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Abstract

The pelletizing process agglomerates ore fines previously considered as tailings 
and makes its application possible in the form of pellets. During the process, the pellets 
are subjected to various compressive forces and temperature changes, which cause rup-
tures in their surface. These ruptures (cracks) impair the performance of the pellets in 
the reduction furnaces and affect their strength. In addition to cracking, the formation 
of clusters inside the furnaces is also a problem for the reduction process because they 
compromise the flow of gases inside the furnaces. This bonding phenomenon occurs 
from the formation of iron bridges between pellets subjected to high temperatures. 
This problem can be minimized by coating the pellets with a mixture of magnesium 
oxides that inhibits bridging. The present study considered the importance of char-
acterizing cracks and coating on the pellet surface and developed methodologies for 
the acquisition, processing and digital analysis of images acquired with a stereoscope. 
Adjustable sample holders were developed which made it possible to cover most of the 
surface area of the spherical object avoiding overlapping of analysis regions. The crack 
analysis routine used semantic segmentation and provided attributes such as mean 
thickness, area fraction and length. The coating analysis routine used color threshold 
segmentation and measured the fraction of the area occupied by the coating in the 
samples. The use of the sample holders was essential for the success of the acquisition 
procedure. The analysis routines were robust for different samples.
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1. Introduction

Iron ore is an essential raw material 
in the steel industry, but it must first go 
through a beneficiation process, which 
mainly aims at separating valuable 
minerals from gangue minerals. The 
beneficiation products are granulated 
ore, sinter feed and pellet feed, which 
are essentially differentiated by their 
particle size.

Unlike granulated ore, sinter feed 
and pellet feed cannot be used directly 
in steel mills, so they are subjected to 
agglomeration processes: sintering and 
pelletizing, which give rise respectively 
to sinter and pellets.

The pelletizing process, for ex-
ample, agglomerates fines with particle 
sizes below 0.15 mm, forming irregular 
spheres (pellets) that can be used in 
reduction furnaces. The pellets have a 

diameter in the range of 9-15 mm, high 
and uniform porosity and an iron con-
tent greater than 63% (Meyer, 1980). 
During the pelletizing process, the pellets 
undergo a thermal treatment so that they 
can acquire the necessary strength to 
withstand severe handling and transport 
conditions, as well as possible degrada-
tion effects during their application 
in the furnaces (Simões et al., 2015). 
However, thermally or mechanically 
induced stresses can give rise to cracking, 
both internally and at the surface, which 
compromise the quality of the pellets in 
their use. In previous studies, Nunes et al. 
(2012) associated the presence of cracks 
to the reduction of pellet strength.

Besides crack formation, there is 
another factor that compromises the 
efficiency of the pellets in the furnaces: 

the formation of pellet clusters, caused by 
the formation of iron bridges due to the 
high temperatures to which the pellets 
are subjected (Bailon et al., 2011). These 
clusters can seriously compromise the 
flow of gases inside the furnaces.

In order to reduce the formation of 
clusters, producers use a coating com-
posed of a mixture of magnesium oxides 
that blocks the formation of iron bridges 
(Alencar et al., 2014). It is known that 
characterizing cracks and coatings on the 
surface of iron ore pellets is important 
for quality control. Although an ideal 
value for the amount of cracks has not yet 
been determined for a pellet to have good 
strength or how much coating needs to 
be added to the pellet so that clusters do 
not occur.

Simões et al. (2014) and Simões et 
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al. (2015) used digital image process-
ing to perform this characterization 
and obtained significant results. When 
analyzing crack images, for example, 
it was possible to associate their sizes 
and widths to the pellet's mechanical 
performance. In relation to the coating, 
it was shown that its absence is directly 
linked to the tendency of cluster forma-
tion. However, in these articles, a limited 
fraction of each surface of the sediment 

was imaged and analyzed.
Thus, herein, a new image acquisi-

tion procedure is proposed so that the 
vast majority of the pellet surface is 
covered, leading to more representative 
results. Moreover, two fully automatic 
image processing and analysis routines 
were developed to automatically identify 
cracks and coating on the surface of the 
pellets, and measure several relevant 
parameters, such as coating/crack area 

fraction, crack length and thickness.
It is expected that a more efficient 

and representative evaluation of these 
two features – cracks and coating – will 
allow an optimization of process pa-
rameters. For instance, changes in heat 
treatment temperature profiles can im-
prove strength by reducing heat-induced 
cracks. Likewise, changes in the amount 
and type of coating can be shown to 
reduce the formation of iron bridges.

2. Materials and methods

2.1 Samples

2.2 Image acquisition

3. Results and discussion

The samples used in this study were 
iron ore pellets supplied by Vale. The 
granules range in diameter from 12 mm to  
18 mm. In this procedure, 6 pellets contain-

ing cracks (PT) and 4 pellets with coating 
(PC) were used. This number of samples was 
used for the development of the methodolo-
gies. However, characterization can be per-

formed for a much larger number of samples. 
It is worth mentioning that the samples were 
chosen to ensure a good representation of 
both crack sizes and coating quantity.

One of the main challenges in the 
image acquisition step was to represent the 
surface of an irregular spheroid with 2D 
images, while covering the vast majority of 
the relevant area. Moreover, it was crucial 
to guarantee that the various 2D images 
did not overlap, in order to avoid measure-
ment errors.

Given the typical size of the pellets 
and the required resolution, the ideal image 
acquisition apparatus was a stereoscope. 

This type of equipment seldom has a motor-
ized sample holder and manual handling of 
the pellet would be necessary. In order to 
simplify the acquisition procedure a cuboi-
dal sample holder was developed (Figure 1).

The main idea of the cube is to delimit 
capture areas and standardize so that each 
pellet sample will always work with six im-
ages referring to the six faces of the cube. 
Importantly, the developed sample holder 
provide stability during image acquisition 

and be adaptable to the various pellet diam-
eters. Given these requirements, the sample 
holder was designed as shown the Figure 1.

 The pieces representing the cube 
vertices were made of silver and with a 0.6 
mm opening to allow the edges, which are 
0.5 mm thick metal pins, to be fitted, as 
thin as possible to reduce the loss of area. 
Four of the edges are movable (in blue in 
Figure 1), and can be adjusted according to 
the sample to be analyzed.

After image acquisition, process-
ing routines were developed for each 

case: cracks and coating. The routines 
will be presented in this section along 

with the results of the measurements 
obtained.

The images were acquired on a 
ZEISS Discovery V8 stereoscope using 
a 0.3X objective lens, leading to 1.6X 
magnification and a digital resolution 
of 15.49 µm/pixel. To improve lighting 

stability, which is crucial for the image 
processing routines, a LED ring fixed 
around the objective lens was used with 
constant maximum intensity.

Each pellet was inserted in the cube, 

which was then manually positioned and 
rotated so that each face was imaged.

FIJI/ImageJ (Rueden et al., 2017) 
was used to develop the image processing 
and analysis routines.

Figure 1 - Support developed for iron ore pellet imaging.
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3.1 Cracks
3.1.1 Obtaining the analysis area

Image acquisition results in six im-
ages from each pellet. Figure 2a shows 
an example of a sample image, PT2, in 
which it is possible to observe the support 
delimiting the area to be analyzed, which 
in this case, would be precisely the square 
where the largest crack is contained.

The first part of the cracking routine 
seeks to remove the sample holder from 
the images so that it is possible to work 
only with the analysis areas of each cube 

face, which will hereafter be referred to 
as the pellet face. We will use the image of 
a PT2 pellet face to exemplify the image 
processing/analysis routine.

Initially, the acquired color im-
ages are converted to 8-bits and then 
segmented with a (0-109) threshold 
range. Thus, pixels in this tonal range 
turn white and the remainder appears 
in black in the binary image, as shown 
in Figure 2b.

Then the empty spaces are filled 
giving rise to the image presented in  
Figure 2c, which is not yet the desired 
mask, as it contains objects correspond-
ing to the support, and regions belonging 
to the other faces of the pellet, which 
would compromise the desired measure-
ments. Then, an area measurement of all 
the objects in the image is performed, 
and only the largest area is chosen, such 
as the one shown in Figure 2d.

Upon obtaining the mask a logical 
operation is performed pixel by pixel be-

tween the original image (Figure 2a) and 
the generated mask (Figure 2d), obtain-

ing the images of the respective areas of 
analysis, as presented in Figure 3.

Given the acquisition of 6 im-
ages corresponding to the faces to be 

analyzed, the routine moves on to the 
segmentation part.

Figure 2 - Schematic representation of the initial part of the processing
performed by the routine, using an image of PT2 sample. a) Original image of one face of PT2. 

b) Binary image after threshold in (a). c) Binary mask after fill holes. d) Mask generated for the analysis area.

Figure 3 - PT2 sample faces after holder removal.

(a) (b)

(c) (d)

(a)

(f)

(b) (c)

(e)(d)
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3.1.2 Segmentation

3.1.3 Attribute extraction

In this step, the cracks must be 
selected for subsequent measurement. 
Crack detection was performed with 
the WEKA FIJI plugin. According to 
Arganda-Carreras et al. (2017) and Hall 
et al. (2009), tools available in WEKA can 
extract various properties of the images 
using pixels that the user himself selects 
and uses in training. After training several 
images, the user can create a classifier and 
apply it to several similar images.

This form of segmentation, called 

semantic segmentation, has played an 
essential role in the area of digital image 
analysis, and can be described as a way 
of separating the pixels of an image into 
classes according to the pixel character-
istics of an image, which are reported to 
the computer through training (Lateef and 
Ruichek, 2019; Niemeijer et al., 2017).

In FIJI, WEKA can be used directly 
through a plugin, Trainable Weka Seg-
mentation (TWS). Therefore, from the 36 
images referring to the faces of the six PT 

samples used, 15 images were chosen that 
contained a good representation of cracks 
to perform a training. This is achieved by 
selecting small areas in each of the images, 
separating them into two classes: cracks 
and pellet.

From 584555 selected pixels refer-
ring to both classes, a classifier was trained 
and applied to the images generating 
results where the cracks appear discrimi-
nated from the rest of the pellet, as can be 
seen in Figure 4b.

From the binary image contain-
ing the cracks, a post-processing is 
performed in order to connect objects 
belonging to the cracks. This consisted 
of a morphological closing (Legland et 

al., 2016) operation using an octagonal 
Structuring Element (EE).

After the objects are joined, spuri-
ous objects are eliminated by the area 
value. The set value has been tested 

on many images to ensure that no 
objects belonging to the cracks have 
been deleted. Figure 6 shows this post 
processing performed on one side of the 
PT4 sample.

The created classifier was then 
applied to the 36 face images of the PT 
samples. Analyzing the results, it can 

be seen that the classifier differentiates 
the crack well from the rest of the pel-
let, with the exception of very narrow 

cracked areas, as shown in Figure 5 in 
which the crack is narrower.

The difficulty of selecting nar-
row areas during training comes from 
assigning classes of the marked area, 

since it is necessary to closely zoom in 
on the image, whereby the resolution 
is compromised, making it difficult 

to differentiate pixels from these very 
narrow cracks.

Figure 4 - Images of cracks on a PT2 face.
a) Original image 8-bit. b) Binary image with crack selected from classifier.

Figure 5 - Images of thinner cracks on a PT2 face.
a) Original image 8-bit. b) Binary image with crack selected from classifier.

(a)

(a)

(b)

(b)
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Figure 6 - Segmentation of cracks in one face of PT4. a) Original image
b) Binary image with crack selected from classifier. c) Binary image after post processing,

still containing spurious objects. d) Binary image containing the crack after the exclusion of spurious objects.

Figure 7 – Cracked image of one face of PT4. a) Post-processing image containing
only the crack. b) Local thickness map of the crack contained in (a), with a color LUT to improve visibility.

From the post-processed image, 
crack area and perimeter measurements 

are performed. These values make it pos-
sible to calculate length using the formula:

This parameter, also known as 
Fiber Length, is more accurate than the 
more straightforward measurement of 
the Maximum Feret (Caliper) if the object 
is curved (Vameraliv et al., 2003). For 
instance, the crack presented in Figure 6d 
is 5.23 mm in length, but its Maximum 
Feret is 4.87 mm.

In some samples one cannot merge 
all crack objects into one. If the value of 
the morphological closing is too high, it is 

possible to include objects that one does 
not want to measure. Therefore, the length 
is calculated for each object and then 
summed, thus obtaining a total length for 
each face of the sample.

The morphological operation is only 
used to eliminate smaller objects and join 
objects that belong to the crack. As the 
operation increases the size of objects, 
to perform the other measurements, an 
intersection is made between the generated 

image of the classifier (Figure 6b) and the 
post processed image (Figure 6d), obtain-
ing the image shown in Figure 7a. This 
is the reference image for the next step, 
that involves thickness measurements. 
Although the object in Figure 6d gives a 
better assessment of the crack total length, 
the thickness is clearly overestimated. Us-
ing Figure 7a for thickness measurement, 
as explained in the following, gives a more 
representative result.

The local thickness map assigns 
different intensities to each pixel belong-
ing to the objects. The local thickness of 
each point in the image is defined by the 
diameter of the largest sphere inside the 
object that contains the point (Dougherty 
and Kunzelmann, 2007).

Figure 7b displays the local thick-
ness map for one face of PT4, with a color 
Look Up Table (LUT) to improve visibil-
ity. Thus, for each crack, it is possible to 
obtain a local thickness for every position 
along the crack length and, thus, an aver-
age thickness for each crack. Through the 

arithmetic mean of all crack values of each 
sample, it is possible to obtain the average 
thickness for each PT sample. In the case 
of the sample to which this face belongs, 
the average thickness is 0.046 mm.

This approach is much more flex-
ible than other methods that rely on 

 PERIM +    (PERIM)2 - 16.AREA
4

Length =

(a) (b)

(c) (d)

(a) (b)
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measuring line intercepts, for instance, 
as it is totally independent of object 
shape or orientation. It is also worth 
mentioning that, even though the object 
shown in Figure 7a is discontinuous, the 
estimate of average thickness is reason-

able exactly because the “missing” seg-
ments are the thinnest. As mentioned 
above, this would not be the case, if the 
thickness were measured on the object 
in Figure 6d.

The crack area fraction can also be 

easily obtained dividing the total crack 
area in each face by the corresponding 
face area (Figure 2d) and adding for 
the 6 faces. Table 1 presents the area 
fraction values for each of the 6 samples 
used in this study.

Table 1 - Crack area fractions in each sample PT.

Figure 8 - Coated iron ore pellet sample.

Figure 9- Coated iron ore pellet face.
a) Original image of the analysis area. b) Binary image containing only the coated area.

Sample Area Fraction (%)

PT1 0.091

PT2 0.080

PT3 0.135

PT4 0.088

PT5 0.128

PT6 0.065

The measurements were considered 
consistent with what can be visually ob-

served in the images. Samples PT3 and 
PT5 are indeed the ones with larger and 

thicker cracks, thus occupying an area 
fraction slightly larger than the others.

The same procedure described in 
Section 3.1.1 to obtain the analysis area 

was used in this case. Figure 8 shows 
a typical image of a coated pellet. The 

coated areas appear in hues close to 
red/orange.

Segmentation was performed in the 
Hue, Saturation, Brightness (HSB) color 
space (Ferreira and Rasband, 2012). By 

selecting the appropriate hue range, repre-
senting colors close to Red, and adjusting 
for variations using the two other chan-

nels, coating segmentation was successful, 
as shown in Figure 9, and adapted well to 
variations between the samples.

A problem with most pellet faces 
is the presence of bright spots from 
the incidence of light on the uneven 
surface, visible in Figure 9a. Often 
these points are not part of the coated 
area and it is difficult to make this 
separation. Color segmentation was 

also able to deal with this problem. 
After eliminating small spurious 

objects (Figure 9b), the area fraction 
of coating was obtained summing the 
coated area in all 6 faces and dividing 
this by the total area of all faces.

Table 2 shows the area fraction 

values for the PC samples. The wide 
variation in coating area fraction 
is consistent with semi-quantitative 
analyses performed visually, and 
is linked to the coating process 
uniformity, adhesion, among other 
variables.

3.2 Coating analysis

(a) (b)
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Table 2 - Area fractions occupied by coating on PC samples.

Sample Area Fraction (%)

PC1 10.37

PC2 19.48

PC3 2.03

PC4 12.68

4. Conclusions
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