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Introduction
Experimental investigations have been conducted 

to provide data on the neuromechanics and control of 
movement in health and disease. Vertebrate preparations 
(other than humans) have provided a comprehensive 
assessment of molecular, cellular, and synaptic mechanisms 

involved in spinal cord neurophysiology and muscles 
(e.g., Burke et al., 1971; Eccles et al., 1957; Jankowska, 
1992), along with the involvement of supraspinal pathways 
in motor control (for a review see Porter and Lemon, 
1995). Parallel to animal experiments, human motor 
behavior has been extensively evaluated under different 
conditions. For instance, force and position control tasks 
have been used to evaluate the performance of the motor 
system and its constituent elements, such as motor units 
(De Luca and Hostage, 2010; Negro et al., 2016), spinal 
cord circuits (Magalhães et al., 2015; Yavuz et al., 2014), 
and the activity of descending tracts (Kristeva et al., 
2007; Ushiyama et al., 2012).

Due to technical and ethical limitations, experiments 
performed on humans cannot provide detailed biophysical 
data on the neuromuscular elements involved. Therefore, 
their influence on system behavior – something of 
fundamental importance to understand how disease 
affects motor function – is poorly known. On the other 
hand, animal experiments have provided a detailed view 
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on the mechanisms operating at different levels of the 
neuromuscular system and their putative involvement in 
force generation and control. More recently, genetically 
modified animal models have been adopted to investigate 
the underlying mechanisms of neurodegenerative 
diseases (e.g., Bouhy and Timmerman, 2013; Taylor et 
al., 2016). Another approach widely adopted by motor 
control research groups is the mathematical modeling 
of the neuromusculoskeletal system. Since the work of 
Hodgkin and Huxley (1952), quantitative models grounded 
on biophysical concepts have been used to provide 
additional clues on the mechanisms underlying neuronal 
function. More recently, multi-scale biologically based 
neuromuscular models have helped the interpretation 
of experimental results from humans, contributing with 
invaluable information on the neural bases of motor 
control (Allen and Elbasiouny, 2017; Elias et al., 2014; 
2012; Farina et al., 2014; Nakajima et al., 2017; Niu et al., 
2017; Schuurmans et al., 2009; Watanabe et al., 2013; 
Watanabe and Kohn, 2015; Williams and Baker, 2009b). 
The advantages of this approach might be summarized 
as: (1) the neuromechanics and control of movement can 
be associated to biophysical and electrophysiological 
properties of individual elements (e.g., neurons, synapses, 
sensory receptors, muscle fibers); (2) the individual 
behaviors of elements from a large set can be evaluated 
since there is no limitation regarding the recording 
of individual cell activity; (3) these models can be 
somewhat easily modified/adapted to represent changes 
experienced by the neuromuscular system during aging 
or pathological conditions.

To the best of our knowledge, none of the recent 
multi-scale models of the neuromusculoskeletal system 
attempted to investigate the influence of neurodegenerative 
diseases on motor control. This kind of research has 
the potential to improve our understanding of the 
fundamental mechanisms behind neuromechanical 
responses in diseased subjects from a functional point 
of view. Therefore, this perspective article is aimed at 
presenting an overview of existing multi-scale models 
of the human neuromusculoskeletal system and how 
they can be used or adapted/improved to provide new 
insights into neurodegenerative diseases. Most of the 
presentation in the subsequent sections will focus on a 
few representative aspects closer to our own experience 
with multi-scale modeling and their relation to specific 
neurodegenerative diseases.

Overview of neuromusculoskeletal 
models

in the last 25 years, different neuromusculoskeletal 
system models have been proposed to investigate 
human motor control. Part of these models include a 

detailed description of the musculoskeletal system, with 
physiological representations of muscle dynamics and 
the biomechanics of joints and limbs, but they only 
have a reduced biophysical description of the central 
nervous system (Laine et al., 2016; Nagamori et al., 2018; 
Raphael et al., 2010; Tsianos et al., 2014). Other models, 
on the other hand, focused on the representation of 
motor-unit pool physiology to investigate force control 
schemes (Fuglevand et al., 1993; Revill and Fuglevand, 
2011). Here, we will focus on neuromusculoskeletal 
models that combine a biophysical description of 
the nervous system with a biologically plausible 
representation of the musculoskeletal system (e.g., Allen 
and Elbasiouny, 2017; Cisi and Kohn, 2008; Elias et 
al., 2014; Niu et al., 2017; Schuurmans et al., 2009; 
Williams and Baker, 2009b).

Structure of a multi-scale 
neuromusculoskeletal model and its motor 
neurons

Figure 1A provides an overview of the major structures 
encompassing the neuromusculoskeletal system and their 
interconnections. Some details of this figure depict the 
structures of possible mathematical models, e.g., related 
to a motor neuron (MN) soma and dendrites (Figure 1C), 
to an axon (Figure 1D) and to a muscle (schematic at the 
bottom of Figure 1B). The best described structure in 
existing multi-scale models is the spinal cord (schematic 
at the top of Figure 1B), whose major neural element 
is the MN. At least two different classes of MNs exist 
in the spinal cord (Manuel and Zytnicki, 2011): alpha 
(α) MNs, which innervate extrafusal muscle fibers; and 
gamma (γ) MNs, which innervate intrafusal muscle 
fibers. Such α MNs are typically modeled mathematically 
on the basis of reduced compartmental models with at 
least one soma and one dendrite (Cisi and Kohn, 2008; 
Elias et al., 2014; 2012; Farina et al., 2014; Watanabe and 
Kohn, 2015; Watanabe et al., 2013; Williams and Baker, 
2009b), with ionic channel dynamics represented using 
Hodgkin-Huxley (HH) formalism (see an example of an 
α-MN model in Figure 1C). Some studies adopted a point 
neuron model (single compartment) as a representation 
of α MNs (Niu et al., 2017; Schuurmans et al., 2009). 
Similarly, multi-compartment (>2) or morphologically 
realistic models are rarely adopted (Allen and Elbasiouny, 
2017) mostly due to the large computational cost 
associated with their numerical solution, as well as 
the lack of a sufficient data on the parameter values 
that characterize the different MNs of any given pool, 
as well as the corresponding distributions of synaptic 
inputs along their dendritic trees.

As to the γ MNs there is little information on their 
dynamics and biophysical properties. Therefore, to the 
best of our knowledge, none of the recent multi-scale 
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neuromuscular models adopted a biophysically based 
mathematical representation of this class of MNs. 
Additionally, little is known about the convergence 
of synaptic inputs to these cells at the spinal cord 
(see dashed arrows in Figure 1B).

Spinal interneurons

Despite the great diversity of spinal interneurons 
(INs) (Jankowska and Hammar, 2002), only a few 
have been represented in multi-scale neuromuscular 
models, such as INs mediating Ia reciprocal inhibition 
(type Ia sensory afferents come from muscle spindles), 
group II excitation (type II sensory afferents come from 
muscle spindles), Ib inhibition (type Ib sensory afferents 
come from Golgi tendon organs), and recurrent inhibition 
by Renshaw cells. Sometimes, a tailor-made computer 
model simulator has been developed by a research group 
to investigate a specific interneuronal circuit. An example 
of such a model is that from Williams and Baker (2009a) 
which was used to evaluate a putative role of Renshaw 

cells in attenuating tremor. At other instances, a wider 
set of interneuronal circuits has been modeled and 
used in computer simulations, as in a recent study of 
neurophysiological mechanisms behind human postural 
control, which included interneuron circuit models of 
reciprocal inhibition, nonreciprocal or Ib inhibition, and 
group II excitation (Elias et al., 2014). Since descriptions 
of the morphology and electrophysiology of INs are scarce 
in the literature, such neurons have been mathematically 
modeled in a simplified way. Typically, interneurons have 
been represented by a single compartment encompassing 
passive and active membrane properties, as well as 
synaptic inputs (Cisi and Kohn, 2008; Elias et al., 2014; 
Williams and Baker, 2009a).

Sensory receptors
At least two kinds of sensory receptors have been 

included in neuromusculoskeletal models, the muscle 
spindle and the Golgi tendon organ, which provide 
position and force feedback. The activity of muscle spindle 

Figure 1. Hierarchical view of the neuromusculoskeletal system and its major structures. In color are the general aspects, and in thinner lines are 
three examples of possible modeling approaches to specific subsystems. (A) Overview (as a block diagram) of the neuromusculoskeletal system 
and the interactions between its elements. (B) A more detailed view of the spinal cord (top) and a typical Hill-type muscle model with muscle 
receptors (bottom) is shown to illustrate a common modeling approach for muscle functioning. Dashed lines represent either undetermined 
or underrepresented elements in current multi-scale mathematical models of the neuromuscular system. (C) Equivalent circuit of a typical 
α-MN model, as used in mathematical models found in the literature. This two-compartment (soma-dendrite) model encompasses: membrane 
capacitance and leakage conductance (C  and Lg , respectively); dendritic Ca++ conductance ( Cag ); somatic Na+, fast K+, slow K+, and persistent 
Na+ conductances ( Nag , Kfg , Ksg , and Napg , respectively); and a coupling conductance ( cg ). Membrane ( V ) and equilibrium ( E ) potentials are 
also represented in the diagram. Subscripts s  and d  stand for somatic or dendritic elements, respectively. (D) The upper schematic figure depicts 
an axon with two healthy patches of myelin at the two ends and in between a thinner myelin segment followed by a total lack of a myelin segment. 
A node of Ranvier is shown magnified in a schematic at the lower left. At the bottom right there is a depiction of a possible electric circuit equivalent 
for a mathematical model of an axonal segment, showing at the left a basic circuit for the Ranvier node (with different voltage-dependent ionic 
channels) coupled to a myelinated equivalent circuit at the right. Acronyms: MN – Motor Neuron; IN – Interneuron; GTO – Golgi Tendon Organ.
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sensory afferents has been represented by simplified 
(Prochazka and Gorassini, 1998) or biophysically based 
models (Mileusnic et al., 2006). However, the great 
challenge in working with muscle spindle models is 
the setting of the fusimotor drive (static and dynamic), 
which is mostly unknown in humans and primates. 
Most of the studies adopt ad-hoc values for the fusimotor 
inputs to reproduce experimental data from cats and 
humans (Elias et al., 2014; Jalaleddini et al., 2017a; 
2017b; Mileusnic et al., 2006; Niu et al., 2017). Albeit 
a comprehensive model of Golgi tendon organs (GTOs) 
has been proposed in the literature (Mileusnic and Loeb, 
2006), multi-scale neuromusculoskeletal models have 
adopted phenomenological nonlinear models for GTO 
activity produced in response to force modulation 
(Lin and Crago, 2002).

The outputs of these receptors have been represented 
as analog signals that modulate conductances of spinal 
neurons (Schuurmans et al., 2009) or modulate the 
intensity of spike trains that affect the spinal neurons 
by postsynaptic potentials (Chaud et al., 2012).

Supraspinal nervous system
Despite their significant role in motor control, 

supraspinal structures (e.g., motor cortex, brainstem, 
cerebellum, basal ganglia) have been largely simplified 
in current neuromusculoskeletal models (see the dashed 
ellipse in Figure 1B). Large-scale models of brain circuits 
do exist (e.g., Eliasmith et al., 2012), but to the best of 
our knowledge, no study tried to merge these models 
and the existing multi-scale models of the neuromuscular 
system. So far, the activity of descending tracts has been 
represented by stochastic processes (either continuous 
or point processes) acting on spinal neurons. Also, it 
is worth noting that ascending sensory pathways to 
supraspinal structures are still absent in the present 
neuromuscular models.

Synapses
As to the synaptic dynamics, either alpha 

functions or kinetic models have been employed in 
neuromusculoskeletal models. The alpha functions have 
been used either as postsynaptic potentials themselves 
or as representing synaptic conductances (the latter 
are better representations of reality). The kinetic 
models represent the dynamics of reaction between 
neurotransmitter and receptor so that the synaptic 
conductances follow the amount of bound neurotransmitter 
to receptor at any given time. The main advantage of 
kinetic models (Destexhe et al., 1994) is their close 
relation with physiological processes associated with 
neurotransmitter release and binding to postsynaptic 
receptors. Some studies ignore the synaptic dynamics by 
representing the effective synaptic current reaching the 
soma as a stochastic process (Negro and Farina, 2011) 
or a superposition of sinusoids (Farina et al., 2014).

Musculotendon units and joint biomechanics

Hill-type models (at the bottom of Figure 1B) or 
some biologically plausible simplification have been 
adopted to represent musculotendon dynamics and 
force generation in multi-scale neuromuscular models 
(Elias et al., 2014; Nagamori et al., 2018; Niu et al., 2017; 
Schuurmans et al., 2009). These models are preferable 
to simple twitch representations (Fuglevand et al., 1993) 
since variations in muscle length and tendon tension 
are used as feedback variables in most scenarios 
(see the blue rectangles in Figure 1B). A great diversity 
of models has been proposed and evaluated in the 
literature (for a review see Tsianos and Loeb 2017; 
Valero-Cuevas et al., 2009) but they mostly represented 
isometric or quasi-isometric contractions. History-dependent 
muscle properties (such as short-range stiffness and 
yielding) are usually neglected in current multi-scale 
models of the neuromusculoskeletal system, thereby 
precluding a deeper investigation of muscle function 
(Tsianos et al., 2012). Therefore, more refined models 
should be considered in the future for better biological 
realism, such as models based on the known dynamics 
and energetics of cross-bridges (Tsianos et al., 2012; 
Zahalak, 1981). However, in some studies one is 
interested in the mapping of the MN pool inputs to the 
muscle force under the simplification of an open-loop 
system, i.e., without sensory feedback (Allen and 
Elbasiouny, 2017; Elias et al., 2012; Negro and Farina, 
2011; Watanabe et al., 2013; Williams and Baker, 
2009b). In such cases, force generation mechanisms 
can be simplified by linear (Fuglevand et al., 1993) 
or nonlinear (Raikova and Aladjov, 2002) models to 
represent a muscle twitch.

Once the muscle force is generated, the torque at a given 
joint can be calculated by considering muscle moment 
arm, which depends on joint position (Arnold et al., 2010). 
Studies on isometric force production do not consider 
joint dynamics, since no movement is produced in this 
case. To investigate more complex motor behaviors, 
Newton’s laws of movement are used to derive joint 
dynamics (Elias et al., 2014; Loeb and Davoodi, 2016). 
Current multi-scale models, however, have tended 
to investigate single degree of freedom movements, 
since the solution of multi-dimensional multi-link 
biomechanical systems would require the calculation 
of an extremely large number of coupled differential 
equations (Durandau et al., 2018), leading to prohibitively 
long computation times when coupled to biophysically 
based neuronal dynamics. For the latter challenge, an 
interface between future multi-scale neuromuscular model 
simulators and multi-link dynamics packages should be 
created in order to optimize the usability of those two 
complex and complementary resources.
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On the choice of model parameters

Parameterization is a tough problem when dealing 
with the mathematical modeling of any biological 
system. In existing neuromuscular multi-scale models, 
the parameter values have been chosen both from 
experimental measurements from animals (mostly 
cats) and humans. For instance, morphological 
(e.g., somatic and dendritic areas) and electrophysiological 
parameters (e.g., resting and equilibrium potentials, ionic 
channel conductances) of α MNs were mostly based on 
traditional studies from type-identified cat motor units 
(Burke et al., 1971; Cullheim et al., 1987). There is 
some indication that cat spinal neurons behave similarly 
to their human counterparts (Jankowska and Hammar, 
2002), so animal data can be used (with some care) for 
computer modeling of the human neuromuscular system. 
On the other hand, conduction velocities of motor and 
sensory axons can be somewhat easily estimated from 
nerve conduction studies in humans (Pierrot-Deseilligny 
and Burke, 2012). Some biomechanical parameters, 
such as muscle and tendon passive stiffness, as well 
as force-length and force-velocity relationships have 
been derived from cat experiments (Brown et al., 1996; 
Scott et al., 1996). More recently, imaging techniques 
(e.g., ultrasound) have been used to assess muscle fiber 
length, muscle pinnation angle, and moment arms in 
humans (Passmore et al., 2016).

Nonetheless, the lack of information regarding 
some parameters does not necessarily precludes a 
proper model parameterization. When the parameters 
are not available in the literature or cannot be easily 
assessed by experimentation the model can be carefully 
adjusted so that the behavior of individual or ensembles 
of elements match some experimental outcomes. 
For instance, the detailed mathematical descriptions 
of ionic and synaptic conductances in a MN membrane 
are not available, but the model parameters can be 
adjusted so that the frequency-to-current relation and 
the magnitude of post-synaptic potentials are similar 
to those observed in individual cells (e.g., Cisi and 
Kohn, 2008; Elias et al., 2012; Elias and Kohn, 2013). 
From a systems point of view, some results from motor 
control studies might be used as references to validate 
the choice of model parameters (see Elias et al., 2014; 
Watanabe et al., 2013).

Current and prospective advances in 
the modeling of neurodegenerative 
diseases

In the previous section, we briefly described the 
main efforts to represent the neuromusculoskeletal 
dynamics in terms of multi-scale mathematical models 

(from ion channels to motor behaviors). Here, we will 
describe recent studies that provide some data on how 
neurodegenerative diseases change behaviors of different 
variables or parameter values that could be useful for 
model building. Also, we will discuss how the changes 
in model structure or parameter values due to disease 
can be combined with existing neuromusculoskeletal 
models to support investigations on force or position 
control in pathological conditions.

Motor neuron disease
Motor neuron disease is a class of neurodegenerative 

disorders, amyotrophic lateral sclerosis (ALS) being the 
most common form (Bromberg, 2015). About 10% of ALS 
cases are hereditary, and approximately 20% of these cases 
result from mutations in the Cu/Zn superoxide-dismutase-1 
(SOD-1) gene. As a consequence, recent advances in 
ALS pathophysiology come from experiments conducted 
in mutant SOD-1 mice (Taylor et al., 2016).

ALS affects both upper and lower MNs (see Figure 2), 
thereby significantly influencing volitional and reflexive 
control of movement. Degeneration of upper MNs reduces 
the cortical control of spinal circuits (circles 1 and 2 in 
Figure 2), including a decrease of corticomotoneuronal 
synaptic drive (Eisen et al., 1996; Fisher et al., 2012) 
and hyperreflexia due to reduced activation of inhibitory 
(glycinergic) V1 interneurons, such as Ia inhibitory 
INs and Renshaw cells (Martin and Chang, 2012; 
Raynor and Shefner, 1994). As to the lower MNs, 
their loss will produce muscle weakness and atrophy 
(circle 4 in Figure 2) (Vucic and Kiernan, 2009).

Animal experiments, primarily on α MNs, have 
provided biophysical foundations of ALS etiology. 
Kuo et al. (2005) showed that persistent Na+ current is 
increased in both low- and high-threshold α MNs. However, 
hyperexcitability was observed only in high-threshold α 
MNs (more susceptible to neurodegeneration) due to a 
downregulation of outward currents. Additionally, Chang 
and Martin (2016) reported an abnormal expression of 
voltage-gated Ca++ channels, which results in an increase 
in Ca++ currents and, consequently, α MN excitability. 
Conversely, other studies have provided evidence that 
intrinsic excitability of MNs are reduced during ALS 
development, both due to changes in MN morphology 
(Amendola and Durand, 2008) and electrophysiology 
(Delestrée et al., 2014). These changes in ionic channel 
expressions and cell morphology are closely linked to 
the genetic mutation (mostly SOD-1) experienced by 
the animal. However, MN degeneration might be also 
strengthened by an accumulation of intracellular Ca++, 
which increases cell toxicity (Nijssen et al., 2017). 
In humans, force control studies carried out in patients 
with ALS have shown an increased motor unit discharge 
variability (Piotrkiewicz and Hausmanowa-Petrusewicz, 
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2011), altered axonal conduction velocity (Kanai et al., 
2006), decreased beta-band intermuscular coherence 
(Fisher et al., 2012), and altered electromechanical muscle 
responses (Schmied et al., 1999). Figure 2 summarizes 
the observed changes observed in different stages of 
ALS and their putative origin.

From a computational neuroscience perspective, 
few studies have explored how ALS mechanisms 
influence α MN dynamics. ElBasiouny et al. (2010) used 
morphological models to investigate the role of dendritic 
morphology and electrophysiological properties on the 
reduced excitability of α MNs in early stages of ALS. 
They found that increased dendritic area, along with a 
reduced somatic and dendritic membrane resistance, 
would explain both hypoexcitability and reduced synaptic 
efficacy observed in mutant SOD-1 MNs. Le Masson et al. 
(2014) proposed morphologically and biophysically 
plausible α MN models encompassing mechanisms 

of bioenergetics (ATP production/consumption). 
They showed that deficits in ATP production [due 
to mitochondrial dysfunction (Lin and Beal, 2006)] 
will lead to a homeostatic imbalance, which increases 
intracellular Ca++ concentration and induces a chronic 
membrane depolarization. High-threshold MNs were 
more prone to this altered excitability, since they have 
larger area and require more energy during spiking 
activity. The increased depolarization observed in these 
models, resulting from a less effective Na+/K+ pump, 
can also explain the emergence of fasciculation, which 
is a common phenomenon in different stages of ALS 
(Eisen and Swash, 2001).

Neuromusculoskeletal models can be invaluable 
to study modifications in motor behaviors following 
ALS onset and progression. For this purpose, several 
changes observed in animal models and patients with 
ALS should be properly incorporated in different parts of 
the models. For instance, in α MN models (see Figure 3), 
the dendritic morphology, electrophysiological properties 
(e.g., increased persistent currents, reduced membrane 
resistance), and bioenergetics might be altered/included 
to investigate how differences in excitability and synaptic 
efficacy of the modelled α MN pool would influence 
force variability and motor unit discharge patterns. 
Also, the inclusion of motor axon dynamics seems 
to be an important step toward investigations on the 
emergence of fasciculation and how altered efferent 
conduction (Kanai et al., 2006) would influence motor 
tasks in different stages of ALS.

From a systems level, one might investigate how 
partial loss of the corticospinal tract (which might be 
modeled by a reduction in the numbers of independent 
point processes or a decrease in the effective synaptic 
current) would affect force generation and control. 
An important aspect that should also be considered 
during model parameterization is that the number of 
motor units is significantly decreased in ALS (Boe et al., 
2007). In this view, the neuromusculoskeletal models can 
be used to predict the influence of altered excitability of 

Figure 2. Observed changes and their putative origin in motor neuron disease and peripheral neuropathy. The circles represent the elements of the 
neuromuscular system affected during these neurodegenerative diseases.

Figure 3. Schematic representation of modifications that might be performed 
or included in the models of α MNs to represent ALS pathophysiology. 
The circles represent the elements of a MN model that would be changed 
to represent different stages of ALS. Changes in model parameters might 
result in either MN hyper- (red) or hypoexcitability (yellow). 
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spinal circuits in typical force or position control tasks. 
Experimental data from patients with ALS can be used 
to validate the models and to provide some insights on 
the biophysical mechanisms influencing motor control.

It is important to notice that ALS (like other 
neurodegenerative diseases) can also affect muscle 
properties and, consequently, joint dynamics. Schmied et al. 
(1999) showed that ALS patients exhibited a reduction 
in the electromechanical coupling, which was estimated 
as the ratio between motor unit twitch amplitude and 
the area of motor unit action potential from the extensor 
carpi radialis muscle. Also, the referred authors observed 
that muscle twitches were heterogeneous, i.e., several 
motor units exhibited an increased amplitude and time 
to peak, probably due to axon sprouting (reinnervation) 
following degeneration, while other motor units produced 
significantly lower muscle twitches. Therefore, any 
investigation concerning force or position control should 
take these muscular aspects into consideration too.

Peripheral neuropathies
Peripheral neuropathies are a group of diseases that 

cause axonal degeneration (see Figure 1D). Examples 
are Charcot-Marie-Tooth disease (Brennan et al., 2015), 
Guillain-Barré syndrome (Kuwabara and Yuki, 2013), 
chronic inflammatory demyelinating polyneuropathy 
(Mathey et al., 2015), and multifocal motor neuropathy 
(Priori et al., 2005). An important class of peripheral 
neuropathies is characterized by a progressive 
myelin degradation, which can affect both motor and 
sensory axons (circle 5 in Figure 2). Some of these 
demyelinating diseases are heredodegenerative, such as 
Charcot-Marie-Tooth (which affects both sensory and 
motor axons), while others are caused by infection, such 
as Guillain-Barré syndrome. In the latter, there may be 
a pure sensory, a pure motor, or a mixed sensory-motor 
axonal degeneration. The pathophysiological result, 
independent of the primary trigger, is a slowing of axonal 
action potential conduction, an intermittent or even a 
complete failure of its propagation (see Figure 2). In the 
former case the action potentials propagating along a 
nerve through slower conducting axons will lead to 
poorer functioning of the target tissue (e.g., muscle 
force rise time and peak values far from normal) or the 
whole neuromuscular subsystem [e.g., poorer motor 
control due to longer feedback and feedforward delays 
(Jauregui-Renaud, 2013; Nardone et al., 2006)].

Theoretical studies using computational models of 
healthy sensory and motor axons have investigated how 
the action potential discharge patterns are influenced 
by changes in axonal characteristics. For example, 
Howells et al. (2012) and McIntyre et al. (2002) found 
that the difference in motor and sensory axons are 
determined by differences in K+ and Na+ ionic channels. 

Similarly, Bostock et al. (1991) studied the influence of 
the axon myelin sheath in action potential conduction. 
Further developments of this model lead to efforts to 
represent different neurodegenerative axonal diseases in 
individual axons. For instance, Stephanova and Dimitrov 
(2013) determined the correspondence between different 
types of axon demyelination and specific diseases 
(e.g., Guillain-Barré syndrome is caused by internodal 
focal demyelination). Another example is the influence 
of temperature on action potential conduction in patients 
with chronic inflammatory demyelinating polyneuropathy 
(Stephanova and Daskalova, 2015).

Departing from these previous studies, the next 
steps would be to integrate the mathematical models of 
axonal dynamics into multi-scale neuromuscular models. 
The computational load will increase substantially, but this 
will be compensated by the benefits of obtaining new data 
on the impacts of specific degenerative axonal diseases on 
motor control. For example, functional quantifiers such 
as force and position control as well as postural control 
as simulated for different levels of neurodegeneration 
may lead to novel clinical neurophysiology tools for 
discovering an early onset of a given disease and its 
progression in response to different interventions.

Concluding remarks
The extension of currently available multi-scale 

models of neuromusculoskeletal systems to represent 
diseased states has a promising role as an aid to improve 
the diagnosis and the therapy of many neurodegenerative 
pathologies. If correctly modeled, the action of a given 
disease on specific elements may be studied from a systems 
level. This can point to measurable changes in overall 
motor output (e.g., force variability, postural sway) that 
can be early indicators of disease and estimates of the 
ongoing outcome of a given therapy. The latter may be 
useful for optimizing specific therapeutic approaches 
from a functional standpoint.

Here we presented how multi-scale neuromuscular 
models can be extended to allow studies of two classes 
of neurodegenerative diseases on the basis of their 
pathophysiological features affecting different elements 
of the neuromuscular system. However, even if seen only 
in a more limited scope of the functioning of a healthy 
neuromuscular system, other structures and mechanisms 
should be included in current neuromusculoskeletal models 
to further our understanding about movement control 
(Loeb and Tsianos, 2015). Probably, the greatest challenge 
for future studies is to integrate models of supraspinal 
structures, such as the basal ganglia-thalamocortical 
circuit (Kumaravelu et al., 2016), to investigate how brain 
circuits interact with spinal cord circuits in normal and 
pathological conditions. This would improve considerably 
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our capabilities of evaluating sensorimotor control in a 
much wider scope and, with adequate parameter changes, 
potentiate further studies of other neurological disorders, 
such as Parkinson’s disease and stroke.
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