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Introduction
The hand is an important component in the human 

anatomy (Schieber and Santello, 2004), and its main 
physical importance is defined by the object manipulation 
with specific movements, such as the grip and pinch 
movements (Touvet et al., 2014). The grip and pinch 
movement control are important to perform activities 
of daily living (ADL) (Nowak et al., 2013); also, 
their measure provide relevant data and they are also 
parameters to verify the stability and the functionality 
of the hands movements (Butterfield et al., 2009; 
Hilton et al., 2013; Monteiro et al., 2010).

To support the rehabilitation process Zhang et al. 
(2010) have created a glove based on augmented reality 
by associating it with a virtual piano, with the main 
goal of rehabilitating the finger movements. Wang et al. 
(2010) have developed a device for hand rehabilitation 
combined with augmented reality to reach the hand 
functionality rehabilitation in an interactive and funny 
way. Also, Boschi and Frère (2013), have developed a 
system composed of a virtual environment associated 
with a peripheral device to evaluate the Range of Motion 
(ROM) and the grip and pinch strength movement. 
Other authors have also developed computer games, 
which were connected to a modified device, so it could 
offer learning and leisure options for people with severe 
upper limbs motor limitations (Scardovelli and Frère, 
2015). Some studies have also reported the creation of a 
dynamometer that was easy to manipulate and portable to 
be used in rehabilitation clinics and hospitals, especially 
by assisting the clinical evaluation process (Canuto et al., 
2016; Lin et al., 2012; Schrama et al., 2014).

These studies are important due to the absence of 
devices that can provide reliable data to quantify such 
tasks in clinical evaluations. Therefore, this study 
describes the development and the test a peripheral 
device to quantify the static and dynamic strength and 
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the ROM of the grip and pinch movement on children 
by using the objects of ADL.

Methods

Subjects

An experimental study was performed with 30 volunteers 
between 7 and 10 years old (8.77 ± 1.28), 60% male 
and 40% female, randomly selected. The number of 
volunteers was based on the central limit theorem (Kar 
and Ramalingam, 2013). They were all students at the 
Sports Department of Guararema, in Sao Paulo, Brazil. 
The inclusion criteria were based on: minimum age 
was 7 years old and maximum age was 10 years old, 
absence of skeletal muscle alterations in upper limbs 
members, absence of neurological alteration, and 
preserved cognitive and all volunteers were Taekwondo 
practitioners, therefore the use of upper limbs was 
preserved. The study was approved by the Research 
and Ethics Committee of the University of Mogi das 
Cruzes (CAAE: 45883715.9.0000.5497), and registered 
on ClinicalTrials.gov (NCT02965352). All parents or 
legal guardians of each volunteer consented and signed 
the authorization form for participation in this study.

Development of the peripheral device

Selected objects

Due to the necessity of quantifying the static and 
dynamic strength of the grip and pinch functional 
movements, a peripheral device was designed to measure 
the values of the strength, the performed ROM, and the 
maintained grip strength during all the arc of movement. 
The peripheral device was composed by three objects, 
easy to manipulate. They were associated with ADL 
objects. The selected objects are widely used in daily life, 
and they were related to the movements of cylindrical 
grip (door handle object), pulp‑to‑pulp pinch (switch 
object), and pulp‑to‑side pinch (key object). They were 
inserted into one board.

Instrumentation and measurement

To ensure correct positioning of the hand during the 
grip and pinch movement, micro switches were inserted 
into each object.

In the door handle object, nine micro switches were 
used at the side edges. Their arrangement was made to 
ensure contact of the second phalange of each finger 
during the movement (except the thumb) (Figure 1a). 
One side of the door handle were placed 2 pairs of micro 

Figure 1. Objects used for measurement. (a) Instrumented door handle object; (b) Electrical scheme of the micro switches in parallel and series of 
the door handle object; (c) Instrumented switch object; (d) Electrical scheme of the micro switches in series of the switch object; (e) Instrumented 
key object; (f) Electrical scheme of the micro switches in series of the key object.
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switches connected in parallel but with serial connection 
between them. On the other side were placed five micro 
switches connected in parallel (Figure 1b).

The linear switch object was instrumented with two 
micro switches. They were used to ensure the correct 
positioning of the grip movement of the first phalanx of 
the volunteer’s finger (Figure 1c), connected in series 
(Figure 1d).

Two micro switches were used on the side of the 
key object in which the volunteer presses with the side 
of the index finger (Figure 1e). The micro switches are 
connected in series between them (Figure 1f).

The sensor FSR, model 402, was used to detect grip 
and pinch strength (Interlink..., 2017). The FSR 402 
used in this study has a detection diameter of 12.7mm 
(Length: 60mm; Width: 19mm) with a nonlinear 
characteristic curve, highly repetitive force as low as 
2% and actuation strength as low as 0.1 newton (N) and 
sensitivity range to 10N.

For each object, a potentiometer was used to detect 
a ROM. For the switch object, a linear potentiometer 
was used and a multi‑turn potentiometer was used for 
the door handle and key objects. The potentiometers 
used showed an uncertainty in the measurement of 3% 
± 0.25% of the independent linearity. The transfer curve 

was obtained through the corresponding variation of the 
potentiometer resistance for each displacement performed.

A linear potentiometer was also used to implement 
the switch object. This electronic component shows 
independent linearity of ± 0.05% and a high‑resolution 
level of approximately 0.5%.

The electronic circuit (Figure 2) was divided into: 
FSR sensor connected to a voltage divider; buffer‑based 
protection implemented with operational amplifier; 
conditioning with a low‑pass 1st order filter with a cutoff 
frequency of 1591.5Hz; and analog control based on an 
analogue multiplexer (HEF4051B) activated by the micro 
switches inserted in each object of the peripheral device.

Data acquisition
Labview™ software was used to develop the interface 

and control data acquisition, allowing for storing the 
strength and ROM values of each executed movement.

Device validation
The tests were performed with strength sensors 

and potentiometers (multi‑turn and linear). For this, a 
mathematical model was defined to obtain the values 
of strength and range of motion, according to the 
biomechanics of the objects. To perform the test, the 

Figure 2. Peripheral device – electronic circuit.
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potentiometers and the strength sensor were inserted 
into a protoboard. In addition, a test with specific mass 
(50 g) was used to establish the characteristic curve of 
the strength sensor. In this way, the voltage variation 
was verified in each sensor. The potentiometers were 
positioned according to the movements with step of 
10º. All electrical voltage data were measured with the 
Agilent digital multimeter, model U1242A, 0.001 voltage 
resolution. For ROM, the data generated by the door 
handle object and the key object (Table 1) are indicated 
in degrees and the switch object in percentage (Table 2). 
To the strength data obtained were converted from N 
to voltage (Table 3).

Adjustment procedure for the measuring 
objects

To minimize read errors due to residues or interferences, 
an algorithm has been developed in Labview that uses the 
zero reference for measurements. In this way, Labview 
™ shows the data when sensors and potentiometers are 
triggered, with no residual values.

Functionality tests with the volunteers

The tests with the volunteers were made in the Sports 
Department of Guararema, with a properly authorized 
schedule, in a classroom, and in the presence of the 
supervisor.

For the performance test, volunteers, one by one, 
sat in a chair with support for their body. The peripheral 
device and computer were placed on a table in front of 
the volunteer. Initially, all necessary explanations about 
the peripheral device use were performed together with 
the demonstration of each object and its movements. 
Volunteers could also manipulate each object before the 
tests started. The volunteers performed the tests with the 
right upper limb 3 times, with an interval of 1 minute 
each. Also, the zero reference of the peripheral device 
was performed before each test. Data were analysed at 
the end of all tests.

Data analysis
For statistical analysis, the absolute frequency, relative 

frequency, mean and standard deviation were calculated. 
Thus, for each test the mean of 3 measurements was 
performed. The D’Agostino statistical test was performed 
to verify if the sample distribution was parametric or 
non‑parametric. In addition, the correlation between 
strength and ROM was performed by the Pearson 
correlation test for the parametric data and by the Sperman 
correlation test for non‑parametric data. For all analysis 
was considered a significance level of 5%.

Results

Peripheral device validation
In the peripheral device developed, each one of the 

objects was instrumented to capture the strength and 
the ROM during the execution of the cylindrical grip, 
pulp‑to‑pulp pinch, and pulp‑to‑side pinch movements. 
The value of the initial and final ROM for the door handle 
object is from 0° to 40°, key object is from 0° to 55° and 
the switch object is from 0 to 100% (values calculated 
as a percentage).

Table 4 shows the minimum strength (N) values 
required to actuate each device and the corresponding 
voltage (V).

Peripheral device functionality tests
The mean of all strength (N) from the initial contact to 

the end of the movement was obtained by 3 measurements 
on three objects. In the analysis of the final mean of the 
three tests on the key object, the minimum resistance for 
pulp‑to‑side pinch was 2.93 N and the maximum was 
3.14 N. On the switch object, the minimum resistance 

Table 4. Strength data compared to voltage.

Objects Strength (N) Voltage (V)
Door handle 2.5 3.03

Switch 2.8 3.15
Key 2.7 3.11

Table 1. Data conversion: angle (◦) to voltage (V) for door handle and 
key objects.

Objects Angle (◦) Voltage (V)
Door handle 0° 4.62 ± 0.009

40° 4.58 ± 0.01
Key 0° 3.33 ± 0.01

55° 3.31 ± 0.01

Table 2. Data conversion: percentage (%) to voltage (V) for the switch 
object.

Object Percentage (%) Voltage (V)

Switch

0 2.04 ± 0.02
25 2.09 ± 0.02
50 2.35 ± 0.02
75 3.36 ± 0.02
100 4.33 ± 0.01

Table 3. Data conversion: strength (N) to voltage (V) for the FSR 402.

Strength (N) Voltage (V)
1.0 2.05 ± 0.00
1.5 2.30 ± 0.17
2.0 2.81 ± 0.14
2.5 3.03 ± 0.15
3.0 3.24 ± 0.15
3.5 3.42 ± 0.14
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for pulp‑to‑pulp pinch was 2.84 N and the maximum 
resistance was 3.10 N. In the door handle object, the 
minimum resistance for cylindrical grip was 2.49 N and 
the maximum was 2.95 N.

Figure 3a shows the mean initial strength during 
the displacement of the key object to the end of the 
test, which corresponds to the pulp-to-side pinch 
movements achieved by the volunteers. All volunteers 
showed minimum strength of 2.7 N during the tests. 
In addition, all volunteers could achieve the minimum 
strength required to activate the object in the 3 stages 
of the test. Some volunteers showed higher strength at 

initial grip, but decreased during the displacement to the 
end of the test. Other volunteers started the tests with 
higher values, which decreased during the displacement 
but increased at the end of the test.

Figure 3b shows the initial displacement value, the 
value during displacement and the value in the final 
displacement related to the pulp‑to‑pulp pinch movement 
of the switch object. Volunteers have performed a strength 
value higher than 2.8 N to activate the switch object.

The door handle object values related to the cylindrical 
grip movement are shown in Figure 3c. All volunteers 
activated the door handle with strength greater than 2.5N.

Figure 3. Values from initial movement to final movement. (a) Measurement of the movement strength on pulp‑to‑side pinch on the key object; 
(b) Measurement of the movement strength on pulp‑to‑pulp pinch on the switch object; (c) Measurement of the movement strength on the cylindrical 
grip on the door handle object.
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Figure 4 correlates the age of the volunteers with 
the grip and pinch strength of each object. In the key 
object, strength tends to increase according to the age, 
however, all volunteers above 8 years old have shown 
a higher strength peak. In the door handle object and 
switch object the strength gradually increased according 
to a higher age.

When analysing the ROM of each movement, 73.33% 
of the volunteers completed the ROM to the end with 
the key object, when compared with the validation data 
of the peripheral device (0‑55°). With the switch object, 
86.67% completed the movement (0‑100%). With the 
door handle object, 93.33% completed the movement 
until the final moment (0‑40º).

For each object, the correlation between the mean 
strength for the three grips and ROM was performed. 
Thus, the Sperman correlation test was used to correlate 
key object strength and ROM because the sample was 
not parametric. The results showed a weak correlation 
between the means with r=0.3042.

For the other analysis, the Pearson correlation test 
was performed. The switch object showed a very weak 
correlation between the strength and mean of the ROM, 
with r=0.0324. The door handle object also showed a 
weak correlation between the strength and ROM mean 
with r=0.2004.

Discussion
The peripheral device allowed to analyze the 

static and dynamic strength during the whole range of 
movement, as well as to measure grip strength for the 
handling of each object. The peripheral devices found 
in the literature measure strength, an ADL or perform 
only an analysis of the movements (Duff et al., 2015).

Other authors also developed a peripheral device 
associated with a game to acquire the data more easily, 
and they were able to verify the strength limit and ROM 
(Boschi and Frère, 2013). Strohrmann et al. (2013) measured 
some ADLs with sensors attached to the body, but they 
did not quantify these data. Another study associated 
the use of instrumented gloves to a virtual environment 

Figure 4. Age versus grip and pinch strength for the different objects tested.

to train movements of daily activity, but also did not 
quantify these data (Dimbwadyo‑Terrer et al., 2016).

Many authors have developed peripheral devices 
and exoskeletons, but these should be positioned on 
the upper limb to operate properly (Dovat et al., 2008; 
Hasegawa et al., 2012; Heo and Kim, 2014). The peripheral 
device proposed in this paper does not use any sensor 
positioned for the upper limb of the volunteer, which 
gave more freedom of movement.

In order to analyze the ROM, all the objects were 
instrumented with potentiometers, which can allow 
the measurement of the displacement, indicating if the 
movement was realized or not. Hasegawa et al. (2012) 
also used potentiometers in their peripheral device and 
they could find evidence if the volunteers could complete 
or not the movement, and also if they could reach the 
maximum ROM.

Zhang et al. (2010) developed an augmented reality 
system associated with gloves for the grip and pinch 
movement, to pick up and manipulate objects. They also 
provided training with virtual objects, however, the study 
could not assure the correct location of those movements.

In addition, in this study, Labview™ was used to 
record the data and it was possible to record the values 
of each device from all volunteers individually, which 
is similar to the study by Bouwsema et al. (2014) who 
also used Labview ™ to acquire the data to verify the 
cylindrical grip strength through a prosthesis to assert 
software efficiency.

Another important feature of the developed 
peripheral is that it is robust. The selected objects have 
been securely protected to provide support at the time 
of handling. They were inserted in a coloured box, to 
catch the attention of the volunteers when handling it. 
The interface created through Labview™ worked as 
a playful incentive. These data are in agreement with 
authors who claim to have good results when using 
more fun peripheral devices (Friedman et al., 2014).

The use of instruments for the strength and quantification 
of ROM has been a contribution in the search for 
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parameters in both strength and evolution of the ROM 
gain, according to their functionality (Duff et al., 2015).

A limitation of this study is that the developed 
peripheral device allowed the activation of the key object 
and door handle only with the right hand.

This study designed and developed a peripheral device 
with three devices used in ADL. The peripheral device 
can quantify the static‑dynamic strength of movement 
and ROM of one type of grip – cylindrical grip – and 
two types of functional pinches –pulp‑to‑pulp pinch and 
pulp‑to‑side pinch in children.
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