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Abstract

Geostatistical simulation comprises a variety of techniques which can help on the 
decision-making process for uncertainties. They allow the uncertainty assessment of func-
tion responses (which depend on the simulated inputs) commonly through a non-linear 
relationship (net present value, interest tax return, geometallurgical ore recovery…). How-
ever, one of their limitations is that running the simulation can take considerable process-
ing time to be executed in large deposits or large grids. Herein is presented an attempt to 
solve this problem in short-term modeling cases, via the use of Multiple Random Walk 
Simulation. This algorithm combines kriging with the simulation of independent random 
walks in order to generate simulated scenarios much faster than via traditional simulation 
algorithms. A case study is presented to illustrate the application of the method in an iron 
mine. The Multiple Random Walk Simulation models were properly built, respecting the 
reproduction of both histogram and variograms. Also, the speed-up was compared with 
standard methods of geostatistical simulation and there was a considerable speed gain with 
Multiple Random Walk Simulation (3.39 to 5.65 times faster than the others).
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1. Introduction

Geostatistical simulations can be very 
useful in mining planning and decision-
making about uncertainties. They are 
mostly used in geological/grade modeling 
and long-term mine planning, providing 
several practical benefits. The simulations 
generate several possible models, all of 
them respecting both spatial continuity 
and global distribution derived from the 
data. And by considering all these simulated 
scenarios, it is possible to assess the uncer-
tainty of the local values and, moreover, 
to apply non-linear transfer functions to 
the model, which allow the calculation of 

geometallurgical responses and net present 
value (NPV), for example (Coward and 
Dowd, 2015).

Although the simulations provide 
a lot of information to help in decision-
making, it is still scarcely used in mining. Its 
use in short-term geological modelling and 
mine planning is minimal, despite the fact 
that it can help, for example, in estimating 
the grade variability of the blocks and to 
update the monthly plans (by incorporating 
recently collected data).

One of the main reasons why simula-
tions are rarely used in daily routines is due 

to the fact that these algorithms can be very 
time-consuming. High-performance pro-
cessors may be more affordable today and 
can solve this problem, but most algorithms 
are not designed to take full advantage of 
these multi-processors.

In order to fulfill this gap, the Mul-
tiple Random Walk Simulation (MRWS) 
was developed to run efficiently in multipro-
cessors and is now a new alternative that at-
tempts to make 3D conditional simulations 
more viable for short-term applications. The 
method is presented in the next section and, 
after that, a case study illustrates its use.

2. Methodology

The main characteristics of the 
method are presented next. More spe-
cific details can be found in Caixeta 
(2015), Ribeiro et al. (2012) and 

Ribeiro et al. (2013). The MRWS is 
a parametric method. According to 
Rossi and Deutsch (2014, p. 123), a 
value Ys(u) is conditionally simulated 

in a Gaussian space as a composition 
of an estimated value Y*(u) and a re-
sidual R(u) with the correct covariance 
(Eq. 1):

Y
s
 (u) = Y* (u) + R(u) (Eq. 1)
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Figure 1
Illustration of multiple random walk paths 
and their Gaussian properties, in which 
the variance of the histogram formed by 
the multiple path values increases with h.
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where σ² represents the variance of 
the random walk values at distance h; 
δh is the lag separation between each 
increment f. So, by considering the 
residual part R(u) of Eq. 1 as a linear 
combination of a set of random walks 
and the simple kriging weights, R(u) 
will have an expected value of zero 
and will reproduce the desired covari-
ance. And since both Y*(u) and R(u) 
from Eq. 1 are in Gaussian units, it is 

possible to sum them up to generate an 
appropriate Gaussian simulated value.

The workflow for the algorithm 
can be summarized in five parts:

(i) perform a normal score trans-
formation on the original data.

(ii) simulate a sufficient number 
of random walks and associate them 
to each conditioning sample data. 
Each new realization randomly picks 
one of these random walk paths.

(iii) solve a simple kriging system 
at each grid node to define the weights 
associated with the local conditioning 
data surrounding this node. These 
kriging weights associated to each 
datum are used to interpolate the 
normal scores and the values from 
the random walk paths picked at 
each data location found in the local 
neighborhood of the grid node being 
simulated according to:

GWNYhRWhRWGWNYuY
n

i
uiuii

uR

n

i
uii

uY

n

i
uii

l
s ++=++=

=== 0
)(

0
)(*

0

)( ])([)]([][)(  (Eq. 3)

(Eq. 2)

The estimated value Y*(u) can 
be obtained by applying simple krig-
ing to the Gaussian sample values, 
which will reproduce the covariance 
between kriged nodes and samples. 
By extending the same rationale to 
the residuals, R(u), i.e. kriging them 
with the same set of weights used for 
kriging the Gaussian scores, the cor-
rect covariance between residuals at 
data locations (n) to the node being 
simulated (u) is reproduced (Journel 
and Huijbregts, 1978).

Nevertheless, kriging does not 

reproduce the targeted Gaussian histo-
gram since the interpolation smoothes 
the original variance. In order to do 
that, MRWS estimates the residual 
error using random walks. A random 
walk (see Lawler and Limic, 2010, 
for more details) can be described as 
a vector of random numbers defining 
a random path by incremental values 
at every separation lag δh. Each incre-
ment value i is defined by f along n 
number of lags. At each lag distance, 
an independent increment of +f or –f 
is drawn, with 50% chance each. The 

process continues until it reaches the 
number of lags stipulated. The pro-
cess restarts at the same origin (i = 0, 
initial point along the random walk) 
generating another random path, like 
the ones in Figure 1. Their interesting 
feature is that, in a set with several ran-
dom walks, the corresponding values 
for any chosen lag distance follow a 
normal distribution with an expected 
value of zero and a variance propor-
tional to that distance h divided by the 
size of the increments and to the square 
of the scaling factor f (Eq. 2).
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3. Case study

The case study consisted in ap-
plying MRWS in a short-term context, 
where a great amount of samples are 
available. It was made using data from 
an iron mine located in the Quadrilátero 
Ferrífero, state of Minas Gerais, Brazil. 

Detailed information about the mine 
location was omitted due to confiden-
tiality issues. Data from 1 378 drill 
holes were used (490 from long-term 
exploration and 888 from short-term 
exploration). Since both exploration 

campaigns collected data via the same 
method (diamond drill hole) and passed 
through the quality control program, 
the samples were used all together.  Af-
ter proper compositing, 8 310 samples 
were available to be used (Figure 2).

Figure 2
Isometric view of the 

samples used in the case study.

These samples comprise different 
lithologies. Because of that, four sta-
tionary domains were defined based on 
similar rock types and global iron con-
tent. An estimated geological model was 
provided and used to define the regions 
of each domain.

The simulation of the glob-
al iron content was made separately 

in each domain. The block size was  
12.5m x 12.5m x 10m, which was dis-
cretized in 8 points per block to run the 
simulations. The variograms were mod-
eled with the data from each one of the 
four domains and used for the simula-
tions. A hundred realizations were per-
formed using MRWS and auxiliary points 
were initially simulated where necessary. 

After the simulations, the points were 
upscaled to the standard mine block size.

The simulated models of the four 
domains are presented in Figures 3 and 
4. They show a consistent spatial distri-
bution of the global iron content, with 
the higher grades on the upper part of 
the deposit and a high variability in the 
itabirite domains.

where Ys
(l)(u) is the simulated value 

for the realization (l) at location u; n 
is the number of conditioning data in 
the neighborhood of u; λi is the weight 
calculated by simple kriging for datum 
ui; Yui is the conditioning data value in 
Gaussian units; RWui(h) is the value 
drawn from the random walk path as-
sociated to that conditioning data Yui at 
the distance h from the grid node at u; 
h is the distance between data and the 
node to be simulated; GWN is a Gauss-
ian white noise added to re-establish 
the nugget effect smoothed by kriging, 
similarly to what is used in the Turning 
Bands Simulation algorithm (Emery 
and Lantuéjoul, 2006). This last is 
randomly drawn from a Gaussian 
distribution of zero mean and variance 
equal to the nugget effect.

(iv) perform another realization 
only by randomly picking another 
random walk path generated at each 
datum. Retain the new RWui(h) read 
at the picked path. The new simulated 
value uses the same simple kriging 

weights and data values.
(v) calibrate the variance of the 

random walks value to match the unit 
variance and back transform the simu-
lations to restore the original units.

One remark is that the MRWS 
approach only guarantees the covari-
ance reproduction between simulated 
value and sample value; the covariance 
between two simulated points is only 
well reproduced when a reasonable 
amount of conditioning data is avail-
able (which is the common case in 
short-term applications). But when 
there is a large spaced dataset (say 3 
to 6 times grid nodes separation) or 
there is a great extrapolation on the 
model, the method still can be used, 
but it is recommended to simulate 
auxiliary conditioning data. The idea 
is to infill a large spaced initial grid, 
similarly to the multigrid concept 
(Tran, 1994) used in sequential simu-
lation algorithms to reproduce large 
scale spatial continuity. It is done by 
initially simulating the variable where 

auxiliary points are necessary, condi-
tioned to the original data. After this, 
the MRWS will proceed as previously 
explained.

The great advantage of this pro-
cedure is that it is highly parallelizable. 
In other words, this workflow can be 
divided into several independent parts, 
which can be run simultaneously in 
different processors, providing a con-
siderable acceleration when multiple 
processors are available. A version for 
3D simulations was written for that 
and is being made available to use 
into SGeMS (Remy et al., 2009). The 
algorithm was written in C++ as a plu-
gin for the software. All the Random 
Walk parameters, calibration issues 
and simulation of auxiliary points (us-
ing Sequential Gaussian Simulation in 
this version) are totally automated. The 
parameters required are the same from 
kriging, plus a reference distribution, 
number of realizations and seed value. 
If desired, the automatic parameters 
can also be customized by the user.
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Figure 4
Isometric view of vertical 
sections of one simulated 
realization, highlighting the 
regions related to each domain.

The reproduction of variograms and his-
tograms were checked in order to verify if the 

models are statistically coherent. As is shown 
in Figures 5 and 6, the results were good, al-

lowing the further use of these models to assess 
uncertainty and other derived parameters.

Figure 5
Check for the 
histogram and basic 
statistics reproduction 
of each domain simulated.

Figure 3
Horizontal sections (at 875 m of eleva-
tion) of one simulated realization, highli-
ghting the regions related to each domain.
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Figure 6
Check for the variogram 

reproduction of each domain simulated.

And to highlight the speed gain by 
using the MRWS, the time elapsed for 
the simulation was measured and com-
pared with the ones from two established 

simulation methods: Sequential Gaussian 
Simulation (SGS) and Turning Bands Sim-
ulation (TBS). All methods used similar 
parameters to simulate the same number 

of nodes. SGS was run into SGeMS and 
TBS was run into Isatis® (Geovariances, 
2014) with 1 000 lines. The results are 
shown in Table 1.

MRWS SGS TBS

Total time elapsed 45min 58s 2h 35min 57s 4h 19min 32s

Speed-up MRWS 1.00 3.39 5.65

Table 1
Elapsed time for each simulation method to 

perform 100 realizations. Hardware com-
prises 20 processors of an Intel(R) Xeon(R) 

CPU E5-2630 0 @ 2.30GHz 2x Hexacore.

As noted, the MRWS promoted a 
remarkable speed-up in the simulation 

process. In terms of absolute time, it 
saved almost 2h in comparison with 

SGS and more than 3.5h in comparison 
with TBS.

4. Discussion and conclusions

In summary, these results show the 
MRWS works very well in a real iron 
3D short-term mining application. The 
visual aspects of the simulated models 
are very coherent and the variograms 
and histogram are well reproduced by 
the methodology. Moreover, the speed 
gain provided by the method makes its 
use very appealing.

It is essential to highlight that the 
speed gain in using MRWS will vary 

depending on the amount of memory 
available, number of realization, num-
ber of processors, structure of the 
algorithms and number of auxiliary 
points simulated. And the most favor-
able conditions to use the method are 
exactly the ones of short-term mining, 
where many data are available.

Another appealing aspect of the 
method is that it can be run efficiently 
in SGeMS, which is a good open-

source software. Also, this method-
ology can be used to update grade 
control models within a local window 
(e.g. a planned dig line to define a 
monthly production) as more infill 
samples are made available without the 
need to re-simulate the entire deposit. 
A local window is herein referred to 
as a subpart of a larger grid; this last 
possibly including the entire deposit 
(or domain).
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