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Introduction
ECG signals represent the heart electrical activity 

and they are obtained through electrodes placed in 
specific regions of the human body. There are five 
main waves characterizing ECG signals: P, Q, R, S, and 
T. Each wave or complex has an exclusive significance. 
The combination of Q, R and S waves forms which 
is known as QRS complex. The P wave and the QRS 
complex represent the atrial and ventricular depolarization, 
respectively. On the other hand, the T wave characterizes 

the ventricular repolarization. The spectrum of the QRS 
complex is located in the ECG frequency bands whose 
typical frequency components range from 10 Hz to 25 Hz 
(Köhler et al., 2002) and its detection is still subject of 
many studies. Pan and Tompkins (1985) developed an 
objective QRS detection algorithm using a band-pass filter 
from 5 Hz to 12 Hz. Zidelmal et al. (2012) computed the 
power spectrum for four QRS types concluding that their 
energies are concentrated in the range from 5 Hz to 22 Hz. 
Such spectral information is used to QRS complexes 
detection in Challenge 2011 (Training Set A) database 
(Oliveira et al., 2015). In addition, it is important to remark 
that ECG signals are non-stationary, non-symmetric in 
relation to the x-axis and are originally impulsive signals 
(Łęski and Henzel, 2005).

The specific morphology of the ECG signals allows 
identifying various cardiac diseases. However, for an 
accurate analysis, signals should have high Signal-to-Noise 
Ratio (SNR) (Łęski and Henzel, 2005). Low SNR can 
difficult the analysis performed by experts or computational 
applications, since it changes the signal waveform. Typical 
noise present in ECG signals are due to power-line 
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interference in a frequency band varying from 50 Hz to 
60 Hz (Łęski and Henzel, 2005; Patil and Chavan, 2012; 
Rahman et al., 2010) depending on the country. It occurs 
due to interferences of electrical equipment as X-ray, 
air conditioners, elevators (Patil and Chavan, 2012), 
and also due to the differences in electrode impedances 
(Bahoura and Ezzaidi, 2010).

Several researchers have proposed denoising 
approaches to enhance ECG signals and preserve their 
original characteristics. Some noise reduction techniques 
are based on digital filters, wavelet transform and adaptive 
filtering (AlMahamdy and Riley, 2014); singular value 
decomposition (Bandarabadi and Karami-Mollaei, 
2010); independent component analysis (Phegade and 
Mukherji, 2013) and S-transform (Das and Ari, 2013). 
Among the algorithms for PLI removal there are digital 
processing methods based on: fuzzy thresholding 
(Üstündağ  et  al., 2012); nonlinear filter bank (Łęski 
and Henzel, 2005); Fast Fourier Transform and adaptive 
nonlinear noise estimator (Shirbani and Setarehdan, 
2013); Empirical Mode Decomposition (Agrawal and 
Gupta, 2013); neural networks (Mateo  et  al., 2008) 
and wavelet transform (Agrawal and Gupta, 2013; 
Garg et al., 2011; Poornachandra and Kumaravel, 2008; 
Rahman et al., 2010).

Wavelet analysis has been successfully used for ECG 
signal denoising because it deals well with non-stationary 
signals and also presents better resolution in time-frequency 
domain than Fourier analysis (Rahman et al., 2010). In the 
comparative study presented by AlMahamdy and Riley 
(2014), the wavelet transform produced better results in 
most of the experiments. Chouakri et al. (2006) compared 
the performance of Butterworth filters and the multilevel 
wavelet transform, concluding that improved results were 
achieved by the wavelet technique. Usually, wavelet-based 
methods for ECG denoising use thresholding techniques 
with some additional processing (Agante and Sa, 1999; 
AlMahamdy and Riley, 2014; Awal et al., 2014; Bahoura 
and Ezzaidi, 2010; Chouakri et al., 2006; Garg et al., 
2011; Germán-Salló, 2010; Karthikeyan et al., 2012; 
Li et al., 2009; Patil and Chavan, 2012; Poornachandra 
and Kumaravel, 2008; Üstündağ et al., 2012). Patil and 
Chavan (2012) compared the PLI removal for different 
wavelet basis using hard and soft shrinkage functions. 
They conclude that hard thresholding achieves better 
SNR scores than soft thresholding, and the best wavelet 
basis depends on the analyzed signal.

Garg et al. (2011) worked on optimal wavelet-based 
algorithm for ECG denoising, analyzing SNR for several 
wavelet families, decomposition level and threshold 
selection method. In order to calculate the threshold, 
four rules were used: min-max, rigorous sure, universal 
and heuristic sure. The best configuration was achieved 
with the Symlet wavelet with ten vanishing moments 

and five decomposition levels, hard shrinkage function 
and heuristic sure rule or rigorous sure thresholding. 
Poornachandra and Kumaravel (2008) proposed to 
use of hyper shrinkage function in the subbands that 
contained the PLI noise at some decomposition level. 
The obtained results were better when compared to 
those of the state-of-the-art algorithms.

In this paper, it is proposed to use discrete wavelet 
transform (DWT) to decompose an ECG signal degraded 
by high power-line interference. The goal is to have the 
ECG signal represented by the approximation coefficients 
and the noise by the detail coefficients. The basic idea 
is to inspect the ECG and noise frequency range in each 
subband of the wavelet filter bank. The wavelet scale 
whose frequency range exceeds the maximum frequency 
of the ECG signals is set to zero. Then, the IDWT is 
applied in order to obtain a better quality signal without 
the use of thresholding techniques. It is common that such 
techniques do not completely eliminate noise, generating 
residual noise that can still distorts the QRS waveform. 
Therefore, this original ECG analysis methodology 
eliminates the need of thresholding function and is based 
solely on wavelet filter bank and the characteristics of 
PLI. Comparisons with a thresholding technique and a 
classical digital filter were carried out to demonstrate 
the effectiveness of the proposed method. Furthermore, 
the proposed method presents low computational load, 
reduces the residual noise and can be easily implemented.

Methods
A noisy ECG, ( )s t , contaminated by PLI can be 

represented as follows:

( ) ( ) ( )cos 2 rs t x t f t= + α π + ϕ ,	 (1)

where t is time and 50rf =  Hz or  60rf =  Hz is the PLI 
frequency. The unknown parameters are [ ]  0, 2ϕ∈ π , PLI 
signal phase and   0α> , the amplitude. The clean ECG 
is represented by ( )x t .

Dynamical model for generating synthetic 
ECG signals

In order to analyze ECG denoising algorithms 
performances, many metrics based on comparisons 
between the estimated signal and the original one have 
been proposed. Real ECG signals may have other 
noise besides PLI. To focus only on this kind of noise, 
synthetic ECG signals are used in some experiments. 
The mathematical model for generating such signals 
was given by McSharry et al. (2003). They proposed 
a dynamical model that generates a trajectory in the 
three-dimensional state-space given by three coupled 
ordinary differential equations (ODE). The displacement 
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around the “attracting limit cycle of unit radius” describes 
the ECG signal for each RR-interval (McSharry et al., 
2003). ECG characteristic waves are events with fixed 
angles in relation to the unit circle, given by iθ , for 

{ } , , , , i P Q R S T∈ . The ODE model (McSharry et al., 2003) 
is given by ( )2 21y x y y x= − + + ρ

, ( )2 21x x y x x= − + −ρ  

and ( )
2

22exp 0.15sin 2
2

i
i i

i i
z a z f

b
 ∆θ

= − ∆θ − − − π ∑     
 

 , where 

( )2 , atan x yθ =  and ( )2 , atan x y  is the element-by-element 
arctangent between x and y arrays, ( )i i∆θ = θ − θ , ρ is 
the angular trajectory velocity and 2f  is the respiratory 
frequency for modeling the baseline wander. z is the 
generated ECG itself.

This dynamical model yields realistic signals when 
compared to real ECG signals (McSharry et al., 2003). 
By setting parameters , , i i ia b θ  and 2f , different morphologies 
can be generated for ECG characteristic waves. Note that 
z is a superposition of sinusoidal and Gaussian functions. 
Therefore, parameters ia  and ib  affect the amplitude and 
the width of the simulated ECG waves, respectively.

Some specific features of the heart rate can also 
be set, such as mean and standard deviation, besides 
spectral properties. Generated waveforms are similar 

to the 12-lead ECG lead I. Although it is possible to 
produce multi-lead signals (McSharry et al., 2003), in 
this work they were not considered.

In order to set parameters of the proposed method 
and perform experiments for validation, twenty synthetic 
signals were generated using the described model. 
Model parameters and features of the generated ECG 
signals are summarized in Table 1 and Table 2. All signals 
were sampled at   500sf =  Hz, in an interval of 60 seconds 
(30001 samples). Parameters were set for the dynamical 
model in order to obtain ECG signals with different heart 
rate, SNR and PLI values. By using different settings, it 
was possible to obtain ECG waveforms with different 
lengths, amplitudes and fiducial points. Noise was 
added to each synthetic signal according to equation (1), 
considering the parameters described in Table 1 and 
Table 2. Such parameters simulate different PLI noises 
which can be found in a real ambulatory (Huhta and 
Webster, 1973), unlike the most state-of-the-art methods 
which focus on pure sinusoidal noise. So, in addition 
to the fundamental frequency, harmonics interferences 
were also considered (Costa and Tavares, 2009).

Table 1. ECG synthetic signals configuration using the model described in this section. Parameters: rf  is PLI frequency; ϕ and α are noise phase 
and noise amplitude, respectively; other parameters refer to the dynamical model.

Variable
1s 2s 3s 4s 5s 6s 7s 8s 9s 10s

Signal

bpm 60 100 45 82 98 142 90 132 71 89

SNR -9.9574 -6.1875 2.9491 -3.9308 10.6917 -18.7064 -6.3261 -11.3478 0.8604 -12.8859

rf  (Hz) 50 60 50 60 50 60 120 100 50 60

ϕ 0 π /4 2 π /3 11 π /180 −37 π /180 0 0 0 63 π /60 −57 π /45

α 1.0 0.7 0.2 0.4 0.1 2.7 0.7 1.2 0.3 1.5

Pθ -1.2217 -1.3882 -1.1370 -1.3209 -1.3811 -1.5153 -1.3520 -1.4879 -1.2742 -1.3483

Pa 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

Pb 0.25 0.3227 0.2165 0.2922 0.3195 0.3846 0.3061 0.3708 0.2719 0.3044

Qθ -0.2618 -0.3380 -0.2267 -0.3060 -0.3345 -0.4027 -0.3206 -0.3883 -0.2847 -0.3188

Qa -5 -5 -5 -5 -5 -5 -5 -5 -5 -5

Qb 0.1 0.1290 0.0866 0.1169 0.1278 0.1538 0.1224 0.1483 0.1087 0.1217

Rθ 0 0 0 0 0 0 0 0 0 0

Ra 30 30 30 30 30 30 30 30 30 30

Rb 0.1 0.1290 0.0866 0.1169 0.1278 0.1538 0.1224 0.1483 0.1087 0.1217

Sθ 0.2618 0.3380 0.2267 0.3060 0.3345 0.4027 0.3206 0.3883 0.2847 0.3188

Sa -7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5

Sb 0.1 0.1290 0.0866 0.1169 0.1278 0.1538 0.1224 0.1483 0.1087 0.1217

Tθ 1.7453 1.9831 1.6242 1.8870 1.9730 2.1647 1.9315 2.1256 1.8203 1.9261

Ta 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

Tb 0.4 0 0.3464 0.4676 0.5112 0.6153 0.4899 0.5933 0.4351 0.4871
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Table 2. ECG synthetic signals configuration using the model described in this section. Parameters: rf   is PLI frequency; ϕ  and α are noise phase 
and noise amplitude, respectively; other parameters refer to the dynamical model.

Variable
11s 12s 13s 14s 15s 16s 17s 18s 19s 20s

Signal
bpm 112 88 102 102 143 48 83 112 32 32
SNR -26.6488 -24.5940 -7.2742 -12.2446 -30.4465 -20.9463 -18.0920 -25.9964 -25.2101 -21.3714

rf  (Hz) 50 180 240 60 60 50 240 100 60 50

ϕ −37π/180 0 0 −57π/45 11π/180 −37π/180 0 0 0 0

α 7.2 5.8 0.8 1.4 10.4 3.3 2.7 6.9 4.7 3.1

Pθ -1.4280 -1.3444 -1.3950 -1.3950 -1.518 -1.1554 -1.3249 -1.4280 -1.0440 -1.0440

Pa 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

Pb 0.3415 0.3027 0.3259 0.3259 0.3860 0.2236 0.2940 0.3415 0.1825 0.1825

Qθ -0.3576 -0.3170 -0.3413 -0.3413 -0.4042 -0.2341 -0.3079 -0.3576 -0.1911 -0.1911

Qa -5 -5 -5 -5 -5 -5 -5 -5 -5 -5

Qb -0.1366 0.1211 0.1304 0.1303 0.1544 0.0894 0.1176 0.1366 0.0730 0.0730

Rθ 0 0 0 0 0 0 0 0 0 0

Ra 30 30 30 30 30 30 30 30 30 30

Rb 0.1366 0.1211 0.1304 0.1303 0.1544 0.0894 0.1176 0.1366 0.0730 0.0730

Sθ 0.3576 0.3170 0.3413 0.3413 0.4042 0.2341 0.3079 0.3576 0.1911 0.1911

Sa -7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5

Sb 0.1366 0.1211 0.1303 0.1303 0.1543 0.0894 0.1176 0.1366 0.0730 0.0730

Tθ 2.0400 1.9207 1.9929 1.9929 2.1685 1.6506 1.8928 2.0400 1.4915 1.4915

Ta 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

Tb 0.5465 0.4844 0.5215 0.5215 0.6175 0.3577 0.4704 0.5465 0.2921 0.2921

Real ECG signals
In order to validate the proposed method using 

real ECG signals that have been originally corrupted 
by PLI, the Challenge 2011 (Training Set A) database 
from Physionet was chosen (Goldberger et al., 2000). 
Their records were sampled at 500 Hz with 16-bit 
resolution, during 10 seconds, for standard 12-lead (leads 
I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6) and 
their parameters are summarized in Table 3. Note from 
Table 3 that Power Spectral Density (PSD) column is the 
sum of the power spectrum density only for frequencies 
over 25 Hz, and it is expressed as 410PSD×  decibels (dB).

Discrete wavelet transform
The wavelet analysis has been applied to various 

problems in biomedical engineering including noise removal 
in ECG signals (Agante and Sa, 1999; AlMahamdy and 
Riley, 2014; Awal et al., 2014; Bahoura and Ezzaidi, 2010; 
Chouakri et al., 2006; Garg et al., 2011; Germán-Salló, 
2010; Karthikeyan et al., 2012; Li et al., 2009; Patil and 
Chavan, 2012; Poornachandra and Kumaravel, 2008; 
Üstündağ et al., 2012). Due to its better time-frequency 
resolution, it overcomes other classical methods, such as 
short time Fourier Transform, for instance (Üstündağ et al., 
2012). One of the advantages when using wavelets is 

the computational efficiency of Mallat’s pyramidal 
algorithm (Mallat, 1989). This algorithm is indeed a 
two-channel filter bank that splits the input signal in low 
and high frequencies by using quadrature mirror filters. 
The filters can be described through the wavelet ( )tψ  
and the scaling ( )tφ  basis functions (Mallat, 1989):

( ) / 2
,

2  2
2

j
j

j n j
t nt −  −

ψ = ψ  
 

,	 (2)

( ) / 2
,

2 2
2

j
j

j n j
t nt −  −

φ = φ  
 

,	 (3)

1/ 2[ ] 2 ( / 2), ( )h n t t n−= −φ φ ,	 (4)

[ ] ( ) ( )1/ 22 / 2 ,g n t t n−= −ψ φ ,	 (5)

where [ ] ( ) [ ]11 1ng n h n−= − − , 1,2, ,j J= …  and n integer. 
Such basis functions satisfy the conditions ( ) 2 1t dt∫ φ =  
(Mallat, 2009) and ( ) 0t dt∫ ψ =  (Daubechies, 1992). For a 
discrete analysis, wavelets are constructed by discretizing 
a “mother” function, and scaling it by 2 j (Mallat, 2009), 
according to Equations (2) and (3). In this way, a signal 
( )x t  is decomposed as follows (Mallat, 2009):
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[ ] ( ) ( ),,j j nd n x t t= ψ 	 (6)

and

[ ] ( ) ( ),,j j na n x t t= φ ,	 (7)

where [ ]ja n  and [ ]jd n  are, respectively, the j-th 
approximation and detail coefficients at scale 2 j, and 
j is the decomposition level. In a general way, given 
two sequences [ ]1f n  and [ ]2f n , their inner product is 
defined as ( ) ( )1 2 1 2,f f f t f t dt= ∫ , where ( )2f t  is the 
complex conjugate of ( )2f t . These coefficients can be 
computed in a fast way by a cascade algorithm, using 
discrete convolutions and subsamplings, by means of 

[ ] [ ]1 * 2j ja p a h p+ =  and [ ] [ ] [ ]1 * 2j jd p a n g p+ =  (Mallat, 
2009), where [ ] [ ],x n x n= −  p is an integer and * is the 
convolution operation. This operation means coefficients 
filtering in a lower resolution, i.e., j. In this way, [ ]2h p  
filters the higher frequencies and [ ]2g p  lets them pass. 
Therefore, an orthogonal representation for a signal 
( )x t  is composed by the largest scale approximation 

coefficients plus detail coefficients at the scales j (Mallat, 
2009), as follows:

( ) [ ] ( ) [ ] ( ), ,J J n j j n
n j J n

x t a n t d n t
≤

= φ + ψ∑ ∑ ∑ .	 (8)

Therefore, the wavelet decomposition output is a 
smooth signal representing the original one in a coarse 
way. In addition, the details are obtained when moving 
from a lower to a higher scale. Note that the smooth signal 
and details represent the similarity between the scaling 
and wavelet functions, according to Equations (7) and (6), 
respectively. For an ECG signal, the approximation 
coefficients represent its smoothed version. On the other 
hand, detail coefficients capture abrupt changes, such as 
high-frequency noises. In order to reconstruct the signal 
( )x t  the following equation is required (Mallat, 2009): 

[ ] [ ] [ ]1 1* *j j ja p a h p d g p+ += +


 , where [ ] 0y n =  if 2 1n p= +  

or [ ] [ ]y n y p=  if 2n p= .

In the analysis step, the output wavelet filter bank 
frequency spectrum is divided into two octave bands. 
In each new decomposition level, the low-frequency 
spectrum is again divided into two new octave bands, 
at the ideal cut-off frequencies, and so on, resulting in 
a logarithmical set of bandwidth (Germán-Salló, 2010). 
Therefore, if sf  is the sampling frequency, the frequency 
contents for approximation and detail coefficients, in the 
j-th decomposition level, are in the interval 10, / 2 j

sf
+   

and 1/ 2 , / 2j j
s sf f+  , respectively. In practice, the ideal 

cut-off frequencies are not realizable (Peng et al., 2009). 
Therefore, the intervals are not exactly those mentioned 
before. Abrupt changes in the frequency intervals do not 
occur, but the filters frequency responses magnitude 
decreases gradually, tending to a constant value. 
Thus, leakage energy affects the frequency content for 
each DWT decomposition subband. Approximation 
coefficients are scattered higher than 1/ 2 j

sf
+  frequencies. 

On the other hand, detail coefficients are lower than 
1/ 2 j

sf
+  frequencies and higher than / 2 j

sf . Hence, there 
is a band overlap. Therefore, DWT frequency behavior 
impacts the decomposition level and the wavelet function 
choices. As an example, Figure 1 shows the frequency 
content for the quadrature mirror analysis filters given 
by Equations (2) and (3) for a 500 Hz sampling rate.

Thresholding techniques
Classical methods for ECG denoising based on 

thresholding techniques present good performances 
(AlMahamdy and Riley, 2014; Garg et al., 2011; Patil 
and Chavan, 2012; Poornachandra and Kumaravel, 2008). 
Basically, in such methods, the goal is to estimate the 
signal ( )x t  from a contaminated signal ( ) ( ) ( )    s t x t r t= + , 
where ( )r t  is the additive noise (Donoho and Johnstone, 
1994). For this purpose, the DWT is applied to ( )s t  
and then [ ] ( ) ( ),,j j nd n s t t= ψ in the wavelet domain is 
obtained. For hard shrinkage function, the absolute value 
of [ ]jd n  is compared to a threshold λ. If [ ]   jd n ≤λ, the 
corresponding value associated to the index n is set to 0. 
Otherwise, it is preserved.

In order to implement the wavelet shrinkage method, 
it has considered the Symlet 8 wavelet with three DWT 
decomposition levels and universal threshold (given by 

( ) 2 log Nλ= , where N  is the signal length), combined 
with hard thresholding function. It is noteworthy that 
this is the best configuration for this method (Garg et al., 
2011; Patil and Chavan, 2012). The choice of the 
wavelet function order and the number of decomposition 
levels are justified since they are the same used by the 
proposed method.

Notch filter
McManus et al. (1993) present four categories of 

digital filters for PLI removal: low-pass, notch-rejection, 
adaptive and global. For the implementation of the 

Table 3. Parameters of the real ECG signals.

Record (Lead) eSQI stdSQI PSD  (dB)

1007823 (II) 0.6460 0.2051 -1.5345
1034914 (III) 0.3982 0.1875 -1.2290
1086219 (III) 0.3969 0.2147 -1.3232
1098605 (V1) 0.4421 0.2969 -1.3742
1105115 (V2) 0.4136 0.1507 30.7853

1124627 (aVL) 0.5272 0.1676 -1.0693
2209843 (I) 0.5557 0.2565 -1.5421
1138505 (I) 0.4139 0.3344 -1.2085

Average 0.4742 0.2267 2.6881
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narrow-band-rejection filter (notch) it is considered 
a recursive filtering that includes a two-pole 
and two-zero filter. The filter output is given by 
( ) ( ) ( ) ( ) ( ) ( )1 2 3 41 2 1 2y k x k a x k a x k a y k a y k= + − + − + − + −  

where ( ) x k  is the input ECG signal and the 
coefficients are ( ) ( )1 2 1 / cos ,sa BC f= − − π θ  ( )2

2 / ,1 sa BC f= − π  
( ) ( )3 2 1 / cossa B f= − π θ  and ( )2

4 1 / sa B f= − − π , in which 
2 /nom sf fθ = π , and , , , nom sB C f f  are -3 dB response bandwidth 

(in Hz), center-frequency response, PLI frequency and 
sampling rate, respectively (McManus  et  al., 1993, 
apud Lynn, 1971).

In order to compare the proposed method with 
a classical approach, the recursive notch filter was 
selected. Lynn (1971) apud McManus et al., (1993), set 

10B ≈  Hz, 0.01C ≈  and 1sf =  kHz. Such parameters do 
not assure the best results for the signals tested in this 
work. Therefore, they were empirically set as 5B =  Hz, 

0.005C =  and 500sf =  Hz, assuring best results.
Considering that the objective of this work is to 

introduce a new method that overcomes the thresholding 
techniques, the results were compared to the ones obtained 
by a classical approach.

Evaluation metrics
In the literature, many objective measures are proposed 

to assess denoising techniques. One of them is the SNR, 
given by ( )2 2

1010log /  x ySNR = σ σ  dB where 2
xσ  and 2

yσ  are, 

respectively, signal and noise variances. For a signal 
( )x t , the SNR improvement is defined by Awal et al. 

(2014) as ( ) ( ) ( ) ( )2 2
1010l / ˆogimpSNR s t x t x t x t = ∑ − ∑ −  

 
dB, where ( )x̂ t , ( )s t  and ( )x t  represents the denoised 
signal, noisy signal and original ECG signal, respectively. 
Another measure, associated with mean square error 
is the root mean square error (RMSE ) expressed by 

( ) ( ) 2ˆ1 /  RMSE N x t x t= ∑ −   , where N  is the signal length. 
The relative error in the signal estimation can be written 
as ( ) ( )1/  ˆN x t x tε = ∑ − . A statistical measure that allows 
the linear association between the predicted signal and the 
original one is the correlation coefficient (Üstündağ et al., 
2012): ( ) ( ) ( ) ( )ˆ ˆ

2 2ˆ / ˆx x x xr x t x t x t x t= ∑ −µ −µ ∑ −µ ∑ −µ               , 
where xµ  and x̂µ  are the expected values for ( )x t  and 
( )x̂ t , respectively. This measure varies from 1−  to 1 and 

the zero means no linear relationship.
The measures presented before are appropriate for 

synthetic ECG signals, but not for real signals, since, 
in that case, there is no prior access to noiseless ECG 
signals samples. In this way, two metrics, proposed by 
Li et al. (2014), are used: the relative QRS complexes 
energy, given by /ieSQI Er Ea= ∑ , and the relative 
standard deviation, given by ( ) / 2i istdSQI r M a= ∑σ σ , 
where Ea is the energy of the whole signal, iEr  is the 
energy in each QRS complex, M  is the total number of 

Figure 1. Frequency response for the quadrature mirror analysis filters in Equations (2) (black line) and (3) (red line) for Symlet 8-tap wavelet in 
three decomposition levels and 500 Hz sampling rate. (a) Level one. (b) Level two. (c) Level three.
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QRS complexes, irσ  is the standard deviation of each 
QRS complex and iaσ  is the standard deviation around 
the i-th QRS complex (from: R  0.2s−  to R  0.2s+ ; where 
R is the location of each R peak).

Statistical analysis
In order to evaluate whether the differences among 

the means in the experimental results are merely due 
to some random samples in the population, it is used 
the Kruskal-Wallis test. In this statistical test, ranks are 
used instead of the original observations. Firstly, all 
observations are ranked together and then the sum of 
the ranks is computed for each sample by means of the 

equation: 
( ) ( )

2

1

12 3 1
1

N
i

i
ii i i

RH n
n n n=

= − ∑ +∑
∑ ∑ +

, where N  is the 

number of samples, in  is the number of the observations 
and iR  is the sum of ranks in the  i-th sample (Kruskal 
and Wallis, 1952). H  corresponds to some value in the 

2χ  distribution. Thus, the probability to get a highest 
or equal value than H  is given by 2

1Pr N H− χ ≥ , that is 
named -valuep , with 1N −  degrees of freedom. When H  is 
large and  -valuep ≤ α, then the null hypothesis is rejected 
(Kruskal and Wallis, 1952). In our case, the null hypothesis 
is that there is no significant difference among the tested 
methods. In this work 0.05α = .

Proposed method
According to equation (1), the ECG signal represented 

by ( )s t  is added to another signal which represents the 
PLI. Thus, an estimated ECG signal ( )x̂ t  can be obtained 
as follow:

( ) ( ) ( )cosˆ 2 rx t s t f t= −α π + ϕ .	 (9)

In the wavelet domain, the signal ( )s t  is represented 
by the approximation coefficients and PLI is contained in 
detail coefficients for a specific subband. Consequently, 
a simple approach to enhance the ECG signal in the 
wavelet domain is to reconstruct the signal ( )x̂ t  discarding 
detail coefficients. Based on the wavelet representation, 
Equation (8), the signal ( )x̂ t  can be written as a product 
comprising scaling functions and low-pass filter outputs 
added to the sum of the product of wavelet functions and 
high-pass filter outputs. In the j-th level, low-frequency 
components are limited in the interval 10,  /2  j

sf
+    

while the high-frequency components are in interval 
1 /2 ,  /2j j

s sf f+  . Note that the precise frequency spectrum 
partition is impractical, since the filters frequency responses 
should be ideal (Peng et al., 2009). It results in a band 
overlap with frequency content close to 1 /2 j

sf
+ . In the 

overlap band interval the energy leakage occurs when 
the wavelet decomposition is used (Peng et al., 2009), 
i.e., besides the expected frequency components, other 
frequencies also appear in the decomposed signal. 

Peng et al. (2009) solved this problem by resampling 
the signal when the frequency content of interest is in 
the neighborhood of 22 sf

− .
Choosing sf  in a such a way that the approximation 

coefficients spectrum is limited in the range [ ]0, 25.0  Hz 
and for detail coefficients spectrum is limited in the range 
[ ], a b , where   25a≥  Hz and   60b≥  Hz, for some decomposition 
level j, and 22 25sf

− >  Hz, it is possible to separate, in 
the wavelet domain, the PLI noise from the corrupted 
ECG signal. Obviously, the choice of j depends on the 
ECG signal sampling rate sf . According to Nyquist’s 
Theorem, sf  should satisfy the following inequality: 

2s Nf f≥ , where Nf  is the maximum frequency of the 
signal. For instance, if 125sf =  Hz then 62.5Nf =  Hz, 
and therefore if 1j = , approximation coefficients are in 
the range [ ]0, 31.25  Hz, which comprises the frequency 
range content in an ECG signal. Detail coefficients are 
in the range [ ]31.25, 62.5  Hz, containing PLI noise and 
other high-frequency noises.

As suggested by Peng et al. (2009), the upper limit 
for the approximation coefficients is higher than 25 Hz, 
which is the frequency of interest. Therefore, setting the 
sampling rate at 125 Hz is suitable. Obviously, for other 
sampling rates that are integer multiple of 125 Hz, the 
ECG signal and PLI noise can also be separated, but 
for higher decomposition levels. Nevertheless, for the 
experiments performed in this work the best results 
were obtained at a sampling frequency of 500 Hz. 
In Table  4 it is shown the frequency distribution in 
each decomposition level for such sampling rate. 
Columns two and three show the frequency range for 
ideal cut-off frequencies according to the range shown 
in the Figure 1. Columns four and five show the real 
ranges, which are approximated values, obtained by 
analyzing the frequency response with the Symlet 
8-tap. In the column six are presented the approximate 
band overlap ranges, considering the quadrature mirror 
analysis filters from Equations (4) and (5).

In a noise-free ECG signal reconstruction, detail 
coefficients are not so important, since they do not have 
relevant information about the ECG signal waveform, 
as shown in Table 4. Therefore, in order to obtain the 
signal ( )x̂ t , given the sampling rate sf , a decomposition 
level L J≤  must be chosen, where J  is the maximum 
level. Afterward, it is assumed [ ] 0jd n = , for all n and 

 1 , 2, , j L=   in Equation (8). In this way, it follows from 
equation (8) that

( ) [ ] ( ),ˆ L L n
n

x t a n t= φ∑ .	 (10)

The proposed method can be summarized in four 
steps: 1) The ECG signal is sampled at    125sf L= ⋅  Hz, L is 
a positive integer; 2) / 2W  null samples are added to the 
signal edges, where 1000W =  is the window length; 3) signal 
is split using a W -length Hanning window with an 
overlap of 50%; 4) for each window, next steps are 
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run; 4.1) DWT is applied to the splited signal, up to the 
level L; 4.2) set [ ] 0jd n =  for all n and 1, 2,  , j L= 

; 4.3) 
The estimated ECG signal is reconstructed according 
to equation (10).

The choice of the parameter L is the key to isolate 
the noise in a wavelet decomposition subband and 
that is why the sampling rate was defined as multiple 
of 125  Hz. If such sampling rate is not possible, there 
is no guarantee that the PLI will appear in the detail 
coefficients. In this way, resampling of the ECG signal 
should be considered. The null samples are added to 
avoid abrupt changes in the signal ends and / 2  W  samples 
are necessary due to the window overlap, which is an 
important procedure in signal processing. Generally, 
the window overlap vary from 50% to 75% (Prabhu, 
2014), but for the proposed method better results were 
achieved with 50% overlapping.

Results

The wavelet function choice
When applying the wavelet transform, besides the 

decomposition level choice discussed in the last section, it 
is also important to choose the wavelet function that best 
fits the signal. When ECG is the subject and threshold 
based methods are used, some researchers prefer Symlet 
wavelets because their scaling function resembles more 
its waveform (Awal et al., 2014; Chouakri et al., 2006; 
Karthikeyan et al., 2012; Li et al., 2009). Good results are 
also found using Daubechies wavelets (Karthikeyan et al., 
2012; Patil and Chavan, 2012; Üstündağ et al., 2012) and 
Coiflet (Agante and Sa, 1999; Karthikeyan et al., 2012). 
On the other hand, Poornachandra and Kumaravel (2008) 
compared some wavelet families with Mayer’s wavelet 
and conclude that the last one is better. Commonly, each 
method uses different thresholding techniques and 
they have influence on the wavelet function choice. 
However, there is some agreement about the use of 
Daubechies and Symlet wavelets. As the proposed 
method does not use thresholding techniques, the choice 
of wavelet function can be made by analyzing the results 
of experiments using the synthetic signals from Table 1 
and Table 2. Preliminary experiments with the proposed 
method showed that the relative error obtained when 
using Symlets is smaller than the one using Daubechies 
wavelet functions. Furthermore, it was noted that higher 

wavelet order leads to better result. However, runtime 
increases substantially.

For instance, the difference between the relative 
errors metrics, for the synthetic signal 1s , using sym10 
(Symlet wavelet function of order 10) and sym20 is 

45.14 1 0−×  and the absolute difference between runtimes 
is around 22.17 1 0−×  seconds. When 15s  is considered, 
which is the one with worse SNR, runtime increases by 
about 310−  seconds, from sym2 to sym8. From sym8 
on, this metric increases by an amount of 110−  seconds 
when the number of the wavelet vanishing moments 
increases. On the other hand, the relative error metric 
decreases in average 42 1 0−×  for each new Symlet wavelet 
function order, from sym4 on. Longer runtime is due 
to higher amount of the filters coefficients for wavelets 
of higher order.

Figure  2 shows the boxplots of the experiments 
for denoising synthetic signals with worse SNR: 

6 8 11 12 13 15 16 17,  , , , , , , s s s s s s s s  and 20s . Each box displays the 
relative error and runtime for different Symlet wavelet 
orders. The higher the order of the wavelet, the larger 
the filter length and number of the vanishing moments. 
This implies on softer functions and higher runtime. 
In general, the relative error remains almost constant from 
sym8 on, according to the results presented. Conversely, 
runtime is almost constant for wavelet functions with 
order lower than 8, increasing significantly after sym8. 
Therefore, considering balance between the relative 
error and the runtime, the authors believe that the best 
results could be achieved using sym8.

Experiments

In order to validate the proposed method, evaluation 
measures were computed for each synthetic signal. 
According to the analysis in last section, Symlet 8 was 
used for simulations. Superscripts PM, TT and NF refer 
to proposed method, thresholding technique and notch 
filter, respectively.

Analyzing column eight in Table 5, it can be seen a 
significant SNR improvement ( impSNR ) when compared to 
the values from row two in Table 1 and Table 2. For 15s  
signal, with input SNR around 30−  dB, the improvement 
was 50.9574  dB. 11s , with input SNR around 26−  dB, the 
second worse, has an improvement of 45.8751 dB. In a 
general view, the impSNR metric has an average close to 
40.7806  dB. The correlation coefficient r  (eleventh 

Table 4. Frequency distribution for the wavelet decomposition of a signal sampled at 500 Hz considering a 3 dB cut-off frequency, according to Figure 1.

Level
Ideal frequency range (Hz) Real frequency range (Hz)

Band overlap range (Hz)
Approximation Detail Approximation Detail

1 0-125 125-250 0-138.6 111.4-250 111.4-138.6
2 0-62.5 62.5-125 0-69.30 55.72-138.58 55.72-69.30
3 0-31.25 31.25-62.5 0-34.60 27.87-62.49 27.87-34.60
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Figure 2. Boxplot for several Symlet wavelet orders: (a) relative error metrics boxplot, (b) runtime.

Table 5. Results for the proposed method (PM), thresholding technique (TT) and notch filter (NF) applied to synthetic ECG signal.

Signal PMRMSE TTRMSE NFRMSE PM
impSNR TT

impSNR NF
impSNR PMr TTr NFr

1s 0.0075 0.0098 0.0189 39.5135 37.1723 31.4736 0.9994 0.9991 0.9972

2s 0.0080 0.0103 0.0149 35.8650 33.6532 30.4104 0.9995 0.9991 0.9988

3s 0.0049 0.0018 0.0086 29.1643 38.0101 24.3344 0.9997 1.0000 0.9998

4s 0.0040 0.0053 0.0094 36.9897 34.5251 29.5679 0.9998 0.9996 0.9991

5s 0.0075 0.0103 0.0099 19.4379 16.7149 17.0817 0.9995 0.9991 0.9997
6s 0.0190 0.0292 0.0474 40.0431 36.3182 32.1079 0.9963 0.9913 0.9802

7s 0.0062 0.0015 0.0143 37.9753 50.1589 30.7739 0.9997 1.0000 0.9989

8s 0.0148 0.0059 0.0228 35.1591 43.2127 31.4330 0.9979 0.9997 0.9972

9s 0.0043 0.0048 0.0100 33.8243 32.8589 26.4913 0.9998 0.9998 0.9996

10s 0.0067 0.0088 0.0281 44.0353 41.6684 31.5227 0.9996 0.9993 0.9941

11s 0.0259 0.0472 0.1282 45.8751 40.6579 31.9784 0.9941 0.9809 0.8867

12s 0.0060 0.0152 0.0986 56.7105 48.6041 32.3823 0.9997 0.9980 0.9306

13s 0.0100 0.0003 0.0105 35.0189 65.0196 34.6267 0.9992 1.0000 0.9998

14s 0.0089 0.0113 0.0265 40.9507 38.8206 31.4428 0.9993 0.9989 0.9949

15s 0.0208 0.0371 0.1793 50.9574 45.9358 32.2579 0.9955 0.9859 0.7850

16s 0.0125 0.0207 0.0589 45.3992 41.0428 31.9638 0.9982 0.9951 0.9655

17s 0.0056 0.0010 0.0375 50.6373 65.5897 34.1308 0.9997 1.0000 0.9891

18s 0.0245 0.0312 0.1182 45.9789 43.8886 32.3125 0.9950 0.9920 0.9065

19s 0.0122 0.0385 0.0806 48.6787 38.7278 32.3051 0.9978 0.9788 0.9204

20s 0.0148 0.0304 0.0534 43.3985 37.1499 32.2712 0.9969 0.9870 0.9646

Average 0.0112 ±  
0.0065

0.0160 ± 
0.0140

0.0488 ± 
0.0471

40.7806 ± 
8.2487

41.4865 ± 
10.4377

30.5434 ± 
3.8225

0.9983 ± 
0.0017

0.9952 ± 
0.0066

0.9654 ± 
0.0538

H 14.704 27.927 8.2435
-valuep 0.0006 0.0000 0.0162

column) is close to one for all signals, meaning that the 
estimated signal waveform matches with the original 
ECG signal. Relative error ε  and RMSE metrics indicate 
an accuracy of at least 210−  for almost all experiments.

In Figure  3, one can see the results in time and 
frequency domain, when applying the denoising methods 
for signal 15s .

Table  6 shows results obtained by the proposed 
method, thresholding technique and notch filter for real 
signals. Comparing the original values in fourth column 
of Table 3 with the ones from the eighth to the tenth 
columns of Table 6, it is noted that the frequencies over 
25 Hz are less relevant for the denoised ECG signal than 
in the noisy ECG for all analyzed signals.
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Figure 3. Analysis display for signal 15s . (a) Synthetic ECG signal and (b) its spectrogram. (c) Noisy ECG signal and (d) its spectrogram. Denoised 
ECG signals obtained by (e) proposed method, (g) thresholding technique and (i) notch filter, and their spectrograms (f), (h) and (j), respectively. 
The red rectangle highlights a distortion inserted by the thresholding technique.

Table 6. Results for the proposed method, thresholding technique and notch filter applied to real ECG signals. PSD column is the sum of the power 
spectrum density for frequencies over 25 Hz.

Record 
(Lead)

PMeSQI TTeSQI NFeSQI PMstdSQI TTstdSQI NFstdSQI PMPSD TTPSD NFPSD

1007823 (II) 0.650 0.647 0.645 0.208 0.207 0.204 -2.771 -2.301 -1.556
1034914 (III) 0.448 0.442 0.428 0.192 0.192 0.192 -3.531 -2.243 -1.237
1086219 (III) 0.393 0.404 0.396 0.214 0.214 0.214 -2.716 -2.056 -1.326
1098605 (V1) 0.468 0.460 0.453 0.340 0.340 0.300 -3.425 -2.085 -1.397
1105115 (V2) 0.428 0.418 0.500 0.785 0.135 0.131 -57.92 -38.16 2.681

1124627 (aVL) 0.543 0.530 0.529 0.168 0.168 0.168 -2.200 -1.988 -1.088
2209843 (I) 0.676 0.608 0.430 0.331 0.330 0.330 -3.460 -1.779 -1.261
1138505 (I) 0.438 0.434 0.602 0.263 0.264 0.263 -2.760 -1.922 -1.573

Average 0.506±0.099 0.493±0.085 0.062±0.083 0.313±0.187 0.233± 
0.069

0.028± 
0.063

-2.649± 
18.175

-1.749± 
11.944

-0.143± 
1.341

H 0.1350 1.4982 18.005

-valuep 0.9347 0.4728 0.0001
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Discussion
Comparing the proposed method results to the 

ones obtained with hard thresholding method, it can 
be seen that the proposed method was worse than hard 
thresholding only for 3s , 7s , 8s , 13s  and 17s  signals. In fact, 
the proposed method performed better in all requirements 
for all other signals. Average values reaffirm that the 
proposed method was better for the most of the evaluation 
measurements, except in terms of impSNR . However, the 
differences on impSNR  values were not significant. For this 
metric, the proposed method was better than thresholding 
technique for 75% of the synthetic signals. In addition, 
it got higher results for signals 11s  and 15s , the ones with 
the worst SNR values.

By means of the Kruskal-Wallis test, we conclude 
that there exists significantly statistical difference for 
at least two methods. In comparison to notch filter, the 
proposed method was better for all measures. However, the 
proposed method and the thresholding technique have 
a similar performance in statistical terms.

Note, from Figure 3 (f), that the energy of the QRS 
complexes remains practically unchanged when compared 
to the original. The original signal energy is close to 

33.2015 10× , whereas the energy of the denoised ECG 
signals obtained by the proposed method, thresholding 
technique and notch filter, are close to 33.2188 1 0× , 33.3894 1 0×  
and 312.6194 1 0× , respectively. In addition, note from 
Figure 3 (g), that the thresholding technique inserted a 
distortion in the initial samples of the ECG signal whereas 
the proposed method did not change its waveform. 
Moreover, it can be seen from Figure 3, (i) and (j), that 
notch filter achieved poor performance, since PLI was 
only attenuated. In the signal first samples it cleared the 
PLI with biggest gain. This outcome is common for notch 
filter (Nauman et al., 2013). Due to the fact that some 
ECG analysis is performed by humans, a good visual 
quality is essential for an accurate diagnosis. Thus, one 
can conclude that the proposed method performed the 
best in terms of noise attenuation and distortion insertion.

For real ECG signals, from Table 6, it is notorious 
that the proposed method reached better results for all 
signals, except for record 1086219 with respect to eSQI  
and record 1138505 for stdSQI . It is still noticeable that 
eSQI measure values are greater for signals obtained 
by the proposed method than the ones for the original 
signals. Since this measure is directly proportional to 
the QRS complex energy, these results mean that the 
high frequency noises (60 Hz or 50 Hz) have their gain 
attenuated. Furthermore, the proposed method performed 
the best for most of ECG signals, and it is important to 
highlight that its computational complexity is lower, 
since the additional thresholding technique complexity 
due to threshold computation is ( )O N  (Lang et al., 1996). 

In comparison to notch filter, the proposed method 
obtained better results for all signals. It is noteworthy 
that notch filter performed the worst for all quality 
assessment tests.

From Kruskal-Wallis test results, it is noted that only 
for the PSD measure there are significantly statistical 
difference among the three methods, considering a 
level of significance of 5%α = . This is because the other 
measures not consider the PLI noise.

From Figure 4, one can observe that thresholding 
technique and notch filter removed the PLI only for some 
segments in the observed ECG signal, leaving the others 
attenuated. Hereby, the result for record 1105115 obtained 
by the proposed method is much better (Table 6, fifth 
row) than the other methods, since the high frequency 
noise (180 Hz, see spectrogram in Figure 4) was not 
removed by the thresholding technique and notch filter. 
Note that 180 Hz is 2-nd harmonic frequency of 60 Hz.

Although the proposed method have obtained better 
results for the most of the analyzed signals, it is important 
to note that it depends on ECG signals sampling rate. 
So, one must be careful on the sampling rate and DWT 
decomposition level choices, since these parameters 
have great influence in the estimated signals quality, 
according to steps 1 and 4.2 of the proposed method. 
When, by technical reasons, the sampling rate cannot 
be changed, decomposition level must be chosen in 
such a way that a minimum amount of noise crosses 
into the signal subband.

Other limitation of the proposed method refers to 
the frequency content removed. In a scenario where 
frequencies over 34.60 Hz (see Table 4) are relevant, 
detail coefficients in the first level can be retained 
(frequencies in the range 111.40 to 250 Hz). Even so, 
PLI noise is removed. Though, in any case, the frequency 
content around 50/60 Hz is lost. In this way, the cardiac 
disorders that generate frequencies into the interval from 
34.60 to 111.40 Hz are despised. It is essential to note 
that bandwidth mentioned in Table 4 can be distinct, 
provided that other cut-off frequency is considered. 
Therefore, the frequencies higher than 34.60 Hz are 
preserved in the reconstructed ECG signal.

In overview, in this paper it was proposed a new 
method for PLI noise removal based on the wavelet 
transform without the use of thresholding techniques. 
For such purpose, it was used a filter bank architecture 
implemented by the multiresolution analysis that allows 
splitting a signal in frequency subbands. By setting the 
sampling rate in 500 Hz, it is possible to separate PLI 
noise from ECG signal in distinct frequency subbands 
by using the wavelet representation. In order to choose 
this sampling rate, the energy leakage was considered, 
such that, for a DWT decomposition level, the frequency 
content of interest was close to half of the maximum signal 
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frequency. Therefore, by zeroing detail coefficients, the 
ECG signal is reconstructed using only the approximation 
coefficients, obtaining a denoised ECG.

Energy conservation analysis for each cardiac cycle 
showed that the proposed method does not insert distortion 
in the estimated ECG signals. For real ECG signals, it 
was noted that the estimated QRS complexes waveforms 
are smooth and keep the expected morphology. On the 
other side, the thresholding technique added abrupt 
changes in some QRS complexes for records 1086219 
and 2209843. Besides, other advantage of the proposed 
method is that there is no computational requirement 
for a threshold computation.

Although the proposed method depends on the 
sampling rate, it can be applied to other databases, with 
sampling rates different from a multiple of 125 Hz, 
since the signals resampling are considered. Finally, 
the proposed method can be applied for denoising other 
signals, with frequency content known in a specific range. 
In future works such applications will be considered.
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