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Introduction
Epilepsy is the most common neurological disorder 

that affects 50 million people worldwide, being around 
25% uncontrolled patients despite treatment and 
prevalence around 1-2%. Epilepsy is characterized by 
recurrent, involuntary, and paroxysmal seizure activity 
resulting from excessive synchronization and temporary 
electrical discharges of cortical neural networks in the 
human brain. Despite the use of new antiepileptic drugs, 
one-third still have seizures. The electrical discharges 
related to epilepsy are called epileptiform paroxysms, 
appearing in a single, rhythmic or periodic form, and 
classified into spikes (lasting from 20 to 70ms), sharp 

waves (70 to 200ms), and several types of epileptiform 
complexes like spike-wave (Figure 1) (Arunkumar et al., 
2012; Fergus  et  al., 2015; Stevanovic, 2012; Tatum 
IV et al., 2009).

The daily life of the patient suffers significant 
impacts such as temporary impairments of perception, 
speech, motor control, memory or consciousness. 
Thereby, early detection of epilepsy could be decisive 
in the promotion of therapies to treat or abort epileptic 
seizures. Electroencephalographic signal (EEG) is 
an important tool widely used for epilepsy detection. 
EEG signal is a recording of the electrical activity of 
the brain measured at the scalp used in the diagnosis 
of many brain disorders. EEG recordings have large 
amount of complex cerebral information. However, 
EEG interpretation becomes tedious due to variability in 
amplitude, phase, frequency, and non-periodic features. 
Neurologists analyze the recordings by the review of 
large datasets, being a time-consuming, stressful and 
subjective diagnostic process (Arunkumar et al., 2012; 
Fergus et al., 2015; Peker et al., 2016; Ramgopal et al., 
2014; Wang et al., 2014).

In order to reduce the workload of neurologists by 
supporting visual inspection of EEG, automatic seizure 
detection systems were developed since a pioneering 
study (Gotman and Gloor, 1976). Several techniques 
were explored in order to improve the performance of 
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automated systems (Arunkumar et al., 2012; Fergus et al., 
2015; Gotman and Gloor, 1976; Hunyadi et al., 2011; 
Olejarczyk et al., 2009; Peker et al., 2016; Petersen et al., 
2013; Ramgopal et al., 2014; Wang et al., 2014). In the 
last decades, a very powerful tool called wavelet 
transform was applied to solve this problem (Adeli et al., 
2007; Ayoubian et al., 2013; Haydari et al., 2011). 
In (Hramov et al., 2015) are presented several studies 
in rats by applying time‑frequency analysis (such as 
the continuous wavelet transform) to characterize 
non‑stationary events in EEG signals. In Medical 
Informatics Laboratory at Biomedical Engineering 
Institute (IEB‑UFSC), the wavelet transform was 
focused in two complementary approaches. The 
first one proposes to apply wavelet multiresolution 
analysis (MRA) composed by decomposition and 
reconstruction of the epileptiform activity in order 
to analyze each frequency band (Scolaro et al., 2012; 
2013; Scolaro and Azevedo, 2010). The second one 
proposes the time-scale analysis by mapping the 
wavelet scalogram, generating a two-dimensional 
representation of the energy of epileptiform activity 
(Lobato et al., 2015).

This study aims to compare these wavelet-based 
approaches for detection of epileptiform paroxysms 
using wavelet multiresolution analysis and wavelet 
scalograms in order to demonstrate their usefulness in 
solving this issue.

Methods

EEG database

The database was collected in (Scolaro and Azevedo, 
2010) and also used by the Medical Informatics Laboratory 
at IEB-FSC in several works such as (Lobato et al., 2015; 
Scolaro et al., 2012; 2013). The database is composed 
by scalp EEG recordings with 16 hours of total duration 
obtained from 11 patients truly epileptic at Governador 
Celso Ramos Hospital in Florianopolis, Brazil. A referential 
montage in Pz was used with 32 channels, sampling 
frequency of 512Hz and limited band from 0.3 to 70Hz 
filtered by a notch filter at 60Hz to attenuate power line 
effects (electrical noise).

Wavelet transform

Wavelet transform (WT) analyzes non-stationary 
signals in time and frequency domain. The wavelet 
functions are defined by (1), where ψ is the mother function 
scaled and shifted by a and b parameters, respectively.
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The continuous wavelet transform (CWT) maps the 
function ( )f t  on the time-scale space by (2) using (1). 
Depending on the scale parameter, the Wavelet function 
( )tψ  dilates or contracts in time causing the opposite 

effect in frequency.
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However, the CWT is redundant and impractical 
due to the continuous variation of a, b parameters. This 
drawback can be solved by sampling a and b, resulting 
the discrete parameters m and n, used to compute the 
discrete wavelet transform (DWT). The DWT is obtained 
by using the wavelet discrete function ( ),m n tψ  given by (3), 
where 0

ma a=  and 0 0
mb nb a=  (Akansu and Haddad, 2001). 
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Wavelet multiresolution analysis (MRA)

Wavelet multiresolution analysis is composed 
by decomposition and reconstruction processes 
(Figure 2a). The analyzed signal is first split into low 
and high‑frequency bands (approximation and details 
coefficients, respectively) in the first level. Then, the 
low-frequency subband is again decomposed and so on 
until complete the k desired levels of decomposition. 
This wavelet-based approach allows us to analyze 
each band of information obtained by extracting some 
features. After that, the inverse process is performed 
to recover the original signal without loss information. 
These processes are performed through decomposition 
and reconstruction filters (Akansu and Haddad, 2001; 
Burrus et al., 1998).

Wavelet dyadic scalogram

The wavelet scalogram illustrates how transient 
activity varies in time-scale plane (Figure 2b), which 
is constructed by evaluating the correlation between 
the signal and wavelet functions at different scales 
using  (4). This equation computes the percentage of 
energy of wavelet coefficients. However, the discrete 
scale still contains much redundancy information. 
In this way, dyadic scales (power of two) are used to 

Figure 1. Most common epileptiform paroxysms in EEG signals. 
(a) Spike; (b) sharp-wave; (c) spike-wave complex.
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represent each band without loss of information (Shoeb 
and Clifford, 2006).

( ) ( ) ( ) 2: , ,S a Wf a b Wf a b db
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Artificial neural network
Artificial neural networks are computational models 

which attempt to simulate the nerve cells networks 
of the biological central nervous system. The most 
important characteristic of artificial neural networks 
is the learning process using natural mechanisms of 
generalization. Furthermore, other useful properties like 
massive parallelism, adaptability, fault tolerance and 
low energy consumption. Artificial neural networks are 
crucial to solve classical topics like signal processing, 
speech recognition, visual perception, control and 
robotics (David and Rajasekaran, 2009; Graupe, 2007; 
Jain et al., 1996; Livingstone, 2008).

Methodologies

Selection of events
The first methodology used 600 epileptiform events 

(between spikes and sharp waves) with different durations 
in order to test wavelet multiresolution analysis and 
denoising method. The second methodology used a set 
of 477 epileptiform events, and 657 non-epileptiform 
events between background activity, eye blinks, and 
noise in order to test wavelet scalograms and artificial 
neural networks.

Wavelet functions
Both methodologies were applied to 65 wavelet 

functions selected for this study. These functions were 
obtained from daubechies, biorthogonal, symlets, reverse 
biorthogonal and coiflet wavelet families, listed in Table 1.

Wavelet multiresolution analysis and denoising 
method

All the selected events were decomposed and 
reconstructed by applying wavelet multiresolution 
analysis (Figure 3a), generating an approximation level 
A6 and six levels of detail: D6, D5, D4, D3, D2, D1, 
which were analyzed independently. A repeated pattern 
was observed from D4 to D6 detail levels (4-32Hz), also 
low frequencies were retained in A6 approximation level. 
In addition, D1 to D3 levels had not relevant information, 
and D4 to D6 levels were retained, corresponding to 

Figure 2. Two different wavelet-based approaches presented in this work: (a) Wavelet multiresolution analysis is composed by wavelet decomposition 
and reconstruction through low-pass (LP) and high-pass (HP) filter banks (adapted from Scolaro et al., 2012); (b) How to map the wavelet scalogram 
(adapted from Shoeb and Clifford, 2006).

Table 1. Wavelet functions used in both methodologies.

Family Wavelet Functions
Daubechies ‘db1’, ‘db2’, …, ‘db15’.

Biorthogonal

‘bior1.1’,  ‘bior1.3’,  ‘bior1.5’,  ‘bior2.2’,  
‘bior2.4’, ‘bior2.6’,  ‘bior2.8’,  ‘bior3.1’,  
‘bior3.3’,  ‘bior3.5’, ‘bior3.7’,  ‘bior3.9’,  
‘bior4.4’,  ‘bior5.5’,  ‘bior6.8’. 

Symlets ‘sym1’, ‘sym2’, …, ‘sym15’.

Reverse 
Biothogonal

‘rbio1.1’,  ‘rbio1.3’,  ‘rbio1.5’,  ‘rbio2.2’,  
‘rbio2.4’, ‘rbio2.6’,  ‘rbio2.8’,  ‘rbio3.1’,  
‘rbio3.3’,  ‘rbio3.5’, ‘rbio3.7’,  ‘rbio3.9’,  
‘rbio4.4’,  ‘rbio5.5’,  ‘rbio6.8’.

iCoiflet ‘coif1’, ‘coif2’, …, ‘coif5’.
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the frequency band related to the epileptiform activity 
without noise (from 5 to 25Hz).

To determine which is the most suitable wavelet 
function to attenuate non-epileptiform activity, two 
criterions were considered: 1) the highest average of 
accumulated energy; and 2) the smaller number of 
wavelet coefficients. Experiments consisted of testing 
the selected events to calculate the correlation and 
RMSE (Root Mean Square Error) between: a) individual 
peaks of the original and filtered events; b) original 
and filtered events; c) original and filtered epochs of 
one-second duration.

Wavelet dyadic scalogram and artificial neural 
network

Wavelet scalogram was constructed by calculating 
the correlation between the wavelet function and the set 
of selected events by using (4). These correlation values 
were normalized from 0 to 1, and then represented by a 
RGB colormap with red and blue colors for minimum 
and maximum values, respectively (Figure 3b). It was 
considered only 4 dyadic scales that correspond to 0-16Hz. 
Scales 1 to 4 contain the most relevant features related to 
epileptiform activity. In counterpart, scales 4 to 8 have 
no relevant activity on the scalogram. In this way, the 
wavelet dyadic scalogram has 2,048 pixels (512 samples 
per 4 dyadic scales). The 2-D wavelet scalogram was 
converted to a single 1-D vector that was located as 
input layer of the artificial neural network in order to 
classify the selected.

The artificial neural network has 10 neurons in the 
hidden layer and a single neuron in the output layer (binary 
ANN). All layers used the sigmoid activation function 
for training phase. This stage includes cross‑validation 
method to avoid under- and overfitting effects. After 
training stage, a mixed set for tests was created by 
using a portion of the database (30%) and all the events 
marked on other database available used in (Boos et al., 
2011). This method allows to increase the reliability of 
this methodology. Finally, the following indicators of 
performance were calculated: sensitivity, specificity, 
positive and negative predictive values, system efficiency 
and the area under the ROC curve (AUC value).

Results
All the experiments were performed and arranged 

in Table 2. The objective was to determine which is 
the most suitable wavelet function for detecting the 
epileptiform activity. First methodology obtained 
that db4 had the highest correlation and the minimum 
RMSE, demonstrating to be the most suitable wavelet 
function to maintain the epileptiform events reaching 
0.717658 of correlation and RMSE value of 36.799 
(see Table 2-left). These values were obtained between 
the epochs of original and filtered event. Other important 
criterion was to choose the wavelet function with the 
fewest coefficients and the lowest energy required to 
compute the wavelet filter. It was obtained that db4 has 
fewest coefficients and the lowest energy (48.30%).

Figure 3. Block diagram of both wavelet-based methodologies: (a) Wavelet multiresolution analysis (MRA) and denoising method; (b) wavelet 
dyadic scalogram and artificial neural network.
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In counterpart, experiments for testing the second 
methodology using wavelet dyadic scalograms and 
artificial neural network are shown in Table  2-right. 
It was considered both the system efficiency and the 
AUC as the most important indicators of performance. 
For this reason, it was calculated the efficiency-AUC 
product, being chosen bior3.9 and rbio1.5 wavelet 
functions for this methodology, generating 77.98% of 
sensitivity, 94.08% of specificity, 87.87% of efficiency 
and AUC value of 0.9613 by using bior3.9.

Discussion
Two different but complementary wavelet-based 

methodologies were described and applied in this work. 
The wavelet-based techniques have had a great impact in 
the last decades for solving several problems on analysis 
of non-stationary signals due to its multiresolution analysis 
on the frequency or scale variables. First methodology 
applied a digital filter (wavelet multiresolution analysis) 
to attenuate non-epileptiform activity such as eye blinks, 
background activity, and noise in long-term 32 EEG 
channels. In this way, this filtering process reduces 
the number of false positives generated by undesired 
information, improving the performance of system. 
On the other hand, the second methodology has applied 
the wavelet transform as feature extraction technique 
(wavelet scalogram) for further pattern classification 
(artificial neural networks). The wavelet scalogram allows 
us to observe more closely the differences between the 
epileptiform and non-epileptiform activity through the 
wavelet-based colored maps. Epileptiform activity has a 
high percentage of energy (in red color) and short-time 
response which clearly differentiates it from other types 
of activity. These strong differences between clusters 
facilitates the identification of patterns by the neural 
classifier. Furthermore, the use of dyadic scales reduces 

the data dimensionality, which offers a high simplicity 
for further hardware implementation.

This work is not intended to compare the results 
obtained due to the different number of selected events, 
the evaluated indicators and the way the tests were 
performed. However, it is possible to demonstrate 
that, despite using the same set of wavelet functions 
and EEG database, the choice of the most suitable 
wavelet function requires a different criterion for 
each methodology. As  demonstrated in the previous 
section, daub4 was selected for the first methodology 
and bior3.9, and rbio1.5 for the second one. In the first 
methodology, the difference in the indicators obtained is 
remarkable; however, in the second methodology it was 
observed that all functions reached very high indicators 
of performance, which means that all functions listed 
are capable to detect the electrophysiological triggered 
paroxysms that appear in epileptic patients.

Most automatic epilepsy detection systems in the 
literature are focused on epileptic seizures during 
inter-ictal stages. In (Adeli et al., 2007) was proposed a 
wavelet‑chaos methodology in order to analyze the EEG 
signal by separating delta, theta, alpha, beta and gamma 
bands similarly to our first methodology but by evaluating 
other indicators as the correlation dimension, the largest 
Lyapunov exponent and its statistical significance for 
differencing data groups or filtering undesired events. On the 
other hand, the second methodology can be compared 
with current classification expert systems as (Liu et al., 
2012) that proposed a wavelet-based expert system for 
intracranial EEG recordings achieving a sensitivity of 
94.46%, higher than obtained in this work. However, 
the intracranial EEG is a very expensive, invasive and 
impractical method to record the encephalographic activity. 
In (Haydari et al., 2011) was proposed the combination 
of genetic algorithms and wavelet transform reaching 
more than 90% of sensitivity but using very few spikes 

Table 2. Left - 10 best wavelet functions for first methodology by calculating the correlation and RMSE (Scolaro et al., 2012); Right - 10 best 
wavelet functions for second methodology by calculating the efficiency and AUC value. 

Wavelet
Results obtained

Wavelet
Results obtained

Coeffs Energy 
(%) Correlation RMSE Sensitivity 

(%)
Specificity 

(%)
Efficiency 

(%)
AUC 
Value

db4 8 48.30 0.717658 36.799603 bior3.9 77.98 94.08 87.87 0.9613
coif5 30 76.53 0.693210 37.957277 bior3.7 78.44 93.51 87.69 0.9605
sym7 14 67.69 0.692088 38.061023 rbio1.5 79.82 93.51 88.22 0.9540
coif4 24 74.03 0.690788 38.034667 bior3.5 73.85 95.53 87.16 0.9578

rbio1.3 6 55.36 0.690375 38.243990 rbio1.3 72.48 97.26 87.69 0.9518
db8 16 59.38 0.690320 38.129404 sym7 76.61 93.36 86.89 0.9455

sym4 8 59.07 0.682411 38.353757 bior2.2 76.83 92.93 86.71 0.9457
coif3 18 70.16 0.679416 38.511218 coif1 78.21 92.64 87.07 0.9413
db12 24 65.23 0.675012 * sym4 75.69 94.37 87.16 0.9370
db15 30 67.40 0.673080 38.828296 bior3.3 69.72 95.53 85.56 0.9515

*No data.
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events for classification which decrease its reliability. 
Other wavelet-based systems in (Aarabi et al., 2009), 
(Chua et al., 2011) and (Ayoubian et al., 2013) achieved 
a sensitivity of 68.9%, 78%, and 72%, respectively, 
closed to our results (77.98%). Hence, the wavelet dyadic 
scalogram and artificial neural network proposed here 
have obtained competitive results in comparison with 
current expert systems for epilepsy detection.

Both methodologies presented may be highly 
complementary, unifying their properties into a single 
system for detecting epileptiform paroxysms. MRA 
approach would be used as pre-processing stage in order 
to filter non-epileptiform activity, and then the wavelet 
dyadic scalogram would be responsible for extracting 
the desired features like percentages of energy. After 
that, several pattern classifiers would be explored 
like artificial neural networks, bayesian classifiers, 
fuzzy logic and neuro-fuzzy systems, etc. Finally, it 
would be interesting to test the integrated system in 
long-term continuous 32 EEG channels as performed 
in (Scolaro et al., 2012), re-evaluate and compare the 
new results obtained.
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