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Abstract

Checking and treating extreme values is commonplace in modelling workflows. 
The main methods to manage outliers may be categorized into graphical, Kriging- and 
simulation-based approaches. While graphical methods usually classify outliers from a 
global perspective, geostatistical methods evaluate outliers in a local context. Ordinary-
Kriging based approaches are affected by conditional bias associated with the distri-
bution tail(s), impacting on the correct classification of extreme values; the simulation 
method is based on the fact that geostatistical simulation is robust for outlier values. 
However, this approach ignores the interaction among outliers in the same neighbor-
hood. The proposed approach considers that there are two values available at every 
sampled position, the sampled value and the conditional probability estimated from 
nearby data through cross-validation; the sampled value. Each value outside the user-
defined threshold is classified as an outlier and is edited by merging the sampled and 
kriged value through Bayesian Updating. The proposed method is performed in normal-
score units using Simple Kriging to (i) correctly estimate conditional distributions in the 
cross-validation step; (ii) avoid conditional bias; and (iii) minimize the outlier influence 
on experimental-variogram modelling. The proposed method is compared to three other 
widely used methods in a case study of a gold deposit. The proposed method substan-
tially improved the local accuracy and reduced the number of misclassified blocks of a 
reference model.
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On the classification and treatment of outliers in a spatial context: A Bayesian Updating approach

Outliers are commonly considered 
as the result of local anomalies that are 
not representative of the entire domain or 
region to be modelled, or resulting from 
human error, improper sample prepara-
tion and/or assay problems. The first step 

in outlier management is to fix or discard 
data associated with errors. A second step 
is to rethink how we have grouped data and 
if there are clues of the existence of unrec-
ognized subpopulations (Srivastava, 2001).

Commonly it is not possible to deter-

mine the cause of all inconsistencies and 
outliers, and therefore, the values desig-
nated as outliers are expected to combine 
non-detected inconsistencies and geological 
anomalies. The following methods show 
alternatives to classify and handle outliers.

The graphical approaches are the 
simplest and frequently used in the 
mining industry to define outliers. The 
premise is that the true distribution of 
the data is represented by a given curve 
(David, 1988) and the inlier data are 
expected to follow a fairly constant 

behaviour along this curve. Probability 
plots are widely used to visually define 
extreme values that detach from com-
mon, random variations associated with 
the data distribution or its curve (Figure 
1a). The visual inspection is supported 
in most sophisticated approaches by an 

analytical comparison of the data with 
a chosen distribution, such as two or 
three-parameter lognormally distribu-
tion (Sichel, 1966; Figure 1b). In all 
cases, extreme values distant from the 
expected behaviour are classified as 
suspicious values.

Figure 1 – Cumulative probability plot in a) original units, where the high-grade outliers are within 
the red ellipse. b) lognormal units, where low-grade outliers (blue points) are adjusted to the fitted distribution (red line).

1.1 Managing outliers

1.2 Graphical solutions

The presence of outliers dramati-
cally impacts many steps of data analy-
sis, such as exploratory data analysis, 
experimental variogram development 
and distribution fitting. Next, in the 
modelling step, just a few outliers may 
overestimate the variability and the 
estimated grade of a large region, over 
or under-estimating the global grade 
and/or the volume of ore and waste 
at a given cut-off. Barnett and Lewis 
(1984, pp. 32) give the following defini-
tion of an outlier: “An outlier in a set 
of data is an observation that appears 
to be inconsistent with the remainder 
of that set of data”. In general, we 
may differentiate the methodologies 
for outlier classification based on: how 
they define the datum context, how 
they measure the consistence among 
data; and how a datum designated as 
an outlier is managed.

In the field of geostatistics, the 
context is given by the complete da-
taset or subsets of statistically similar 
groups, such as samples with the same 

rock type, sampling support and type, 
located in the local neighbourhood, 
among other criteria. Graphical meth-
ods define the context under the as-
sumption that the inlier-data distribu-
tion is represented by a given curve or 
theoretical distribution (Sichel, 1966; 
Srivastava, 2001). Geostatistical-based 
methods may be used prior to estimates 
to edit outliers based on their relation-
ship with neighborhood data (Hawkins 
and Cressie 1984; Costa, 2003; Maleki 
et al. 2014) or the estimates may be 
directly performed using robust algo-
rithms (Arik and Kim 1992; Machado 
et al. 2012; Babakhani 2014). Further 
details of these methods are provided 
in the following section.

The proposed approach consid-
ers that there are available two sets 
of reliable data at every sampled posi-
tion: (i) the conditional probability 
estimated from nearby data through 
cross-validation; and (ii) the sample 
value associated to a inferred mini-
mal variance that assures a degree of 

overlapping area, controlled by the C 
value between it and the kriged condi-
tional distribution. Both distributions 
are merged through Bayesian Update, 
an inference method derived from 
the theorem of Bayes (Bayes, 1763). 
The cross-validation is performed 
using normal-score data and Simple 
Kriging (SK) to correctly estimate the 
conditional distributions and to avoid 
the impact of conditional bias in the 
outlier classification.

This article is structured as fol-
lows: We review the advantages and 
limitations of methods presented in 
literature; and next, we present a new 
approach to edit outliers by integrat-
ing the datum value with the kriged 
distribution at their position, weighted 
by their associated uncertainty. Then, a 
gold deposit composed of four systems 
of mineralized quartz-carbonate is 
used to illustrate the application of the 
proposed approach and its comparison 
with other methodologies. A conclu-
sion follows.

(a) (b)

1. Introduction
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In Figure 3 the green circles represent 
data sampled from an exhaustive dataset. 
The exhaustive dataset may be divided 
into one domain with grade between 
0.7-1.5% in the interval [0, 0.65 m] and a 
second domain [65 m, 100 m] where the 

grades range between 1.2-3.1%. Three 
outliers may be observed in the low-grade 
domain within the black ellipse. In this 
data setting, three applied capping values 
removed inlier values and left part (or 
all) outliers unedited. While domaining 

is a clear solution when we analyze the 
exhaustive dataset, this solution is not 
clear if only the sparsely sampled grid is 
available (green circles). The following 
section presents geostatistical methods 
to check outliers in their spatial context.

Figure 3 – Scheme between three different capping values (2%, 2.5% and 3%) and their relationship with three local 
outliers (within the black ellipse) in an exhaustive dataset. Green points mimic sparsely sampled data extracted from the exhaustive dataset.

Analyzing outliers in a global con-
text is appropriate to manage sparsely 
sampled models if the available data is not 
enough to estimate their local distribution. 

When there are enough data to estimate 
reliable local distributions, it is relevant 
to consider that spatial data value may be 
or not be an outlier in different positions 

along the deposit. We use an exhaustive 
unidimensional dataset to illustrate the 
problem of classifying local outliers from 
a global perspective (Figure 3).

Figure 2 – a) Cutting curve between the applied capping and the average 
grade, where the vertical-red line indicates where the curve stabilizes; b) Cumulative coefficient of 

variation of the data in descending order against the “grade x thickness” product. Adapted from Parker, 1991.

(a) (b)

Figure 2a presents the cutting 
curve (Roscoe, 1996), representing the 
sensitivity of the average grade to the 
different capping values. The capping 
value is defined as the grade near the 

inflection point before the plateau where 
the curve stabilizes. Figure 2b shows the 
data’s cumulative coefficient of variation 
(CV) in descending order. The value near 
the point in which there is a pronounced 

increase in the CV is defined as the cap-
ping value. The CV curve is proposed as 
one step of the workflow developed by 
Parker (1991), which is further discussed 
in the “Kriging-based solutions” section.

Robust estimators are the first Krig-
ing-based approaches proposed to man-
age extreme values, such as Lognormal 
Kriging (LK) (Journel, 1980) and multiple 
Indicator Kriging (mIK) (Journel, 1982). 
More recently the field parametric geo-
statistics was proposed as a solution to 
manage outliers (Machado et al., 2012). 
The LK is extremely sensitive to the sill of 
the variogram and can overestimate the 

values when the lognormality assump-
tion does not hold. The mIK commonly 
requires to be post-processed to fix order 
relation violations, and support correc-
tion, both can be an additional source of 
bias in the final estimate (Costa, 2003). 
Parker (1991) used the CV curve to clas-
sify outliers (Figure 2b), being these values 
adjusted to a lognormal distribution and 
their spatial continuity individually esti-

mated by Indicator Kriging (IK; Journel, 
1982). Maleki et al. (2014) proposed to 
jointly cokrige the truncated-grade data 
and the weighted indicator of grade above 
the defined threshold. Fourie et al. (2019) 
proposed to restrict the kriging weights 
attributed to outliers proportionally to 
their probability of occurrence in the 
data distribution.

The Robust kriging (RoK) is pro-

1.3 Kriging-based solutions
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The proposed approach relies on 
the understanding that there are two data 
sets at each sampled position: (i) the da-
tum value with its associated uncertainty  
N (y (u

i
), σ ²

error
 (u

i
)); and (ii) the conditional 

probability N (y * (u
i
), σ ²

sk
 (u

i
)) estimated by 

Simple Kriging (SK) using cross-validation 
from neighbor data. The most probable 
inlier value at u

i
 results from merging both 

distributions through Bayesian Updating.
The values are transformed to normal-

score units and those estimated by SK are 
used in the step of cross-validation to avoid 
conditional bias because they allow that all 
marginal and conditional distributions be 
fully defined by their mean and variance. 
The proposed method, hereafter referred 
to as BU, consists of the following steps:

(i) Transforming values: Original data 
values z (u

i
) are transformed into normal-

scored values to y (u
i
) to meet part of the 

assumptions required by multi-gaussian 
normal equations (equivalent to Simple 
Kriging). Moreover, adjusting the experi-
mental variogram to transformed values 
partially mitigates the influence of extreme 
values, clustering and the proportional effect 
(Deutsch and Kumara, 2017);

(ii) Cross-validation: Cross-validation 
is performed at all sampled positions us-
ing SK. The cross-validation consists of 
temporarily removing one-by-one each 
sample or the entire drillhole and us-
ing the remaining samples to estimate  
N (y * (u

i
), σ ²

sk
 (u

i
)) at the node of the removed 

sample. The process is repeated at each sam-
pled position u

i
. The decision of removing 

each sample or the entire drillhole in each 
step depends on the type of mineralization 
and whether the most probable origin of the 
outliers is individually associated with each 
sample or simultaneously associated with all 

samples along the drillhole.
The use of Simple Kriging is neces-

sary because its regression slope is exactly 
1. In the case of ordinary kriging where the 
Lagrange Multiplier is used, it is typically 
less than one, indicating a conditional bias 
which can increase the number of values 
misclassified as outliers;

(iii) Defining the data threshold: 
The BU method relies on the assumption 
that the larger is the deviation between 
the data value y (u

i
) and the estimate  

N (y * (u
i
), σ ²

sk
 (u

i
)), the larger is the chance 

of the sampled value being an outlier. 
All values outside the threshold interval 
[-cσ 

sk
 (u

i
), cσ 

sk
 (u

i
)] are assumed as outli-

ers, where the C value is a user-defined 
parameter (Cressie and Hawkins, 1980; 
Costa, 2003). Figure 4 shows these pa-
rameters (note that the location index u

i
  

was dropped from the notation).

2. Proposed method

Babakhani (2014) proposed geosta-
tistical simulation to calibrate a cutting 
level for estimation based on the fact that 
geostatistical simulation is a robust tech-
nique with respect to outlier values, where 
extreme values are not exaggerated by the 
local weighting of estimation, since the 
simulated realizations are constrained to 
reproduce the data distribution and spatial 
continuity. This approach was further de-
veloped by Chiquini and Deutsch (2017), 
who proposed the following steps to use 
simulated values to calibrate the cutting 
level to be used in estimates:

(i) The values to be checked are usu-

ally chosen from the distribution tail(s), 
ignoring local outliers that do not stand 
out as extreme values in global terms;

(ii) The volume of influence of each 
datum value to be estimated is delimited. 
The volume includes all blocks that the 
kriging weight attributed to the datum of 
interest is above a determined value;

(iii) The mean and uncertainty of 
each volume of influence is established by 
geostatistical simulation; and

(iv) Each datum value is adjusted 
until the estimated quantity of metal is 
similar to the simulated values in its vol-
ume of influence.

The simulation-based method solves 
two issues related to kriging-based solu-
tions: its conditional-bias is null, and the 
use of an experimental variogram fitted 
on normal score units mitigates the influ-
ence of extreme values, clustering and the 
proportional effect (Deutsch and Kumara, 
2017). The method, however, ignores the 
local interaction among overlapping outli-
ers, and therefore, it is appropriate only to 
check a small number of samples whose 
volumes of influence do not overlap each 
other. Next, we present a novel meth-
odology considering the limitations and 
advances of the methods discussed above.

1.4 Simulation-based solution

Where σok (ui
) is the kriging standard de-

viation and the C value is a user-defined 
constant, which controls the amount of 
editing of each outlier. Further details 
about the value C are presented in the 
Proposed Method section (Step iii).

The RoK based approach considers 
the datum in its local context, it does 
not require any additional variogram 

modelling. However, there are two main 
concerns regarding RoK. Firstly, we face 
a recursive problem because the experi-
mental traditional variogram is highly 
sensitive to outliers, and the inputted 
variogram model affects the outlier clas-
sification. Robust methods to compute 
the experimental variogram, such as the 
pairwise relative variogram, are theoreti-

cally incorrect and may not converge to 
the underlying real variogram (Babakhani 
2014). Secondly, the conditional bias as-
sociated with Ordinary Kriging estimates 
affects the distribution tail(s), which is the 
area of interest in the outlier classifica-
tion. These problems are addressed by 
the simulation-based solution discussed 
in the next section.

z e (ui)

z wm (ui) + cσ
ok 

(ui), if    z(ui) - z wm (ui) > cσ
ok 

(ui)

z wm (ui) - cσok 
(ui),  if    z(ui) - z wm (ui) < - cσ

ok 
(ui)

z (ui),                     if  |z(ui) - z wm (ui)| ≤ cσ
ok 

(ui) (1)

posed to minimize the influence of outliers 
using its neighboring data (Cressie and 
Hawkins, 1980; Hawkins and Cressie, 
1984). Costa (2003) proposed an ap-
proach based on RoK, where each datum 

value z(u
i
) is compared to a robust median-

weighted estimate zwm (u
i
) at its position u

i
. 

The estimator weights are computed from 
the cross-validation step performed by 
Ordinary Kriging (Matheron, 1963). The 

method may check low and/or high-value 
outliers. If the deviation between z (u

i
) and 

the robust estimate zwm (u
i
) is larger than 

the user-defined threshold (Equation 1), 
z (u

i
) is replaced by an edited value z e (u

i
)
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Equation 2 computes the minimal 
variance σ ²

error
 (u

i
) associated to the outlier 

under analysis y (u
i
) that assures a degree 

of overlapping area between N (y (u
i
), σ ²

error
 

(u
i
), and the kriged distribution N (y * (u

i
), 

σ ²
sk
 (u

i
)), given the user-defined C value 

and its threshold [-cσ 
sk
 (u

i
), cσ 

sk
 (u

i
)]. The 

larger this overlapping area, the larger the 

probability that the data under analysis is 
an inlier value. Figure 5 shows the relation-
ship between three different distributions 
with the threshold cσ 

sk
 (u

i
).

The bigger the C value, the smaller 
the change made to the original datum 
value. Cressie and Hawkins (1980) cite 
that the C value in the 1.5–2.5 interval 
is recommended and that values of C 
below 1.0 proved to excessively smooth 
out the outlier effect. However, Hawkins 
highlights that there are no fixed criteria 

to define outliers and these values should 
be analyzed and adjusted for each case. 
Costa (2003) suggests from a practitioner 
perspective that the calibrated C value 
should not modify the declustered global 
mean by more than 5%.

(iv) Estimating the uncertainty of 
each outlier: The uncertainty σ ²

error
 (u

i
) as-

sociated with each outlier y (u
i
) is assumed 

as resulting from the combination of mi-
croscale variation, human error, improper 
sample preparation, and/or assay and the 
minimal error intrinsically associated with 
any sampling process. In the case of an 
outlier in the upper tail (high-grade outli-
ers), the error σ 

error
 (u

i
) is given by

σ
error

(ui) = 
| y(ui) - Cσsk 

(ui)|
c (2)

Figure 4 – Scheme of the proposed workflow. a) The conditional distribution kriged by Simple Kriging 
and the user-defined parameter C are used to define the threshold whereby all values beyond are classified as outliers; 

b) The variance associated with the datum value at the kriged position is estimated (right-side distribution); c) The sampled value classified 
as outlier and kriged values are merged by Bayesian Updating. The dataset with treated values is used to estimate the model of interest.

(a) (b)

(c)

Figure 5 – Value threshold (vertical-dashed line) based on the user-defined 
C parameter and the distribution estimated by Simple Kriging through cross-validation. The higher the distribution 

area of the lower tail of the distributions A, B and C below the threshold limit, the higher the probability that the extreme value is inlier.
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The study area comprises a typical 
quartz alteration mineralization with 
subordinated sulphides assemblage 
which is located in the Archean Green-
stone Belt in the Quadrilátero Ferrífero 
region, an important Brazilian metallo-
genetic province. The orebody of interest 
is composed of mineralized quartz veins 

hosted in the stratigraphic footwall of the 
banded iron ores that compose the main 
orebodies of this deposit. The orebody of 
interest is the quartz “vein–associated” 
composed of four quartz-carbonate vein 
systems (Figure 6): V1 mineralized sys-
tem is a fault-fill type associated with the 
principal gold-bearing fluid input stage. 

The mineralized V2 veins are controlled 
by the foliation and subdivided accord-
ing to internal crystal orientation. The 
extensional array V3 veins are also 
controlled by the foliation, whereas the 
extensional, breccia-style V4 system has 
veins associated with flanking structures 
(Vitorino, 2017).

Figure 6 - Geological model from the mineralized zone. a) looking parallel to the plunge. b) schematic organizations 
showing the gold grade variability and organizations of the quartz-carbonate veins systems. Adapted from Vitorino (2017).

3. Case study

3.1 Geological settings

(a) (b)

The practitioner may choose to treat 
only anomalous values that are above or 
below the kriged value at its neighbor-
hood, or both. In these cases, the only 
difference is the signal associated with the 
C value, being possible to define simulta-
neously both thresholds. In general, it is 

recommended to set C as positive when 
managing outliers of a positively skewed 
distribution and use -C if the distribution 
is negatively skewed. Next, the value clas-
sified as an outlier and the kriged distribu-
tion at its position are combined into an 
updated value;

(v) Estimating the updated value 
y e

bu: Each value y (u
i
) beyond the defined 

threshold are classified as outlier value and 
replaced by the new value  y e

bu
 (u

i
). Bayes-

ian Updating equation is used to combine 
N (y (u

i
), σ ²

error
 (u

i
)) and N (y * (u

i
), σ ²

sk
 (u

i
)) in 

order to generate the updated value y e
bu
 (u

i
):

Where equation 3 is the Bayesian Up-
date equation derived from the Theorem 
of Bayes whereby both available data 
combinations are weighted by their as-
sociated uncertainty. 

(vi) The updated values are back 
transformed to original units.

Next, the proposed approach is 
applied to a gold deposit whose gold 
distribution is highly skewed. For the 

sake of confidentiality, the case study 
used a synthetic dataset mimicking the 
geological, statistical and geostatistical 
characteristics of the real gold deposit 
under study.

y e (ui) =bu

y*(ui) σ
2

error
(ui) + y(ui) σ

2
sk
(ui) 

σ2
error

(ui) - σ
2

sk
(ui)σ

2
error

(ui) + σ2
sk
(ui)   

(3)

The comparison among methods is 
based on a reference model assumed as 
ground truth, which was estimated us-
ing a synthetic short-term/grade-control 
dataset composed of 342 samples with 
average length of 70 cm (Figure 7b; 7c). 

The methods to be compared used a sub-
set extracted from the complete dataset, 
composed of 176 samples with an average 
spacing of 30 m was. Samples in both the 
test and ground-truth datasets were given 
equal weight in estimates.

The criteria to compare methods 
and to choose their parameters must con-
sider the model purpose. In this case, we 
prioritize the model capacity of correctly 
classifying blocks as ore or waste from es-
timates using the long-term sampling grid.

The orebody complexity and 
lack of additional information make 
domaining the model into individual 
veins systems difficult and very subjec-

tive. All the proximal zone, therefore, 
is modelled together and a grade shell 
above 1 g/t. is delimited. The grade 
magnitude order of each vein system is 

different, making the chosen orebody 
a good case study to evaluate the ca-
pacity of different methods to classify 
local outliers.

3.2 Case-study methodology
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Figure 8 – Bias, rate of waste and ore misclassification and the average grade deviation 
between the reference block model and the model estimated using BU approach for different values of C.

The variogram γorig(h) and γns(h) 
were modelled for the complete data-
set in original and normal-score units. 
Both models indicated directional 

anisotropy, being the major continuity 
along the mineralization plunge and 
the minor along the vertical direction. 
The models are composed of the nug-

get effect and one spherical structural 
with directional ranges indicated in 
parentheses (Equation 4-5).

The search ellipse distances of all 
methodologies were equal to the direc-
tional ranges of their variogram models, 
with a minimum of 8 and a maximum of 

24 samples. The C value was set 2 for RoK 
and BU, which in both cases is the largest 
rounded-up value that does not modify 
the global declustered mean more than 

approximately 5%.
Figure 8 shows the relationship 

between the C value and the accu-
racy of estimates using the BU approach. 

The BU method is compared with 
Robust Kriging (RoK; Costa, 2003); 
Capping calibrated by simulation 
(SIM; Babakhani, 2014; Chiquini and 

Deutsch, 2017) and Ordinary Kriging 
performed using the raw data without 
outlier treatment. These methods used 
the long-term sampling grid composed 

of 176 samples which were extracted 
from the complete short-term/grade-
control dataset composed of 342 
samples (Figure 7b; 7c).

Figure 7 - 3D geological model from orebody mineralized zone. a) the plan of view is parallel to the plunge; 
b) Cross-section along AA’. Histograms of declustered data with the c) complete dataset with production data and d) test dataset.

3.3 Dataset and method comparison

(a)

(b)

(c)

(d)

orig.(h) = 7 +20.Sph Plun. Strike Vert.
40m 30m 8m

ns (h) = 0.21 +0.79.Sph Plun. Strike Vert.
45m 34m 9m

(4)

(5)
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We may observe in the range [1, 4] that 
the largest is the C value, the lowest is the 
misclassification and the average devia-
tion between the estimated and reference 
grade of each block. However, increasing 
C also increases the bias compared to the 
declustered average grade.

Figure 9a shows the scatterplot be-
tween the samples in normal-score units 
and the kriged values performed by cross-
validation. The decision of removing each 
sample or the entire drillhole in the step 

of Cross-validation of the BU approach 
needs to consider the probable origin 
of the anomalies to be treated in each 
specific problem. In this case study, each 
sample was removed one-by-one. The 
author considers that anomalous high-
grade values to be treated in this deposit 
are associated with centimetric intervals 
that are smaller than the sample length 
of 70 cm and thus, probably influence a 
single sample and not the entire drillhole. 
Moreover, human error, improper sample 

preparation, and/or assay are also related 
with a single sample. 

Figure 9b shows the difference be-
tween the originally sampled values and 
the new values edited by the proposed 
approach with the C value set to 2. The 
correction was performed in normal-
score units, using the original data trans-
formed to a gaussian distribution with 
declustered mean 0 and unit variance, 
and then back-transformed to original 
units after the estimation.

Figure 9 – Scatterplot for a) cross-validation performed using SK to estimate the 
normal-score values, and b) the effect of editing original-unit values using the BU approach and C set to 2.

Considering the model of reference, 
Table 1 shows the average deviation, 
correlation and the rate of ore and waste 
misclassification of Ordinary Kriging per-

formed using the raw data, BU, and RoK 
for three cut-off grades. It is important 
to highlight that the average grade of the 
reference dataset is higher than the declus-

tered grade of the test dataset, respectively 
6.84 g/t. and 6.16 g/t. Therefore, it is ex-
pected that the evaluated models present a 
negative bias against the reference model.

Table 1 – Comparison of estimates of Robust Kriging (RoK), Bayesian-Updating approach (BU),
Capping calibration by simulation (SIM), and Ordinary Kriging using the raw dataset without any treatment (OK). 

All using the same test dataset composed of 176 samples with declustered mean of 6.16 g/t. The methods are compared 
to a ground-truth model estimated using the complete dataset with 342 samples with declustered mean of 6.84 g/t.

METHOD REFERENCE ROK BU SIM OK

Avg. Grade (g/t.) 6.64 5.77 5.74 5.82 5.83

Avg. Deviation - 41% 31% 34% 45%

Correl. Coefficient r 1 0.41 0.54 0.50 0.39

Cutoff – 3 g/t.

% Ore misclassified - 14% 4% 5% 9%

% Waste misclassified - 6% 9% 10% 11%

% Misclassified - 11% 6% 7% 15%

Cutoff – 5 g/t.

% Ore misclassified - 34% 21% 17% 18%

% Waste misclassified - 24% 15% 21% 22%

% Misclassified - 30% 18% 19% 21%

Cutoff – 8 g/t.

% Ore misclassified - 63% 60% 55% 55%

% Waste misclassified - 12% 8% 9% 14%

% Misclassified - 26% 22% 22% 24%

(a) (b)
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The BU approach is the more ef-
ficient method in limiting the influence 
of outliers from a local perspective. 
The better local accuracy is indicated 
by the smaller misclassification rate 
for all tested cut-offs (Table 1), the 

higher coefficient of correlation, and 
the lower standard error of regression 
(Figure 10). The smaller spread results 
in bigger stability among models 
estimated with new samples added 
from the long to the grade-control 

model. The cloud of points above the 
reference X=Y line indicates blocks 
influenced by inlier values incorrectly 
classified as outliers; the cloud below 
the line results from values misclassi-
fied as inliers.

The grade-tonnage curves are shown 
for the overall assessment of recoverable 
resources from a global perspective at dif-
ferent cut-offs. The behavior of the curves 

of the estimated and reference models are 
presented in Figure 11. While the behav-
ior of all compared methodologies are 
very similar below 7.5 g/t., the proposed 

approach underperforms the other meth-
odologies above 7.5 g/t., being specially 
biased above 10 g/t., which corresponds 
to less than 5% of the total tonnage.

Figure 11 – Grade tonnage curves (descending curves) and mean grade 
per cut-off (ascending curves). The reference curves (black-dashed) were obtained from estimates using the complete dataset.

In this case study, we applied 
different methods to treat outliers for 
a highly skewed deposit of gold. The 
BU approach estimates have the best 
the local, followed by the simulation 
and RoK approaches. BU estimates 
above 7.5 g/t, however, are globally 
biased. These results highlight that 

the C value must be set considering 
the model application.

Higher C value leads to biased es-
timates that are a concern from a global 
perspective but improves the local ac-
curacy and reduces the misclassification 
rate, which is of paramount importance 
to decide if the block should be sent to 

the waste pile or the processing plant. 
If the main purpose were the global 
statistics, BU approach with C set to 4 
would be a better parameter because 
it approximates the estimates to the 
reference grade x ton curve (Figure 11) 
but, as expected, would worsen local 
accuracy (Figure 8).

Figure 10 – Scatter plot between the reference model and the same blocks estimated by a) Bayesian 
Updating based approach; b) Robust Kriging; c) Capping calibration by simulation; and d) Ordinary kriging using 

the raw dataset without any treatment. The green, yellow and red lines indicate the cut-off grade of respectively 3, 5 and 8 g/t.

(a) (b)

(c) (d)
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4. Conclusions

The proposed approach addresses 
problems associated to other geostatisti-
cal solutions, such as the experimental-
variogram modelling using the data in 
normal-score units, reducing the influence 
of extreme values; the conditional bias 
is null as Simple Kriging has a slope of 
regression of exactly one; and the method 
evaluates all available data as a function 

of their similarity with nearby values.
The capacity of the proposed ap-

proach for correcting, classifying and 
treating outliers was tested in a highly 
skewed gold deposit composed of many 
generations of mineralization with 
abrupt changes from high to low-grade 
areas. The proposed approach outper-
formed the other compared methods 

available in literature in the case which 
the local accuracy is prioritized, improv-
ing the misclassification rate and the 
deviation between the reference and 
the estimated blocks. We recommend 
analysing in future studies the perfor-
mance of the proposed method with 
other data distributions and variable 
levels of skewness.
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