2009 1 1 2 4

Regensteiner and cols. (43) 2015 1 1 2 4

Ribeiro and cols. (11) 2008 1 1 1 3

Scalzo and cols. (44) 2018 1 1 1 3

Scalzo and cols. (49) 2022 2 0 1 3

Scheede-Bergdahl and cols. (91) 2009 1 1 1 3

Scheede-Bergdahl and cols. (45) 2014 1 1 1 3

Schneider and cols. (46) 1984 1 2 0 3

Schneider and cols. (30) 1988 1 1 2 4

Schreuder and cols. (68) 2014 0 1 2 3

Segerstrom and cols. (69) 2011 1 1 2 4

Simões and cols. (13) 2010 0 0 2 2

Simões and cols. (47) 2013 1 0 2 3

Suk and cols. (92) 2015 1 1 2 4

Tadic and cols. (65) 2021 0 0 0 0

Tobin and cols. (93) 2008 0 1 2 3

Van Tienen and cols. (61) 2012 1 1 1 3

Vind and cols. (94) 2011 1 1 2 4

Vukomanovic and cols. (95) 2020 1 1 0 2

Vukomanovic and cols. (96) 2019 1 0 0 1

Vukomanovic and cols. (97) 2019 1 0 0 1

Wilkerson and cols. (48) 2011 1 1 0 2

Wilmot and cols. (14) 2014 1 0 1 2

Wilson and cols. (58) 2017 0 1 0 1

Yu and cols. (70) 2016 1 0 2 3

Zbinden-Foncea and cols. (63) 2013 1 0 1 2

Zierath and cols. (72) 1996 0 0 2 2

Domain selection checked: the representativeness of the sample, sample size and diagnosis of type 2 diabetes (maximum score: 3 points); domain comparability checked: confounding factors, 
i.e. if groups (diabetes and controls) were matched by body mass index (BMI), age and/or sex (maximum score: were 2 points); domain outcome checked: the blinded assessment and statistical 
tests employed (maximum score: 2 points). The maximum score was eight and the classification of the studies were: (1) good quality: 2-3 points in the selection domain, 1-2 points in the 
comparability domain and 2-3 points in the outcome domain; (2) fair quality: 1 point in the selection domain, 1-2 points in the comparability domain and 1-2 points in the outcome domain; and 
(3) poor quality: 0 points in any domains.
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Supplemental file 4. Subgroup analyses 

N. of studies
VO2

MD 95% CI p I2

Overall results 72 -5.84 (-6.93; -4.76) <0.001 91.0%

Men 22 -4.84 (-6.60; -3.08) <0.001 82.6%

Women 7 -7.45 (-11.52; -3.39) <0.001 93.9%

MD: mean difference; CI: confidence interval; VO2: maximal oxygen consumption; I2: inconsistency I2 test.

Supplemental file 5. Meta-regression analyses

Covariates N of obs. Coefficient 95%IC p Adjusted R2

BMI 68 -0.4988 -0.94; -0.05 0.03 10.75%

Age 72 0.0005 -0.13; 0.13 0.99 -2.10%

HbA1c 62 -0.7480 -1.58; 0.08 0.08 4.48%

Duration of diabetes 40 0.1221 -0.49; 0.73 0.69 -4.21%

BMI: body mass index; HbA1c: glycated haemoglobin.

Supplemental file 3. Funnel plot for the VO2max 


