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Introduction
During periods of cerebral activity, there is an 

increase in the Regional Cerebral Blood Flow (rCBF) 
(Belliveau et  al., 1991). Brain oxygen metabolism is 
also increased, however this happens at a lower rate than 
rCBF, resulting in a local concentration of oxygenated 
hemoglobin which modifies the contrast of the images 
(Paulson et al., 2009). In 1992, Kwong et al. (1992) and 
Ogawa et al. (1992) proposed a method to quantify cerebral 
activity using magnetic resonance imaging which was 
called functional magnetic resonance imaging (fMRI). 

The fMRI was based on an endogenous contrast, currently 
known as BOLD (Blood Oxygen Level Dependent). 
However, alterations in the contrast of the images 
are low, to the order of 5%, which precludes a direct 
visual inspection, requiring the use of statistical and 
computational algorithms for identifying the activated 
areas (Bandettini et al., 1993; Cabella et al., 2009; Cox 
and Jesmanowicz, 1999; Estombelo-Montesco  et  al., 
2010; Sturzbecher et al., 2009).

Traditional voxel-wise methods, such as cross‑correlation 
and the General Linear Model (GLM), don’t consider 
the signals of voxel’s neighborhood in the calculation, 
and they are used to statistically assess the contrast 
alterations voxel by voxel. However, fMRI is composed 
of thousands of voxels, making correction for multiple 
comparisons necessary, such as the usage of false 
discovery rate (FDR) or Family-wise error rate (FWE) 
(Logan and Rowe 2004). Corrections as FDR and FWE 
try to protect only against false positives (Type 1 error), 
decreasing the alpha level (Lieberman and Cunningham 
2009). As consequence, these corrections increase the 
number of false negatives (Type 2 error), that entails in 
loss of statistical power (Carter et al., 2016; Forman et al., 
1995; McAvoy et al., 2001).

Performance quantification of clustering algorithms for false positive 
removal in fMRI by ROC curves
André Salles Cunha Peres1*, Tenysson Will de Lemos2, Allan Kardec Duailibe Barros3,  
Oswaldo Baffa Filho4, Dráulio Barraos de Araújo1

1	Brain Institute, Federal University of Rio Grande do Norte , Natal, RN, Brazil.
2	Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
3	Technology Center, Federal University of Maranhão, São Luis, MA, Brazil.
4	Physics Department, University of São Paulo, Ribeirão Preto, SP, Brazil.

Abstract 	 Introduction: Functional magnetic resonance imaging (fMRI) is a non-invasive technique that allows the detection 
of specific cerebral functions in humans based on hemodynamic changes. The contrast changes are about 5%, 
making visual inspection impossible. Thus, statistic strategies are applied to infer which brain region is engaged 
in a task. However, the traditional methods like general linear model and cross-correlation utilize voxel-wise 
calculation, introducing a lot of false-positive data. So, in this work we tested post-processing cluster algorithms 
to diminish the false-positives. Methods: In this study, three clustering algorithms (the hierarchical cluster, 
k-means and self‑organizing maps) were tested and compared for false-positive removal in the post-processing of 
cross‑correlation analyses. Results: Our results showed that the hierarchical cluster presented the best performance 
to remove the false positives in fMRI, being 2.3 times more accurate than k-means, and 1.9 times more accurate 
than self-organizing maps. Conclusion: The hierarchical cluster presented the best performance in false-positive 
removal because it uses the inconsistency coefficient threshold, while k-means and self-organizing maps utilize 
a priori cluster number (centroids and neurons number); thus, the hierarchical cluster avoids clustering scattered 
voxels, as the inconsistency coefficient threshold allows only the voxels to be clustered that are at a minimum 
distance to some cluster. 

Keywords	 Cluster algorithm, Hierarchical, k-means, Self-organizing maps, False-positives, fMRI.

This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

How to cite this article: Peres ASC, Lemos TW, Barros AKD, 
Baffa O Fo, Araújo DB. Performance quantification of clustering 
algorithms for false positive removal in fMRI by ROC curves. Res 
Biomed Eng. 2017; 33(1):31-41. DOI: 10.1590/2446-4740.03215

*Corresponding author: Brain Institute, Universidade Federal 
do Rio Grande do Norte, Avenida Nascimento de Castro, 2155, 
CEP 59056-450, Natal, RN, Brazil. E-mail: peres.asc@gmail.com.br
Received: 29 September 2015 / Accepted: 03 February 2017



Peres ASC, Lemos TW, Barros AKD, Baffa O Fo, Araújo DB 32Res. Biomed. Eng. 2017 March; 33(1): 31-41

Usually, fMRI is sensitive to detect brain areas 
larger than a single voxel. Also, it is common the usage 
of smoothness filter on fMRI, mixing the signals of 
neighbor voxels, and consequently, making activation 
areas even larger (Salimi-Khorshidi et al., 2011).

Different from voxel-wise approach, the region-wise 
(or cluster-based) approach takes information about the 
voxels neighborhood into its calculation, aiming increase 
the sensitivity (Smith and Nichols 2009). However, as 
consequence, the region-wise approach constraints the 
localizing power to the cluster-size threshold (CST), i.e., 
the minimum number of voxels allowed into a cluster 
(clusters with less voxels than CST are removed), while 
in the voxel-wise approach, the localizing power is 
1 voxel (Friston et al., 1996).

There are different ways to evaluate a region-wise 
algorithm, for instance, looking for contiguous voxels 
(Forman et al., 1995; Friston et al., 1996; Heller et al., 
2006), or using more sophisticated statistical tools of 
unsupervised machine learning methods, that group data 
by proximity (Dimitriadou et al., 2004; Liao et al., 2008; 
Mezer et al., 2009). These unsupervised methods, known 
as cluster algorithms (CA) attempt to group the nearest 
data, and segmenting the sample space in clusters. There 
are many different strategies of cluster algorithms, as 
the hierarchical clustering, k-means and self-organizing 
maps (Dimitriadou et al., 2004; Esposito et al., 2005; 
Filzmoser  et  al., 1999; Hartigan and Wong, 1979; 
Liao et al., 2008; Naldi and Campello, 2014; Shahapurkar 
and Sundareshan, 2004; Wilkin and Huang, 2008). 
The input of the CA is a matrix (feature matrix), where 
the rows are the number of samples and the columns are 
the features of interest. Each row (one sample) can be 
interpreted as a point in an n-dimensional space, where 
n is the number of features. The CA outputs are clusters 
containing a subset of the data.

Since several works have shown that the region-wise 
analysis can diminishes the number of false negative 
(type 2 error), and consequently increasing the statistical 
power (Forman et al., 1995; Lieberman and Cunningham, 
2009; McAvoy et al., 2001; Woo et al., 2014), the goal 
of this study is to compare the performance of three 
classical types of CAs in order to diminish the occurrence 
of false-positives, however without increasing the 
false‑negatives in fMRI analysis. The studied CAs were 
the Hierarchical Cluster Algorithms (HCA), k-means and 
simple Self-Organizing Maps (SOM). Our results suggest 
that among the three tested algorithms, the HCA is the 
most appropriated to remove false-positives from fMRI.

Hierarchical clustering algorithm
The hierarchical algorithm has this name because it 

organizes the data in a hierarchical dendrogram (Baker 
and Hubert, 1975; Johnson, 1967; Langfelder et al., 2008). 
Each feature of the data is considered as a dimension 
in a n-dimensional Cartesian plane, and the data can 

be represented by points in this n-dimensional space. 
The HCA searches for the pair of points that has the 
shortest distance (it can be Euclidian distance or any 
other type of distance calculation) between themselves, 
replacing them by their midpoint. The calculation is 
recursively applied, until all points are grouped into only 
one cluster. To segment the data in clusters of interest, 
the HCA uses the inconsistency coefficient (IC). The IC 
evaluates how the cluster density is diminished at each 
level of the hierarchy. So, in defining an IC threshold 
(ICT), only clusters that present consistency (relative 
density) higher than ICT will remain.
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Where ICi is the inconsistency coefficient of the i-th 
link, di is the distance between the i-th link, D and  σD 
are the mean and standard deviation of the heights of 
all the links included in the calculation.

k-means algorithm
The k-means algorithm (Hartigan and Wong, 1979; 

MacQueen, 1967; Venkataraman et al., 2009) is based 
on the partition method, i.e. it divides the samples 
into individual k-clusters. Each partition is defined by 
one centroid. The algorithm distributes k centroids in 
the sample space according to a rule, which may be a 
random distribution. After this step, it calculates the 
distance of the objects to the centroids, and attributes 
the object to the nearest centroid, thus creating clusters 
around each centroid.

The next step is to calculate the center of mass for 
each cluster, which will be considered as the new position 
of its centroid. In this new centroid configuration, the 
distance among the objects to the centroids is recalculated 
and a new center of mass will be found. The algorithm 
continues to recalculate the centroid positions until the 
sum of the objects distance to its centroid is minimized. 
Each iteration (when the centroids are recalculated) are 
called epoch.

Self-Organizing Maps (SOM)
SOM is (Liao et al., 2008) an artificial neural network 

based on competitive learning. In this algorithm, M neurons 
are generated (similar to the k centroids in k-means). 
Like the k-means, these neurons are distributed in the 
sample space according to a rule, which in this case can 
also be a random distribution.

The algorithm compares the distance of one object 
with all neurons, winning the nearest neuron. Then the 
weights of these neurons are changed, i.e. their position 
is changed in the sample space, attempting to approach 
the input data.

As the k-means, each iteration of the SOM is called 
epoch. The algorithm convergence is controlled by a 
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constant parameter, the bias, with a tradeoff between 
velocity and stability. If the bias is too large, the 
convergence is very fast, however the network might be 
unstable. If the bias is too small, then the convergence is 
very slow. Once the algorithm is stabilized, each object 
is related to a neuron. Thus, the objects attributed to an 
M neuron are contained in this cluster M.

Receiver operating characteristic (ROC) curves
Receiver operating characteristic (ROC) curves are 

graphs of false positive rate (FPR) against true positive 
rate (TPR), used to evaluate the performance of binary 
classifier systems (Fawcett, 2006; Goodenough et al., 
1974). To create the curves, the ROC algorithm varies 
the discrimination threshold from a very permissive value 
(FPR = TPR = 1) until a very strict value (FPR = TPR = 0). 
In the context of fMRI, the discrimination threshold is 
the value assumed by the alpha level, i.e., the minimum 
statistical value that a given voxel must to reach to be 
considered an activation (Nandy and Cordes, 2003; 
Sorenson and Wang, 1996).

The area under the ROC curves (AUC) is a parameter 
commonly used to perform quantitative analysis. 
I  can assume values between 0.5 and 1. An AUC value 
of 0.5 means that it was not possible to separate the 
false‑positives from the true-positives, and an AUC 
value of 1 means that the false-positives were completely 
separated from the true-positives.

Methods
To compare the performance of the CAs, an 

fMRI‑simulated matrix was generated in Matlab, 
containing six regions that represent brain activations. 
The simulated data consisted of a 64 × 64 × 66 matrix. 
The activated regions were filled with a square wave 

that represented BOLD without noise. The square 
wave had six blocks of six consecutive points with a 
value equal to zero (rest blocks), interleaved with five 
blocks of six consecutive points with a value equal to 
one (task blocks) that simulate a block paradigm exam. 
The other regions were filled with zeros (a schematic is 
shown in Figure 1).

In the fMRI exams, the variation of the BOLD 
signal due to the brain activation is estimated in around 
5% (Kwong et al., 1992; Ogawa et al., 1992), and the 
estimated SNR for a fMRI obtained in a 3 T tomograph 
is around 70 (Triantafyllou et al., 2005), which means 
that the noise amplitude is equivalent to 12% of the 
signal amplitude. In the Gudbjartsson and Patz (1995) 
work it was showed that for images with SNR above 
10, the noise could be well represented by a Gaussian 
noise. Therefore, to mimic realistic conditions, into 
the simulated data, we added a Gaussian noise with 
amplitude of two times of the square wave amplitude, 
which is equivalent to the double of the of the BOLD 
signal variation.

Cross-correlation analysis was performed between 
the square wave described above (six resting blocks and 
five task blocks) and the third dimension of the simulated 
matrix (which represents the fMRI temporal series), 
using the Matlab Signal Processing Toolbox (function 
corrcoef). A correlation coefficients map (CCM) was 
obtained as output from the cross-correlation analysis, 
which is a 64 x 64 matrix, where the values of the 
coefficients represent the probability of a voxel being 
engaged in the task (Figure 2).

We applied the CAs into the CCM, producing a new 
CCM corrected by the CA (CCMc) as output. A feature 
matrix was created, where the lines were the number 
of voxels that presented a correlation coefficient above 

Figure 1. Schematics of the simulated matrix. The grid on top right side represents three voxels time course. The first and third row received only 
zeros, and the second received a square wave (represented by the curve on the bottom right side).
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the correlation threshold (usually FDR = 0.05) and the 
columns were the coordinates of the voxels.

For the hierarchical algorithm, the ICT was varied 
from 0.1 to 1 with increments of 0.1 and the CST from 
1 to 20 with increments of 1. For the k-means and 
SOM algorithms, the CST was varied from 1 to 20 with 
increments of 1, the number of the epochs from 
10 to 100 with increments of 10, and the number of 
centroids (or neurons for the SOM) from 0.1n to n with 
increments of 0.1n, where n is the number of samples. 
The SOM algorithm has one more parameter, the bias, 
that was varied from 0.1 to 0.5 with increments of 0.05. 
The initial centroid (neurons) distribution was a random 
uniform distribution.

Receiver operating characteristic (ROC) curves were 
used for quantitative performance comparison among the 
CAs. To create the ROC curve, the correlation threshold 
values were varied from zero to one, with increments 
of 0.1 (only the positive values of the CCM and CCMc 
were considered). To evaluate the CAs performances, 
we compared the AUC values obtained from CCMc 
with the AUC obtained from the CCM (Equation 2).
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Where AUCr is the relative AUC, AUCi is the i-th AUC 
value obtained from the CCMc, AUCw is the AUC 
obtained from the CCM (without CA application). 
We compared all AUCi values and selected which one 
that presented the maximum AUC value, this constant 
we called AUCmax.

As the k-means and SOM algorithms may have 
different results for a given set of parameters due to 
their dependence on initial conditions (initial position 

of centroids/neurons) (Jain, 2010; Murino et al., 2011) 
we repeated the ROC curve calculation 100 times for all 
combination of their parameters. So, for each one of the 
ROC curve repetition, we found one set of parameters 
that produced the maximum AUC value. In the end, 
we got 100 sets of parameters that produced maximum 
AUC, and their respective maximum AUC value. After 
that, we calculated the mean and standard deviation of 
the parameters and maximum AUC. In the total, it was 
performed 200 ROC curves for the HCA, 2.105 ROC 
curves for the k-means, and 2.106 ROC curves for the 
SOM. Figure 3 brings the experimental design flowchart.

Finally, the CA that presented the best performance 
was applied to remove the false-positives of real fMRIs. 
We utilized two set of fMRIs, the first was acquired in 
a 3T scanner (Philips, Achieva, The Netherlands) using 
Echo Plannar Imaging (EPI) sequence, with the following 
parameters: TR 2000 ms, TE 30 ms, flip angle 90°, 
acquisition matrix 80 × 80, FOV = 240 mm, 32 slices 
with a thickness of 3 mm and each SENSE equal to 2.

In this experiment were presented 60 random pictures, 
where the volunteers were instructed to watch them 
passively. The pictures were presented for 6 seconds, 
alternated with rest blocks of equal duration (6 seconds 
of gray screen). The run was started by 30 seconds of 
rest, totaling 375 temporal volumes. The pre-processing 
and processing was conducted in the SPM8 software 
(http://www.fil.ion.ucl.ac.uk/spm/), where was applied 
motion correction; temporal high pass filter (removing 
components with periods longer than 128 s); and time 
correction of the slices. After that, we performed a 
General Linear Model (GLM) analysis. The maps were 
resampled to the subject 80 x 80 x 32 space of 3mm 
isotropic voxels and gray-matter masked (at least 10% 
tissue probability).

Figure 2. Simulated Correlation Coefficient Maps used for characterization and comparison of the cluster algorithms. (a) Correlation Coefficients 
Map without noise; (b) Correlation Coefficients Map with noise and SNR of –6 dB.
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The second fMRI was acquired on a 1.5 T scanner 
(Siemens, Magneton Vision, Germany) using an EPI 
sequence with 16 6 mm-thick axial slices, ISI of 
3540 ms, echo time of 60 ms, flip angle of 90°, matrix 
size of 128 × 128, FOV of 220 mm, voxel size of 
1.72 × 1.72 x 6.00 mm and repetition time of 4.6 s. 
The protocol consisted of a block paradigm of 66 slices, 
where the volunteer was asked to remain at rest for six 
periods of 27.6 s, alternating with five periods of 27.6 s 
while performing a finger tapping task. The images were 
processed in Matlab using a cross-correlation algorithm.

In these two sets of fMRI, we applied a threshold 
equivalent to a 0.05 of the false discovery rate (FDR), 
and next we applied the CA with optimum parameters.

Results
The performance comparison was conducted using 

the AUCr values. Each parameter set was related to an 
AUCr value. Therefore, the AUCr plots would have three 
or more dimensions, which is impossible to represent 
graphically. So, we did the projection for each dimension 
using two-dimension scatter plots to visualize the results. 

Figure 3. Experimental design flowchart. The highlight text boxes (Cluster Algorithms and ROC curves) are detailed on the right side and bottom.
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Figure 4 presents a collection of scatter plots (parameter 
vs AUCr) for the HCA, k-means and SOM algorithms, 
respectively. In all Figure 4 graphs, the ordinate values 
represent the AUCr and the abscissas represent one of 
the studied parameters. For the better visualization, we 
set the y limits of the scatter plots between -0.57 and 1.1. 
We  also plotted the CST results for the three CAs, 
showing the whole sample space (Figure 5).

We found the following parameter values that 
optimized the CAs: for HCA, we obtained 5 elements for 
CST and ICT equal to 0.3 ± 0.16; for k-means, the CST 

was 5.5 ± 1.0, the centroid numbers were 0.11n ± 0.03n 
(where n is the number of input data), and the number 
of epochs was 53 ± 31. Finally, for SOM we found that 
the CST was equal to 2 ± 0.6, the number of neurons 
was equal to 0.16n ± 0.05n (where n is the number of 
input data), the number of epochs was 60 ± 31 and 
the bias was 0.17 ± 0.05 (observe in Figure 4 that the 
optimum values for centroids or neurons are given in 
terms of the ratio of centroid numbers per number of 
input data, as the number of input data varies according 
to the threshold).

Figure 4. Scatter plots of AUCr values for the HCA, k-means and SOM performances. The horizontal line indicates the AUCr obtained only with 
the cross-correlation without any CA application (AUCr = 0), and the error bar indicates the mean and standard deviation of the parameters that 
produce the maximum AUCr.

Figure 5. Scatter plots of the AUC by the CST for the three algorithms. The red line indicates the AUC obtained only with the cross-correlation 
without any CA application.
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Once the optimum CA parameters were found, an 
AUCr bar graph and its respective standard deviation 
(Figure  6) were plotted to compare the maximum 
performance of each algorithm.

Thus, we evaluated a hypothesis test to certify if an 
algorithm worked better in false-positive removal. To do 
that, we performed a Kolmogorov-Smirnov normality 

test on the AUCr values for k-means and SOM, and we 
noticed that both distributions were not normal. So, we 
decided to use the Wilcoxon Signed Rank non-parametric 
test, since our data set were composed by 100 AUCr 
values (one AUCr for each optimized parameter set 
repetition) for both k-means and SOM algorithms, while 
there was just one AUCr value for the HCA optimized 
parameter set.

We found that all AUCrs stemmed from the CAs output 
presented medians above the AUCr without application 
of CAs (p < 10-11). The HCA was significantly more 
efficient than the other CAs (p < 10-17, 2.3

−
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k means

AUCr
AUCr

, 

1.9=HCA

SOM

AUCr
AUCr

) and the SOM was more efficient than 

the k-means (p < 0.002, 1.2
−

=SOM

k means

AUCr
AUCr

).

Figure 7 is an example to show the efficiency of 
each CA, were it is possible to infer that the HCA works 
better than the k-means and SOM, and that the efficiency 
of k-means and SOM are similar, based on the number 
of scattered voxels.

As the HCA was considered the best method to 
exclude false positives from fMRI, this algorithm was 
used to remove false-positives on real fMRIs, as can 
be seen in Figure 8.

Figure 6. Comparison of CA performance by the mean of the maximum 
values of the AUCr. The vertical error bars in black indicate the standard 
deviation.

Figure 7. (a) Simulated image, after filtering with a threshold of 0.3 correlation value; (b) The same figure post-processing with the hierarchical 
cluster; (c) post-processing with the k-means algorithm and (d) with the SOM algorithm.
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Discussion
In Figure 4 it is possible to notice an abrupt performance 

decrease of the CAs for CST values around five to seven 
elements. This occurred because the simulated data have 
a simulated activation region that contains 6 voxels; 
thus, when the CAs eliminated clusters that contained 
6 voxels, they eliminated the simulated activation with 
6 voxels, consequently introducing 6 more false negatives. 
In this way, as the CST values increase, more clusters 

that should not be eliminated are eliminated, increasing 
the number of false-negatives even more. However, 
if the value of CST is less than five elements, some 
scattered voxels remain in the image. Therefore, there 
is a trade‑off between the static power and the localizing 
power relative to the CST (Friston et al. 1996), that must 
be defined by the researcher.

There was just one single CST value that optimized 
the HCA (CST = 5), so there was no mean or standard 

Figure 8. (A) fMRI of a visual task by block paradigm protocol, obtained by GLM processing. The images from the top were corrected just by 
FDR equal to 0.05, while the images on the bottom were corrected by FDR plus HCA with optimized parameters; (B) Finger tapping fMRI by 
block paradigm protocol, obtained by cross-correlation processing. The images from the top were corrected just by FDR equal to 0.05, while the 
images on the bottom were corrected by FDR plus HCA with optimized parameters.
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deviation for this parameter. However, five different 
values of ICT yielded maximum value of the AUC. 
It is possible to notice in the Figure 4, that in the scatter 
plot of ICT, the five first points (0.1 to 0.5) presented 
the same value of AUC (maximum AUC value reached 
by the HCA). This probably occurred because for ICT 
values below 0.5, the HCA only considers the contiguous 
voxels to compose a cluster, so even when the ICT is 
diminished from 0.5, the results is the same.

The centroid and neuron numbers that produced 
the best performance were values between 0.1n and 
0.2n. This occurs because if the centroid numbers are 
above 0.2n, the clustering algorithms tend to split big 
clusters even when the cluster elements are near each 
other (Jain, 2010; Tepper et al., 2011), thereby increasing 
the number of false-negatives. However, if the centroid 
number is below 10%, the algorithms tend to group the 
scattered voxels with the non-scattered, thus not being 
able to diminish the number of false-positives from the 
previous statistical analyses.

Another interesting finding is the large standard 
deviation of the epoch number for both k-means and 
SOM algorithms (third column of Figure 4). It must 
be kept in mind that these algorithms converge to a 
solution in few epochs, apparently less than 30. Thus, 
for values higher than 30 epochs, the maximum AUC 
value is reached by chance (similar to the ICT lower 
than 0.5 from the HCA).

Furthermore, the k-means and SOM have dependence 
on the initial conditions, where the k-means method 
is strongly affected, and the SOM is influenced less 
(Kinnunen et al., 2011), as can be clearly seen in Figure 6, 
where the k-means deviation is higher than the SOM 
deviation. Therefore, when these algorithms are used, 
it is necessary to repeat the procedure several times 
(it was used 100 times in our experiment), and take a 
mean or median of the output.

When we compared the output of the three studied 
CAs, we found that the HCA was more efficient in 
removing the false-positives of the simulated fMRI than 
the others ( 2.3
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AUCr
AUCr

, 1.9=HCA

SOM

AUCr
AUCr

). The SOM 

algorithm works better than k-means ( 1.2
−

=SOM

k means

AUCr
AUCr

), 

and all of them improve the quality of the data from the 
cross-correlation when applied with optimum parameters.

There are studies that compare the efficiency of CAs 
applied to fMRI (Dimitriadou et al., 2004; Heller et al., 
2006; Liao et al., 2008). However, these works utilized 
the CAs on the time series, aiming to find regions that 
have similar BOLD behavior. In contrast, our objective 
is to improve the statistical power by diminishing the 
number of false-positives without increasing the number 
of false-negative. The works that attempted to diminish the 

number of false-positives without increasing the number 
of false-negative using region-wise only evaluated the 
contiguity of the voxels. We didn’t find works that have 
used CAs for this purpose. Althoug, Dimitriadou et al. 
(2004) evaluate the CAs on fMRI time-series, our findings 
corroborate their results, where the HCA presented the 
best performance. It happens because while the k-means 
and SOM utilize a priori cluster number (centroid and 
neuron numbers) to determine how the voxels will be 
clustered, the HCA uses the ICT, which only allows the 
voxels that are at a minimum distance to some cluster 
to be clustered, not considering how many clusters will 
be generated.

The premise used in this work is that the scattered 
voxels are false-positives. By definition, a scattered 
voxel is far from the others, and will not be clustered 
by the HCA, however, the k-means and SOM create a 
fixed number of clusters. So, it is possible that some 
scattered voxels will be clustered with other voxels, 
and consequently will not be eliminated.

There are few studies that evaluate strategies of statistical 
power improve considering the voxel’s neighborhood 
activation (Forman et al., 1995; McAvoy et al., 2001). 
Our finds showed similar results, although Forman et al. 
(1995) and McAvoy et  al. (2001) aimed to diminish 
false negatives when in our study, we aimed to diminish 
the false positives. We couldn’t find any studies that 
compare the efficiency of classical CA to improve the 
statistical power, either by diminishing the false positives 
or false negatives.

In observing our results, it is important to draw 
attention to the fact that if the parameters were not set 
properly, the CAs fail at false-positive removal and 
can introduce false-negatives into the CCM. There are 
just a few percentages of parameter set that improve 
the CCM (51% for HCA, 8.5% for k-means and 3.4% 
for SOM); all other combinations worsen the obtained 
result in CCM.

In Figure 5, one can see that for almost any parameter 
set, all the CAs only worsen the results obtained at the 
cross-correlation (red line). Therefore, it is fundamental 
to certify if the parameters are well set. Notice that the 
coordinate values are absolute AUC values (different 
of AUCr, that is a relative UAC value).

Finally, the HCA was applied to real fMRI data and 
a greater reduction of scattered voxels was observed. 
The results of the corrections made by the HCA are 
reassuring, since the areas traditionally engaged in 
visual tasks such as the occipital regions, and areas 
engaged in motor tasks, as the regions adjacent to the 
central sulcus (primary motor and premotor cortices) 
and supplemental motor cortex were maintained, while 
all scattered voxels were eliminated.
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In conclusion, in this study, hierarchical cluster, k-means 
and SOM algorithms were tested to remove false-positives 
from post-processing fMRI, once we did not find any 
study that evaluate these CAs to false-positive removal. 
It was found that HCA presented the best performance, 
due to it utilizing an ICT to create clusters instead of 
a fixed number of clusters, like k-means and SOM do. 
Thus, avoiding clustering scattered voxels, as the ICT 
only allows the voxels that are at a minimum distance to 
some cluster to be clustered. Another important finding 
is that there are just a few percentages of parameter sets 
that improve the CCM (51% for HCA, 8.5% for k-means 
and 3.4% for SOM); all other combinations worsen the 
obtained result in CCM.
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