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Introduction
An ideal upper-limb prosthesis should be recognized 

as a natural part of the amputee body, supplying motor and 
sensorial limb abilities (Englehart and Hudgins, 2003). 
Nevertheless, one of the major problems is the user’s 
acceptance after starting the training process to use 
prostheses. Some of the common factors of their rejection 
are their facilities and comfort, exterior appearance, but 
most of all, its functionality (Peerdeman et al., 2011). 
An evaluation of the important daily live activities for 

prosthetic hand users was presented by Peerdeman et al. 
(2011). Opening/closing zipper, making the bed, grasping 
a glass, catching a ball, and using knife and fork were 
activities considered as relevant. As a result, grasp tasks 
were found to be more important than wrist movements, 
being lateral, cylindrical and tripod grasps the most 
important ones (Sensinger et al., 2009). Other study with 
prosthesis users (Zecca et al., 2002) reports that 100% of 
interviewed would like to point the finger, 90% wanted 
to have individual fingers control and 70% considered 
useful to have wrist flexion/extension. However, most 
studies have focused on recognizing power functions 
and wrist movements, while dexterous movements of 
prostheses have not been widely addressed, being a lack 
to improve their functionality. As a result, there is a need 
for a more functional and reliable control system, and 
using a minimum number of surface Electromyographic 
(sEMG) electrodes for upper-limb amputees.

Prosthesis control can be divided into two subsystems: 
high–level control (HLC) and low–level control (LLC). 
HLC interprets the subject’s intentions gathered from 
patterns extracted from sEMG signals, whereas LLC takes 
the output of the HLC as a set point to control angles of 
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joint prosthesis. The real challenge for researchers is in 
HLC, in which intuitive prosthetic control is one of the 
most important challenges, in order to reduce the user’s 
learning effort for the artificial hand adaptation. In this 
aspect, myoelectric control may be considered quite 
suitable as it allows a more intuitive user prosthesis 
interface in a more natural way. However, the still 
unskillful control, lack of feedback and training of these 
prostheses make them unacceptable to several users.

A great variety of methods for feature extraction in time 
and frequency domains have been explored to recognize 
sEMG patterns (Zecca et al., 2002). Several works have 
used magnitude-based features to feed classifiers to 
recognize hand motor tasks involving elbow, forearm, 
wrist and open/close hand movements (Guo et al., 2015; 
Oskoei and Hu, 2008; Phinyomark et al., 2009). Other 
systems have got user’s commands for a limited number 
of hand and individual finger gestures (Naik et al., 2010, 
2009; Peleg et al., 2002; Tsenov et al., 2006), and even 
for combined finger movements (Khushaba et al., 2012). 
However, such attempts did not included more complex 
dexterous movements, in which statistical-based features 
are not sufficiently reliable due to the weak signals from 
these movements. Previous works did consider sEMG 
signals from dexterous movements, but only for grasp 
gestures, aiming to improve the functionality of the 
prosthetic control (Chu and Lee, 2009; Hargrove et al., 
2009; Khezri and Jahed, 2007; Tommasi et al., 2013; 
Wang et al., 2013). In fact, the non-linear relationship 
between force and electric activity of muscles at low-levels 
of contraction (Naik et  al., 2010) makes much more 
difficult the sEMG signals analysis. Techniques based on 
fractals dimensions (FD) have been used to estimate the 
non-linear properties of sEMG, which present sensibility 
at frequency and magnitude to the strength of muscle 
contraction (Arjunan and Kumar, 2007). Recently, a 
combination of Higuchi’s fractal dimension (HFD) 
and detrended fluctuation analysis (DFA) were more 
employed on sEMG signals (Guo et al., 2015), in order 
to measure the non-linear property in sEMG signals, 
with the advantages of features from time and frequency 
domains. Another factor that bother the prosthesis users 
is the high number of electrodes, as the training with 
many input channels is a long and hard process, resulting 
in their decision to use only a limited and very simple 
prosthesis (2-3 degrees of freedom). Moreover, prosthesis 
with electrode array are complex, in addition to the fact 
that differences in electrode placements lead to variations 
in sEMG signals and their spectrum (Kumar et al., 2013). 
Some works have sought for systems with low-density 
(less than six channels) sEMG signals (Arjunan and 
Kumar, 2010; Castro et al., 2015; Phinyomark et al., 
2012b), which reduce problems as electrode fixation 
and computational demand. However, the accuracy 
reported by these researchers to recognize dexterous 

movements are still poor and their experiments were 
only conducted in able-bodied subjects.

Some studies with amputees using few number 
of electrodes have been conducted in order to fulfil 
this gap, such as done in Al-Timemy  et  al. (2013), 
Cipriani et al. (2011), Li et al. (2011), Kumar et al. (2013) 
and Tenore et al. (2009). In particular, in Kumar et al. 
(2013) a method based on wavelet maxima density was 
proposed as a non-linear parameter to extract relevant 
from sEMG signals using only one channel, but no 
grasp gestures were considered. Grasp gestures were did 
consider in Li et al. (2011), but using high-density sEMG 
signals (twelve electrodes). Nevertheless, in all these 
previous works conducted with amputees, a common 
lack of experiments with hand, wrist and individual 
finger gestures can be noticed, and few of these works 
have even included dexterous movements, and only for 
high-density. In fact, to the best of our knowledge, no 
studies with low-density for dexterous movements on 
amputees can be found in the literature. Table 1 shows 
very complete details about each one of these works, 
which are classified according to the year of the research, 
number of channels, number of gestures, kind of tasks, 
signal features, classifiers, window length for sEMG 
analysis and duration of the window overlapping.

In summary, although these studies have identified 
different hand gestures and finger movements, a common 
aspect of them is the non-inclusion of forearm amputees, 
which is the focus of our study. In our research, we 
propose a system to recognize accurate dexterous 
gestures from amputees using low-density sEMG signals 
(four electrodes), in order to improve the functionality 
of upper-limb prostheses. Individual finger movements, 
hand gestures and grasp tasks are characterized using 
fractal-based analysis combined with a suitable election 
of others well-known features on time and frequency 
domains. The extent of dimension reduction is also 
investigated, considering seventeen features from the 
sEMG signals, and, in addition, the efficiency of three 
supervised classifiers, in off-line mode, is compared 
as well. From our study, a new method composed of a 
unique feature set and one classifier is introduced here, 
with the aim of obtaining a reliable control, to provide 
more functionality for forearm amputees in a more natural 
way to control a multifunction myoelectric prosthesis.

Methods
Four electrodes were used in this study to improve 

the functionality of upper-limb prostheses. The method 
is based on a three stages structure, such as feature 
extraction, feature selection, and pattern classification.

The first stage (“Feature Extraction”) is used to 
extract the sEMG patterns. Individual finger and hand 
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movements are characterized using fractal-based 
analysis combined with others well-known features on 
time and frequency domains. Here, the sEMG signals 
are considered as a stationary process considering short 
time segments between 200 and 500 ms. This technique 
leads to generate a stream of sEMG patterns, in which 
short data segments are processed using independents 
windows. Choosing window length is crucial for on-line 
implementations. For this, an overlapping window 
was used, which allows an increase of the number of 
experimental trials, increasing their statistical dependence 
(Merletti and Parker, 2004).

The second stage (“Feature Selection”) is used to 
investigate the extent of dimension reduction, considering 
seventeen features from the sEMG, which is done 
because there is a strong correlation between the input 
data sets, so that the same information is repeated several 
times. Two techniques for dimensionality reduction 
were compared to obtain the suitable method, which 
consist of selecting an appropriate subset of the input 
data, discarding the redundant or low contribution 
features. For this, error of classification has been used 
as the criteria for minimization. An iterative process 
for analyzing all possible subsets is also carried out to 
select the best subset of features.

The third stage (“Classification”) is used to compare 
the efficiency of three supervised classifiers, which were 
validated in off-line execution.

Finally, the proposed system, composed of a unique 
feature set and one classifier, was validated with a group 
of amputees and compared with a control group.

Subjects
This study was conducted on a control group and 

a group of amputees. sEMG signals were recorded 
from the dominant forearm of ten able-bodied subjects 
(five males and five females), aged 22-35 years with no 
history of neurological or neuromuscular disorders, and 
ten forearm amputee subjects from the Rehabilitation 

Physical Center of Espírito Santo State (CREFES/Brazil). 
All amputees had traumatic amputation. The amputees 
(five females and five males), aged 19-64, are described 
in both, Table 2 and Figure 1a. The amputee subjects 
were previously evaluated by a physiotherapist, with an 
assessment including aspects as participant identification 
and physical examination (anamnesis, inspection, 
palpation, range of motion and sensitivity). All subjects 
did not have any experience of attending this kind of 
research study before. The inclusion criteria adopted 
in this research were as follows: no evidence, in their 
medical history, of peripheral neuropathy, diseases 
of the central nervous system and restricted mobility. 
All participants were informed about the objectives and 
methodology of the study, through oral presentation. 
After knowing the detailed procedures, the participants 
signed the free consent form, according to the ethical 
principles of the Federal University of Espirito Santo 
(UFES/Brazil). The study was approved by the Human 
Ethics Committee of UFES (protocol number 214/10).

Equipment and electrode placement

sEMG data were acquired using reusable bipolar active 
electrodes (PL091060A - 60Hz) manufactured by Touch 
Bionics, with inbuilt 60 Hz notch filter, pre-amplification 
and conditioning circuits, with adjustable gain. The sEMG 
signals were sampled (1 kHz) via an NI USB-6009 data 
acquisition system. In all experiments, it was necessary 
to ensure that the pressure of the electrode’s contact 
surfaces on the participant’s skin was evenly dispersed 
and that the electrodes were placed on skin areas with 
similar characteristics. All the electrodes were placed 
according to SENIAM recommendations (Hermens et al., 
2000). Prior to place the electrodes over the muscle, 
the skin was previously cleaned with 70% alcohol, and 
conductive gel was used before attaching the electrodes, 
in order to reduce skin impedance. Four electrodes 
were placed on the selected muscles, according to their 

Table 2. Participant demographics. Level of amputation is indicated.

Subject Gender/age Missing Hand Time since 
amputation Prosthesis used Level of 

amputation
A1 Female/45 Right 4 years Esthetic WD
A2 Male/64 Left 42 year Esthetic WD
A3 Female/48 Right 1 year Non WD
A4 Female/23 Right 4 years Non TR
A5 Female/48 Right 2 years Non WD
A6 Female/50 Left 25 years Non TR‡

A7 Male/34 Both† 2 years Non WD
A8 Male/21 Left 2 years Non WD
A9 Male/27 Both† 1 year Non TR
A10 Male/24 Right 1 year Non TR

† Bilateral amputation, not same level on both sides. ‡ Cause of amputation due to poor circulation. WD: wrist disarticulation; TR: transradial.
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relation with the hand movements: flexor pollicis longus 
(FPL) (channel 1), flexor digitorum superficialis (FDS) 
(channel 2), wrist flexors (WF) (flexor carpi radialis 
and flexor carpi ulnaris muscles, channel 3) and wrist 
extensors (WE) (extensor carpi radialis longus, extensor 
carpi radialis brevis and extensor carpi ulnaris muscles, 
channel 4). The electrode placement procedures were the 
same for able-bodied subjects and amputees. A minimal 
inter-electrode distance of 2 cm was used for each subject.

Experimental protocol
Subjects performed each motor task (shown in Figure 1b) 

separately. Thirteen gestures were considered in this study, 
arranged into three task categories: the category A (CA) 
for individual fingers, which includes thumb flexion (F1), 

index flexion (F2), middle flexion (F3), ring flexion (F4), 
little flexion (F5), hand close (HC) and hand open (HO); 
the category B (CB), for hand grasp, which was arranged 
within the following taxonomy: into power, intermediate 
and precision grasps. As power grasps, two kind of 
full hand wrap grasps were considered: large diameter 
(LD: diameter = 90 cm, height = 110 cm) and medium 
diameter (MD: diameter = 50 cm, height = 140 cm). 
The lateral grasp (LT) was included as intermediated 
grasp. For the precision grasps, tripod grasp (TR) and tip 
pinch (TP) were considered. Finally, category C (CC), 
which includes all the thirteen gestures. The rest state 
(RT) was included in all categories as a motor task.

For the experiments, the subjects were seated in a 
chair with both arms on a table. Prior to the recording, 

Figure 1. (a) Group of amputees who participated voluntarily of the experiments; (b) Different kinds of individual finger movements and grasp 
gestures considered in this study (rest state picture is not included); (c) Forearm muscles by channel adopted in the experimental protocol and the 
position of the electrodes. Source: adapted from E-Hand.com (2017).
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the subjects were encouraged to familiarize themselves 
with the experimental protocol. The amputee subjects 
were asked to produce muscle contractions while they 
imagined specific movements with their phantom stump. 
At the same time, they performed a mirrored bilateral 
movement with the intact limb to facilitate the contraction 
of the affected side. During the experiments, the subjects 
were instructed by both visual and oral cues to elicit a 
contraction from the rest state and hold that task for 6 s, 
followed by a background activity (rest state) of 4 s, 
switching between isometric contraction and relaxation. 
Each hand gesture was repeated five times consecutively, 
with a resting period of 3 minutes between each gesture, 
in order to avoid fatigue. Each performed repetition and 
background period are referred to in this paper as “trial”. 
Within each trial, the contraction period was split roughly 
into a phase of onset and a subsequent steady-state 
phase. Moreover, to enhance generalization ability due 
to the fluctuation of sEMG signal, the experiments were 
repeated on three different days.

Data window selection

All the raw signals were preprocessed to remove 
unwanted DC level. Afterwards, the steady-state sEMG 
signal (isometric task) was extracted from each trial 
to avoid a transitional stage (i.e. during movement 
changes), taking one second after the presentation of 
the cue, until one second before finishing the motor 
task, and returning to the rest state. This process is made 
manually because of the low amplitude of the background 
activity, which is similar to the isometric activity itself 
and noise magnitude. Before feature extraction, the 
sEMG signals were windowed, and from each window 
a control command is conveyed. An evaluation of the 
effects of the window length and its overlapping on 
the classification accuracies from all subjects was also 
performed in this research, which was performed by 
comparison of the classification accuracies using all 
features included in this research. Average results for 
all classifiers implemented in this study were computed. 
All these parameters agrees with the real-time constraint 
required by human being, whose response time should be 
less than 300 ms, in order to not introduce a perceivable 
delay by the user (Englehart and Hudgins, 2003).

Feature extraction
Seventeen features were considered in this study, 

which are based on time domain (TD), frequency 
domain (FD) (Phinyomark et  al., 2013; Zecca et  al., 
2002) and non-linear analysis related to Fractals 
(Esteller  et  al., 2001; Phinyomark  et  al., 2012b), as 
shown in Table 3. The mathematical definitions of DFA 

and HFD features are broadly described in Esteller et al. 
(2001) and Phinyomark et al. (2012b), respectively. 

It is worth mentioning that the fractal dimension 
estimates the fractional dimension of the waveform signal 
in the time domain, which is considered as a geometric 
figure, quite useful for transient detection. In this aspect, 
detrended fluctuation analysis (DFA) is one of the most 
frequently used fractal time-series algorithms, which 
explores the non-stationary properties of sEMG signals 
with computational simplicity. DFA is a modified root 
mean square that provides a self-similarity parameter 
representing the fractal dimension. This scaling exponent 
indicates the presence of fractal scaling in a detrended 
time series of the RMS fluctuation in a succession of 
random division of the integrated sEMG signal on the 
time domain (Phinyomark et al., 2012b). DFA offers 
advantage over methods based on wavelet transformations 
in the time-scale domain (Phinyomark et al., 2012b). 
On the other hand, HFD (Esteller et al., 2001) is one 
of the most used fractal dimension feature, as it has 
shown better performance than other fractal methods 
(Esteller et al., 2001), and has also shown good performance 
in the classification of EMG signals.

Each feature was normalized individually based 
on the average and standard deviation values. For each 
data window, the features extracted from all channels 
were concatenated, which yielded a twenty-dimensional 
feature vector per channel. It is important to remark that 
AR coefficients are considered here as four-dimension 
feature for each channel.

Feature selection
It is known that multiple feature sets are more 

feasible to accomplish a high accuracy for the classifier. 
However, despite the analysis of all aforementioned 
features may provide redundant information, too much 
features will increase the computation cost. Hence, it is 
imperative to use techniques for feature reduction for 
optimal subsets in a point of view of class separability. 
Two methods were considered in this study: genetic 
algorithms (GA) and sequential forward selection 
(SFS). A GA approach (Huang and Wang, 2006) for 
feature selection is here used as an alternative to the 
conventional heuristic method SFS (Theodoridis and 
Koutroumbas, 2008). In the case of SFS method, the 
classification accuracy is used as selection criteria, 
thus, an exhaustive analysis was conducted. Thus, GA 
obtains the optimal subset after a series of iterations, 
being efficient with large search spaces and less chance 
to get local optimal solution than other algorithms. 
In addition, a fitness function assesses the mutual 
information between features and the output based on 
the entropy criteria. This approach is based on the feature 
space distribution, which minimizes the within-cluster 
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Table 3. Mathematical definition of features selected for this study, split in groups according its domain. 
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d/c: dimensions per channel; nX  represents the thn  sample of the sEMG signal in a window segment; N denotes the number of sample of the sEMG signal; 
nw  is the continuous weighting window function; thld denotes a threshold used to avoid low-voltage fluctuations or background noises; r is the order of 

AR; jP  is the sEMG power spectrum at the frequency j; M is the length of the sEMG power spectrum; 0f  is a feature value of PKF; r is the integral limit 
of the ratio (r = 20); oP  is nearby the maximum value of the sEMG power spectrum; P is the whole energy of the sEMG power spectrum in a range of 
10 to 500 Hz. L: number of equal-size boxes; Kmax: maximum normalization factor. MAV: mean absolute value; MAV1: modified mean absolute value 
1; MAV2: modified mean absolute value 2; VAR: variance of sEMG; RMS: root mean square; WL: waveform length; ZC: zero crossing; SSC: slope 
sign change; AR: autoregressive model; MNF: mean frequency; MDF: median frequency; PKF: peak frequency; MNP: mean power; TTP: total power; 
PSR: power spectrum ratio; DFA: detrended fluctuation analysis; HFD: Higuchi fractal dimension.

scatter and maximizes the between-cluster separation, 
such as proposed by Huang and Wang (2006).

Both methods are carried out following two approaches: 
in the first one, features from the four channels are considered 
as a whole dataset using all-channel analysis (GA and SFS). 
In the second approach, features from each channel are 
selected using an individual-channel analysis (denoted as 
GA-CH and SFS-CH). All methods were performed by 
each subject for both control and amputee groups and for 
the three task categories, yielding an own feature subset in 

each case. Data classification was also performed, in order 
to determine the performance of each method.

Classification
Linear discriminant analysis (LDA), K-nearest 

neighbors (KNN) and multi-class support vector machine 
(SVM) (one-against-one approach) were employed to 
recognize the sEMG signal patterns. These classifiers 
were selected due to their high performance in 
classification problems and low computational complexity 
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(Chowdhury et al., 2013), being recommended as robust 
classifiers in several studies (Chowdhury et al., 2013; 
Cipriani et al., 2011; Guo et al., 2015; Khushaba et al., 
2012; Oskoei and Hu, 2008; Phinyomark et al., 2012a; 
Wang et al., 2013). In addition, five-fold cross validation 
with all trials of the experiments was used to assess 
the performance of the classifiers. This process was 
repeated three times and the average accuracy was 
calculated. The validation was performed off-line, and 
training and validation were analyzed for each subject 
individually. Finally, the outcome accuracy is smoothed 
using a majority vote (MV) post-processing technique 
(Khushaba et al., 2012), which consider the previous 
two decisions to the given point window of the decision 
stream. This technique prevents overwhelming the 
prosthetic controller with varying misclassification 
decisions, thus enhancing the classifier performance 
by eliminating spurious misclassification (Englehart 
and Hudgins, 2003).

Experiments
Two experiments were conducted in this study. 

In the first one, after the feature extraction, an analysis 
for the feature selection is carried out for each case and 
each task category, each feature selection approach, 
and each group of voluntaries, in order to determine 

an overall optimal feature subset. Features are ranked 
for each case separately, according to the number of 
times a feature is included in an optimal subset, in 
ascendant order, from the more selected to the less 
selected. As a result, the feature subsets obtained for 
each method and each task category were compared. 
In the second experiment, an overall method was 
adopted, selecting the optimal feature subset and the 
classification method, to recognize patterns related to 
all aforementioned task groups.

Statistical evaluation
Accuracy (Acc), mean percentage error (MPE), 

specificity (Sp) and Kappa’s coefficient (k) were 
used to evaluate the performance of each classifier. 
The Kappa coefficient is a parameter proposed by 
Cohen (Japkowicz and Shah, 2011), which represents 
the concordance between the targets and the prediction 
values. Values between 0.61 and 0.80 indicate a substantial 
agreement, while values greater than 0.81 indicate an 
almost perfect agreement. Further, in order to have a 
very complete analysis of the classifier performance, a 
confusion matrix was calculated to obtain the average 
accuracy for all classes.

For the analysis of the results, and taking into 
account the low number of observations and their 
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Higuchi Fractal Dimension 
(HFD) Kmax = 10 1 (Esteller et al., 2001)

d/c: dimensions per channel; nX  represents the thn  sample of the sEMG signal in a window segment; N denotes the number of sample of the sEMG signal; 
nw  is the continuous weighting window function; thld denotes a threshold used to avoid low-voltage fluctuations or background noises; r is the order of 

AR; jP  is the sEMG power spectrum at the frequency j; M is the length of the sEMG power spectrum; 0f  is a feature value of PKF; r is the integral limit 
of the ratio (r = 20); oP  is nearby the maximum value of the sEMG power spectrum; P is the whole energy of the sEMG power spectrum in a range of 
10 to 500 Hz. L: number of equal-size boxes; Kmax: maximum normalization factor. MAV: mean absolute value; MAV1: modified mean absolute value 
1; MAV2: modified mean absolute value 2; VAR: variance of sEMG; RMS: root mean square; WL: waveform length; ZC: zero crossing; SSC: slope 
sign change; AR: autoregressive model; MNF: mean frequency; MDF: median frequency; PKF: peak frequency; MNP: mean power; TTP: total power; 
PSR: power spectrum ratio; DFA: detrended fluctuation analysis; HFD: Higuchi fractal dimension.

Table 3. Continued...
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unknown distribution, non-parametric approaches were 
used, which are strongly suggested in the literature 
(Cipriani et al., 2011) due to not require the assumption 
of normality. Statistical differences among experimental 
results were also evaluated, firstly using the Wilcoxon 
rank-sum test to compare two groups with unpaired data, 
and the Friedman test for simultaneous comparison of 
more than two groups. Post hoc pairwise comparisons 
using Wilcoxon rank-sum test with a Bonferroni 
correction factor were conducted, in which a level of 
ρ < 0.05 was selected as the threshold for statistical 
significance. The outcome of these tests were interpreted 
in this research to establish if there was a statistically 
significance difference in accuracy for each category of 
gestures between different subjects.

Results
In the first part of the experiments, the effects of the window 

length and its overlapping were evaluated. The window length 
was tested between 100, 200, 300, 400 and 500 ms, while the 
overlapping was tested between 20, 40, 60, 80 and 100 ms. 
Results showed a direct correlation between the classification 
accuracy and size of the window length: the more length 
of the window the more accuracy. However, there was no 
significant enhancement for window lengths larger than 
300 ms. As well, the classification accuracy was found to 
increase with a progressive reduction of the overlapping 
time. It is actually expected that a larger window improves 
the accuracy, but it increases the response time. On the 
other hand, a larger overlap reduces the effects of the 
delay, but it increases the computational cost. Thus, a 
trade-off between these two parameters was taken into 
account, being chosen in this study a window length of 
300 ms and an overlapping of 50 ms.

The selection of feature parameters was optimized 
iteratively by trial and error, seeking to improve the 
classification accuracy. For ZC and SSC, the thresholds 
values used were 0.0005 and 0.001, respectively. 
Other parameters were chosen according to the 
literature, such as: for AR (order = 4), DFA (L = 10), 
PSR (N = 20) (Phinyomark et  al., 2013); and HFD 
(Kmax = 10) (Esteller et al., 2001). Additionally, the 
classifier’s parameters were optimized as: for KNN 
(K = 9) and for SVM (C = 0.01 and polynomial kernel 
with order 3).

A relation between average classification and number 
of features was also studied. Classification accuracy 
was found to increase in most of cases when including 
more features. However, there was no substantially 
improvement with more than six features, which agrees 
with the findings of Phinyomark et al. (2012a). Thus, the 
feature selection was adopted to obtain a suitable subset 
of six features to form the sEMG patterns.

Feature selection analysis

In the first experiment, the feature selection methods 
were evaluated for each task category. The features were 
ranked according to the number of times they were 
selected in the optimal subsets for all subjects. Figure 2a 
shows the ranking results where darker boxes indicate 
the more selected features (as the best) while clearer 
boxes indicate a lower selection (worst). In relation 
to GA and GA-CH methods, the ZC and DFA features 
were the most frequently selected in the optimal subsets, 
followed by SSC, AR, HFD and PSR, as shown in 
Figure 2a. Specifically, ZC and DFA were selected in 
all task categories for all amputee subjects. Moreover, 
time domain features were little considered as relevant, 
with MAV1 as the most relevant feature from this set. 
Similarly, PKF obtained from frequency domain was 
considered in lesser extent. The analysis with AG-CH, 
using the individual-channel approach, showed similarity 
in the selected features between channels. Furthermore, 
from AG and AG-CH, the features were found similar 
between task categories and subjects. On the other 
hand, in relation to SFS and SFS-CH methods, AR was 
the most frequently feature selected, followed by HFD 
and MAV1. Different features from time and frequency 
domains were included in the subsets for both control 
and amputee groups. However, outcomes using SFS 
and SFS-CH approaches showed strong differences in 
the features selected, between categories and subjects.

All the feature subsets were tested in the chosen 
classifiers, in order to compare the performance of the 
methods to select the most suitable approach. In general, 
the comparison of error variance distribution of the 
methods had similar mean and standard deviation 
values for all task categories, as shown in Figure 2b, in 
which the results are related with all categories. Due to 
the similar performance of both control and amputee 
groups, only results of amputees have been discussed 
here. KNN and LDA classifiers also had similar error 
variance distributions among the methods, unlike SVM 
classifier, which showed a different behavior. From the 
results, SFS had the best classification performance with 
SVM (MPE < 2.8%), followed closely by GA-CH and 
GA methods with similar performances (MPE < 6.1%) 
and no significant differences (ρ > 0.954). In contrast, 
SFS showed the lowest performance using KNN and 
LDA, having a significant difference when compared 
with SFS-CH (ρ < 0.009). The SFS-CH method achieved 
the best performance for KNN and LDA classifiers, 
followed closely by GA-CH. In addition, the performance 
of SFS-CH was found to be significantly better when 
was compared with GA and SFS (ρ < 0.028). In contrast, 
SFS-CH method showed the lowest performance 
among other methods when using SVM. On the other 
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Figure 2. Results of the feature selection experiment for each one of the task categories. (a) Representation of the selected frequency feature, for 
the control and amputee groups. (b) Error variance distribution of methods for amputees. (c) Classification error for control group and amputees 
using the proposed feature set with SVM. CA: category A; CB: category B; CC: category C; GA: genetic algorithm; SFS: sequential forward 
selection; GA-CH: genetic algorithm by individual-channel; SFS-CH: sequential forward selection by individual-channel; MAV: mean absolute 
value; MAV1: modified mean absolute value 1; MAV2: modified mean absolute value 2; VAR: variance of sEMG; RMS: root mean square; 
WL: waveform length; ZC: zero crossing; SSC: slope sign change; AR: autoregressive model; MNF: mean frequency; MDF: median frequency; 
PKF: peak frequency; MNP: mean power; TTP: total power; PSR: power spectrum ratio; DFA: detrended fluctuation analysis; HFD: Higuchi fractal 
dimension; SVM: support vector machine; LDA: linear discriminant analysis; KNN: K-nearest neighbors.
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hand, from Figure  2b, GA and GA-CH approaches 
not presented significant differences (ρ > 0.618) using 
KNN. In addition, improved results were found using 
the features from GA-CH with KNN (MPE < 9.6%) 
and LDA (MPE < 25.1%).

Error variance descripted in the box plots in Figure 2b 
shows high dispersion in different task categories for 
SFS (i.e. classification of CB and CC using KNN and 
LDA) and for SFS-CH (i.e. CA, CB and CC using 
SVM). The results indicate that features of SFS, GA 
and GA-CH with the SVM classifier provide lower 
classification error rates for both control and amputee 
groups. From these findings, the ranking of the selected 
features from all cases was employed to obtain an optimal 
feature subset for each method. From GA and GA-CH, 
the ranking resulted in the same feature sets, which 
were DFA, HFD, AR, ZC, SSC and PSR. Likewise, 
from SFS, the features obtained were DFA, HFD, AR, 
ZC, MAV1 and MNF. For SFS-CH, the features were 
different for each category, in which the ranking was 
not significant and therefore, it was no suitable to be 
considered. Afterwards, an evaluation of performances 
with the subsets obtained from the raking for each 
method was performed having no significant differences 
between SFS and GA (ρ < 0.918). As a result, taking 
into account all of the above, the six features selected by 
GA (DFA, HFD, AR, ZC, SSC and PSR) were chosen 
as the proposed feature set to be used for the analyses 
conducted in this study.

Proposed pattern recognition system
In the second experiment, the proposed feature 

set was evaluated on the KNN, LDA and SVM 
classifiers. For all task categories, SVM showed the best 
performance, followed by KNN and LDA, respectively. 
Moreover, SVM had a significant difference with 
LDA (ρ < 0.024) for all cases, but it did not have a 
significance difference with KNN (ρ > 0.062), except 
for the control group for gestures of the CB (ρ < 0.032). 

Figure 2c shows the classification error for both control 
and amputee groups using the SVM classifier. From the 
results with amputees, the average accuracy on CA, 
CB and CC categories using SVM were 98.9 ± 0.8%, 
96.9 ± 1.0% and 97.2 ± 0.9%, respectively, with the 
grasp gestures (CB) obtaining the lowest performance. 
For all categories, the Kappa and specificity values were 
higher than 0.94 and 99.0%, respectively. The accuracy 
among subjects ranged from 99.8% (A7 for CA) to 90.8% 
(A3 for CB). In all experiments, the highest performances 
per subject were for the subjects A7, A10 and A8, 
sorted by performance, respectively. For category C, 
which includes thirteen gestures, the best accuracies 
were achieved by subject A7 (99.5 ± 1.0%), followed 
closely by A10 (97.0 ± 2.4%). On the other hand, the 
worst result was for subject A3, for CB (90.8 ± 3.6%), 
while for CA and CC categories, subjects A5 and A6 
showed the worst performance (although, above 92.4%). 
Results using KNN showed average accuracies above 
94.6% (CB), while for LDA the performance was above 
71.9% (CC). From the results for the control group, 
accuracies ranged from 99.9% to 96.8%. The average 
accuracy on CA, CB and CC categories using SVM were 
99.2 ± 0.6%, 97.6 ± 0.8% and 98.8 ± 0.7%, respectively, 
with specificity (Sp > 99.6%) and Kappa (K > 0.98). 
Table 4 summarizes the average results for the groups 
of control and amputees.

The confusion matrices for each task category provide 
the average error classification for all amputees, as shown 
in Figure 3. The confusion matrix for CA shows that 
finger recognitions was mainly confused with flexions 
of the near fingers. On the other hand, the little finger 
(F5) was found to be easily confused with most of the 
gestures. Furthermore, hand close (HC) was confused 
with all fingers (F1-F5). For CB, the confusion matrix 
shows that most gestures were confused among them. 
Specifically, confusion matrices for the subjects show 
that tripod (TP) is easily mistaken with all other classes. 
However, the highest mistaken was found between 
the full hand wrap grasps (for 2.9% of times LD was 
confused as MD). Finally, the results for CC resemble 

Table 4. Average classification accuracy (%), Specificity (%) and Kappa’s Coefficient of three task categories, for control and amputees. Table 
includes the results for SVM, LDA and KNN classifiers.

Cat. Subjects
SVM LDA KNN

Acc Sp k Acc Sp k Acc Sp k

CA
Control 99.17±0.6 99.94±0.0 0.99±0.0 95.06±2.50 99.3±0.3 0.92±0.0 99.55±0.2 99.6±0.2 0.96±0.0

Amputees 98.94±0.8 99.59±0.3 0.97±0.0 80.21±10.88 96.8±1.9 0.78±0.2 96.98±1.9 97.6±0.8 0.92±0.1

CB
Control 97.64±0.8 99.61±0.3 0.98±0.0 89.35±3.48 96.7±0.8 0.84±0.0 98.07±1.4 97.5±1.1 0.93±0.1

Amputees 96.94±1.0 99.03±0.4 0.94±0.0 76.06±9.76 94.9±1.4 0.75±0.1 94.58±2.2 96.3±1.4 0.84±0.1

CC
Control 98.77±0.7 99.90±0.1 0.99±0.0 88.19±3.26 96.7±0.8 0.88±0.0 97.89±0.7 97.5±1.1 0.97±0.1

Amputees 97.19±0.9 99.63±0.2 0.95±0.0 71.91±10.78 94.9±1.4 0.75±0.1 95.36±2.0 96.3±1.4 0.89±0.1
SVM: support vector machine; LDA: linear discriminant analysis; KNN: K-nearest neighbors; Acc: accuracy; Sp: specificity; k: Kappa’s coefficient; 
Cat: category; CA: category A; CB: category B; CC: category C.
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with previous observations, in which TP was found to be 
the most difficult gesture to be recognized. It was also 
found from the results that gestures belonging to CA 
were rarely confused with CB (below 0.1% of mistaken).

Discussion
The objective of this study was to propose a method 

able to recognize patterns from dexterous gestures 
from amputees based on low-density sEMG signals. 
A comparison was presented among different feature 
combinations to define the optimal set which improved 
the performance results. The results indicate that feature 
selection using SFS-based methods was highly variable 
between subjects, while GA-based methods provided more 
homogeneous feature subsets, showing a trend to select 
the same features. Moreover, classification performance 
for SFS and SFS-CH methods showed variation according 
to the algorithm used for classification. In terms of the 
nature of the features, GA method selected in most of 
cases DFA and HFD features, which are suitable to 
characterize the complexity of the sEMG signals. On the 
other hand, AR feature was also considered with high 
relevance in the proposed feature set, which is consistent 
with literature, as shown in Table 1. Other features from 
the time domain such as SSC and ZC were proposed in 
this research, which provide information about frequency 

properties of the signal. Similar results were achieved by 
SFS method, which suggest a correlation between both 
methods. However, SFS included the MNF feature in 
the frequency domain, which involves a transformation. 
Moreover, SFS uses the classification accuracy as criteria 
for selection, which makes it dependent of the selection 
of the classifier and the time consumption for training and 
validation. Otherwise, GA is based on the entropy of the 
feature distribution, which provide high-quality results 
for the feature selection and avoid local solutions, as was 
here reported. In terms of computational complexity, 
GA provides a suitable method for feature selection in 
comparison with SFS methods. As a result of the factors 
mentioned above, the selection of the outcome of GA were 
proposed to provide a better characterization of dexterous 
patterns from the sEMG signal. It should also be noted 
that extraction of same features from all channels is more 
convenient for simpler implementations. However, this 
study showed that it is possible to obtain better results 
with a single-channel approach, but it would require a 
proposed method by each subject. Thus, a suitable scheme 
to get the best results is based on the best performance 
achieved with GA + SVM. It is worth mentioning that 
KNN also could be considered as a good classifier, due 
to present a performance close to SVM and have a lower 
computational complexity.

Figure 3. Confusion matrix with average misclassification for amputees. CA: category A; CB: category B; CC: category C; RT rest state; F1: thumb 
flexion; F2: index flexion; F3: middle flexion; F4: ring flexion; F5: little flexion; HC: hand close; HO: hand open; LD: large diameter, MD: medium 
diameter; LT: lateral grasp; TR: tripod grasp; TP: tip pinch.
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In relation to the number of classes, CA includes 
eight, CB includes six and CC has thirteen. Notice that 
a high number of classes increase the complexity of the 
recognition. A comparison of the overall results showed 
that grasp gestures had a lower performance, even when 
the scheme includes fewer classes. The CB gestures had 
lower accuracy than gestures of CA for all amputees except 
for subject A5, with difference between categories from 
0.21% to 5.66%. Classification accuracy was calculated 
by post-processing EMG recordings (off-line). Although 
each subject’s performance was different (i.e. subjects A7, 
A10 and A8 achieved generally better performance than 
the other ones), most of them presented clear abilities 
for gestures recognizing. Specifically, the subject A3 
showed difficulties when performing grasp gestures, 
which reflected in the results. However, the result 
for individual finger recognition for the same subject 
was similar to other participants (96.4 ± 1.3%). In all 
cases, it was found a lower accuracy for the amputees 
in comparison with control subjects, which may be 
due to several reasons, such as disuse of the muscles or 
damage of the remaining muscles (Kumar et al., 2013). 
All task category analyses lead to understand the abilities 
from amputees to send commands to control hand 
gestures. This study about dexterous gestures included 
the analysis of the ability to perform individual fingers 
movements to understand the abilities of amputees to 
perform the grasps. Grasp gestures recognition seems 
to be more difficult than individual finger, mainly due 
to the simultaneous use of more fingers. The category 
including all the gestures showed the possibility for 
identification of both individual finger gestures and 
grasps with high accuracy.

In addition, it is known from the literature that the 
relation between strength of contraction and sEMG 
amplitude is non-linear for muscle contractions on dexterous 
movements, making it difficult the differentiation of 
muscular activities with the rest state at these conditions 
(Arjunan and Kumar, 2010; Arjunan et al., 2015). On the 
other hand, sEMG signals from dexterous movements 
have a poor SNR (Signal to Noise Ratio), while higher 
contractions produce a bigger SNR, making the features 
based on amplitude feasible only to better performance. 
Also, in the experiments with amputees, it was found 
greater difficulty to accomplish lower contractions during 
the performance of gestures in comparison with able-
bodied subjects, mainly because the amputation effect. 
On the other hand, spasms and difficulty for contraction 
of selective muscles while conducting dexterous tasks 
for a long time was also reported by the amputees, 
mainly A3 and A5, although we think these issues can 
be overcome with a more frequent use of the muscles. 
Also, we think that the level of amputation has influence 
in the results, specifically for subjects A4, A6 and A9, 
who also had some changes on the insertion point of the 

muscles due to the amputation height. In relation to the 
amputee’s characteristics, the age range of the amputee 
group was not restricted because of the difficulty to find 
volunteers with the inclusion criteria adopted. On the 
other hand, the range stablished for the control group 
was set to be smaller than for the amputees. However, 
age was not considered in our study as a factor to be 
compared between both groups. Meanwhile, not significant 
differences between accuracies and age (ρ < 0.365), for 
all movements on amputee group, were found.

For all experiments, the participants were required 
to concentrate whilst the tasks were carried out. 
We attempted to avoid muscle fatigue by allowing 
enough time between repetitions during the tests, and 
no more than one hour was considered for tests, in order 
to avoid mental stress. This is due to the protocol used, 
in which all the participants held the arms on the table, 
but a final application would not have this limitation.

Despite the system was validated in off-line mode, 
the required time for recording and processing the raw 
sEMG signals is lower than 300 ms, which agrees with 
the criteria reported in Englehart et al. (2001) to be used 
in real time application. A comparison of our technique 
with previous works can be unbalanced because of the 
difference in number of electrodes and muscles selected, 
number of classes, whether amputees were included in 
the study and the kind of gestures used in relation to 
the level of dexterity. However, it is possible to obtain 
a ratio (R), which is proposed in this research, to get the 
relation between the number of classes and the number 
of electrodes, meaning that the higher is value of R, 
the better is the method. Table 5 shows a summary of 
previous works, using the value of R for comparison 
with our work. In this sense, our work presents value 
of R equal 2 (for CA) and 1.5 (for CB).

Our research represents a contribution in the study 
of the non-linear techniques to characterize sEMG 
signals for accurately recognize dexterous movements. 
The validation of the proposed method to recognize all 
thirteen gestures considered with high accurate represents 
also a contribution to the field. Additionally, the use of 
low-density sEMG signals represents an important advantage 
for the acceptance of prostheses by amputees, according 
with Khushaba et al. (2012), who state that reduction 
in the number of electrodes, without compromising the 
classification accuracy, would significantly simplify the 
requirements for controlling state of the art prostheses. 
From the studies which considered dexterous gestures, 
Chu and Lee (2009) only included two grasp gestures 
(cylindrical and lateral grasps). On the other hand, 
Khezri and Jahed (2007) identified six gestures combined 
hand and wrist gestures, and only one grasp gesture is 
considered in comparison with five gestures reported 
in our study. They used two channels and performed 
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experiments in real-time. It is worth mentioning the 
study of Li et al. (2011), which recognizes four different 
grasps among eleven gestures with 71.3% of accuracy, 
validated on amputees. However, their work included 
high-density sEMG signals (twelve channels). Moreover, 
Al-Timemy  et  al. (2013) included twelve different 
based-finger gestures with six amputees and six sEMG 
channels, with 89% of accuracy. However, their study did 
not include grasp gestures, a drawback that our research 
has overcome. On the other hand, Castro et al. (2015) 
included finger and grasp gestures with five channels, with 
80% of accuracy and only was validated on able-bodied 
subjects. Additionally, our study included the most 
important gestures from a user-centered perspective 
according to Peerdeman et al. (2011), which improves 
significantly the functionality of the prostheses for daily 
live activities. Moreover, results presented in this research 
can be considered quite relevant, due to the validation 
of techniques with ten amputees, even in off-line mode. 
For our knowledge, no studies for recognition of dexterous 
movements in more than eight amputees were found 
in literature. It is worth mentioning that these on-line 
results are out of focus of this study. It is expected that 
on-line and real-time experiments result in decreased 
performance, which could be overcome with a period of 
training for a better adaptation to the prosthesis.

The problem addressed here has not been fully 
resolved in the literature yet, being that these results 
can be considered both interesting and challenging, 
since in the state of the art there is a lack of tests with 
amputees which will be, at the end, the real users. 
This work presents an original contribution on both 
pattern recognition and application in amputees, having 
an outperformed results compared to others that evaluate 
only non-amputee volunteers. A new method is here 
proposed to identify individual finger flexion, open/close 
hand and grasps movements for hand prosthesis, using 
weak signals and sEMG low density. The system is 
divided into three categories for the study: individual 
finger movements, open/close hand and grasp gestures. 
A set of feature combining non-linear techniques and 
statistical parameters proportional to the sEMG amplitude 
were also proposed to be used as input to the classifiers. 
In terms of classification, LDA had poor results, with the 
best results obtained by SVM, followed closely by KNN. 
However, KNN is faster than SVM, which implies an 
advantage over SVM for real time applications, taking 
into account the not significant difference on statistic 
significant tests. These results are encouraging for the 
development of real-time control strategies based on the 
use of small number of sEMG channels to accurately 
control dexterous prosthetic hands. In comparison with 
others works in the literature, the method proposed in this 
research reached the highest average accuracy (98.9%) 

Table 5. Comparison of previous research with this current work.

Authors N.
Ch

N.
Cl Kind of gestures Subjects Acc

[%]
Ratio

R
Peleg et al. (2002) 2 5 Fingers gestures 4 C 93 2.50

Tsenov et al. (2006)
2 4 Finger and hand gestures

1 C
98 2.00

4 4 1.00
Khezri and Jahed (2007) 2 6 Hand and grasp gestures 4 C 87.3 3.00
Oskoei and Hu (2008) 4 5 Wrist gestures 11 C 97 1.25

Tenore et al. (2009)
19 12 Finger gestures 5 C and 1 A 88 0.63
32 12 Finger gestures 5 C and 1 A 94 0.38

Chu and Lee (2009) 4 10 Wrist and grasp gestures 11 C 97 2.50
Cipriani et al. (2011) 8 7 Finger gestures 5 C and 5 A 48 to 98 0.88

Li et al. (2011) 12 11 Wrist and grasp gestures 5 C
8 A 71.3 0.92

Phinyomark et al. (2012b) 1 2 Forearm, wrist and hand 
gestures 20 C 78 to 91 2.00

Al-Timemy et al. (2013)
6 15 Finger gestures 10 C 89 2.50
6 12 Finger gestures 6 A 79 2.00

Wang et al. (2013) 2 8 Grasp gestures 6 C 98 4.00
Castro et al. (2015) 5 6 Finger gestures 4 C 97 1.20

5 10 Finger and grasp gestures 4 C 80 2.00

This study
4 8 Finger and hand gestures 10 C and 10 A 99 2.00
4 6 Grasp gestures 10 C and 10 A 97 1.50
4 13 Finger and grasp gestures 10 C and 10 A 97 3.25

It were included the number of channels (N.Ch); number of classes (N.Cl); the kind of gestures, as if it included gestures related to finger, hand, writs, 
forearm and grasps; subjects, whether Control (C) or amputee (A); Accuracy (Acc); and finally the ratio R here proposed, which is the relation of N.Cl/N.Ch.
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and the highest value of R (3.25) in works including 
amputees, which means that this method is reliable and 
efficient. The validation of the method here proposed 
was performed in off-line mode. In the future, we will 
test the validity of the proposed method in on-line and 
real-time applications, towards a single-channel for the 
recognition of dexterous gestures on amputees.
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