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1. Introduction

The soil water retention curve is a fundamental soil 
property that governs many agricultural, environmental, and 
engineering applications (Khlosi  et  al., 2016). However, 
conducting laboratory tests for soil water retention curve 
(SWRC) determination can be expensive and time-consuming, 
mainly in places located away from universities and research 
centers (Achieng, 2019; Haghverdi et al., 2015; Khlosi et al., 
2016). An alternative for estimating this curve using physical 
characterization parameters such as percentage of gravel, 
sand, silt, clay, plasticity index (PI), and porosity (n) could 
contribute to a preliminary assessment of the soil water 
retention curve requiring less laboratory cost and time.

Other researchers developed procedures and techniques 
to assess or estimate the properties of unsaturated soils. 
Costa (2017) developed a model capable of representing the 
centrifuge permeameter test in order to facilitate obtaining 

the hydraulic properties of a soil. He obtained the SWRC and 
the hydraulic conductivity of the soil requiring a shorter time 
compared to the filter paper and pressure plate tests and using 
a single moisture sensor. Arya & Paris (1981), Fredlund et al. 
(2002) and Vanapalli & Catana (2005) proposed models for 
estimating the SWRC using grain-size distribution curve and 
volume-mass properties.

Artificial intelligence is a novel technique that can be 
used for estimating the SWRC. It has been widely applied 
in geotechnics as examples are given. Ozelim et al. (2022) 
proposed a methodological framework to monitor internal 
erosion in dams based on artificial intelligence, which consist 
of processing the acoustic data obtained by geophones through 
artificial intelligence techniques in order to identify anomalies 
and classify the health status of the dam. Belcher et al. (2015), 
Fisher et al. (2016, 2017) investigated the erosion events, crack 
detection and anomaly detection in an experimental earth 
embankment seismic data using unsupervised, semi-supervised 
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and supervised machine learning techniques. Marjanović et al. 
(2011) and Tien Bui  et  al. (2016) used machine learning 
approach to assess problems of landslide susceptibility.

Machine learning techniques have been used in geotechnical 
engineering to predict engineering properties of soils based 
on previously known index properties. Some studies were 
performed in this subject to predict the compression index 
of soft soils from the Brazilian coast (Oliveira Filho et al., 
2020), to define soil classes by the similarity of the CPT 
measurements (Carvalho & Ribeiro, 2019, 2020), to predict 
friction capacity of driven piles in cohesive soil (Prayogo 
& Susanto, 2018), to construct a site-specific multivariate 
probability distribution model of soil characteristics using 
Bayesian machine learning and hybridization between site-
specific and generic data (Ching & Phoon, 2019).

Concerning the SWRC prediction using characterization 
results, one can cite the use of k-nearest-neighbors and 
sand, silt, and clay percentages and soil bulk density on 
samples from Belgium and UNSODA database to derive 
a pedotransfer function (PTF) for van Genuchten’s (1980) 
equation (Haghverdi et al., 2015); support vector machine 
(SVM) was also employed using a variety of parameters based 
on 72 samples from Syria to predict PTF at some SWRC 
points (Khlosi et al., 2016)and SVM and neural networks 
were applied to suction data to predict the SWRC for one 
loamy sand soil (Achieng, 2019).

This paper explores the potential use of machine learning 
techniques, such as extremely randomized trees, random forest, 
decision trees, logistic regression, support vector machine, 
multi-layer perceptron, and k-nearest neighbors, to predict 
the soil water retention curve for different soil types using 
physical characterization parameters. The database contains 
794 measured SWRC points (main drying branch) and related 
soil characterization properties carried out on a wide variety 
of soils compiled by the authors. This dataset is divided into 
training, cross-validation, and test sets used, respectively, to fit, 
select and evaluate the model. Then, Cavalcante’s & Zornberg’s 
(2017), van Genuchten’s (1980) and Costa & Cavalcante (2021) 
functions are fitted to machine learning prediction to obtain a 
continuum function that can be used in other applications, such 
as numerical calculus. This study fits the Ordinance number 

1.122 from Ministry of Science, Technology, Innovations and 
Communications from Brazil (Brasil, 2020), which establishes 
priorities for research, development, and innovation projects to 
enable technologies such as artificial intelligence to contribute 
to the innovation base on intensive products in scientific and 
technological knowledge.

2. Materials and methods

2.1 Materials

All the compiled dataset containing the SWRC points 
and the corresponding characterization properties was filtered 
from the Environmental Geotechnics Laboratory (GEOAMB) 
(UFBA, 2022) of the Federal University of Bahia (UFBA). 
Table 1 presents variables’ statistical properties. Most of the 
soil samples are sandy soils, with low percentages of gravel. 
There are some samples with high clay and silt content. The 
mean plasticity index is near 13% and only few soils present 
plasticity above 21%. The samples have porosity between 
0.24 and 0.69. The suction covers from 0 up to 4.104 kPa. 
Figure 1 illustrates all the SWRC points of the dataset. It can 
be noted that most points are in the central region of the graph.

Table 1. Statistical description of the selected 794 samples.

Variable Mean Standard 
deviation Minimum 25%a 50%a 75%a Maximum

Sand (%) 52.22 27.48 1.00 32.00 55.00 73.00 100.00
Clay (%) 26.97 23.00 0.00 8.25 22.00 45.17 89.00
Silt (%) 21.14 16.55 0.00 9.00 19.00 29.30 85.00
Gravel (%) 0.62 1.24 0.00 0.00 0.00 0.08 5.00
Plasticity index (%) 12.78 12.84 0.00 3.00 9.00 21.00 58.00
Porosity 0.48 0.10 0.24 0.42 0.49 0.54 0.69
Volumetric water content, θ (cm3/cm3) 0.28 0.12 0.00 0.20 0.30 0.37 0.69
Suction, ψ (kPa) 617.29 2856.69 0.00 10.74 42.17 199.35 39605.60
aQuantiles.

Figure 1. All dataset points in one graph of volumetric water 
content against suction.
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The dataset doesn’t have all features available. In some 
experiments, the granulometry, or the plasticity index weren’t 
measured. Within the entire database of the 794 points, 
there were missing 11 points without percentages of sand, 
and silt, 37 points without plasticity index, filling with the 
average value of the attribute was done to solve this. More 
information about the dataset is available in: https://geofluxo.
com/geoapps/swrc-ai/report/

2.2 Methods

The potential of machine learning to predict the soil water 
retention curve was investigated by developing estimators in 
Python using the scikit-learn library (Pedregosa et al., 2011). 
Other tools used to subsidize were: pandas (McKinney, 2010), 
NumPy (Oliphant, 2006), matplotlib (Hunter, 2007), jupyter 
notebook (Kluyver  et  al., 2016), and anaconda navigator 
(Anaconda, 2016).

An overview of the method is shown in Figure 2, adapted 
from Scikit-learn (2021), it is a typical cross-validation 
workflow in model training. To develop and choose the machine 
learning model, the training was done on the training set, 
after which the evaluation was done on the cross-validation 
set. When the experiments seem to be successful, the final 
evaluation was done on the test set (Géron, 2019).

To avoid overfitting, a common practice when performing 
a supervised machine learning experiment is to hold out 
part of the available data as a test set. Here, 20% of the data 
(159 points) were used (Géron, 2019; Scikit-learn, 2021). 
The data were randomly divided into training and test set 
using a stratified shuffle split because most suction data are 
between 102 and 103 kPa. This creates divisions that preserve 
the same percentage in each interval of suctions defined in 

Figure 3 and allows to assess generalization performance 
across the entire suction range.

It’s necessary for most machine learning estimators 
that the data are scaled, and the missing ones are filled. They 
can misbehave if the individual features do not more or less 
resemble standard normally distributed data (Géron, 2019). 
So, the data were scaled by standardization, removing the 
mean and scaling to unit variance. Only 1.4% of the sand 
and silt percentages data and 4.6% of plasticity index data 
were missing, as it was a small amount, this was adjusted 
by filling in with the mean value of each feature.

When evaluating different estimators or different 
hyperparameter settings of estimators, there is still a risk 
of overfitting on the test set because the estimators can be 
chosen by the test performance or the parameters can be 
tweaked until the model performs optimally (Géron, 2019). 
This way, knowledge about the test can be part of the model, 
and evaluation metrics no longer report on generalization 
performance (Scikit-learn, 2021). To solve this problem, 
another part of the dataset was held out. This part is the 
cross-validation set, and the evaluation was done using the 
5-fold cross-validation (Breiman & Spector, 1992). The 
hyperparameter space was searched to achieve the best cross-
validation score, using the grid search cross-validation to 
exhaustively consider all parameter combinations provided 
and select the best combination.

As an example, some hyperparameters of a decision 
tree are: min_samples_split, minimum number of samples 
a node must have before it can be split; min_samples_leaf, 
minimum number of samples a leaf node must have; max_
features, maximum number of features that are evaluated 
for splitting at each node. The n_estimators, random_state, 
ccp_alpha hyperparameters controls the number of decision 
trees ensembled, the randomness, and the pruning of the 
trees, respectively. Increasing min_samples_split, or min_
samples_leaf or ccp_alpha hyperparameters or reducing 

Figure 2. Flowchart of a typical cross-validation workflow. Figure 3. Suction intervals of all the datasets.
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max_features hyperparameter will regularize the model 
(Scikit-learn, 2021; Géron, 2019).

The training was divided into two phases. Phase 1 was 
characterized by fitting various types of machine learning 
estimators, such as logistic regression, multilayer-perceptron 
with adam and different activation functions: ReLU, hyperbolic 
tangent, sigmoid and identity (Kingma & Ba, 2015), support 
vector machine with different kernels: linear, polynomial, 
radial basis function and sigmoid (Smola & Schölkopf, 
2004), k-nearest-neighbors, decision tree, random forest 
(Kam, 1995), and extremely randomized trees (extra trees) 
(Geurts et al., 2006), with default settings of scikit-learn. 
More about each model can be seen in Géron’s book (Géron, 
2019) and Scikit-Learn user guide (Scikit-learn, 2021). In 
phase 2, the best algorithm obtained in phase 1 was selected 
to fine-tune the hyperparameters of this model with grid 
search cross-validation tool. Algorithm selection was based 
on the root mean squared error (RMSE) and the coefficient 
of determination R2 measured in the evaluation of the model 
in the 5-fold cross-validation.

Toward facilitating output results application, predicted 
SWRC points were fitted using three different models. Cavalcante 
& Zornberg (2017) proposed a model considering one fitting 
parameter for the soil water retention curve. The study solved 
Richard’s equation – which governs the unsaturated flow 
through porous media by a rigorous approach – analytically 
for a one-dimensional flow. The function was deduced as:

( ) ( ) ( )
r s r e δψθ ψ θ θ θ −= + −  	 (1)

where δ = fitting hydraulic parameter [M-1LT2]; ψ = soil 
suction [ML-1T-2]; θr = residual volumetric water content 
[L3L-3]; and θs = saturated volumetric water content [L3L-3].

van Genuchten’s (1980) proposed a model considering 
three fitting parameters, and it is described as:
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where avg = fitting parameter [M-1LT2]; n, and m are 
dimensionless fitting parameters [-].

For bimodal soils, Costa & Cavalcante (2021) proposed 
a model based on the linear superposition principle and on 
the Cavalcante’s & Zornberg’s (2017) model, described as:

( ) ( ) ( ) ( ) ( )1 21r s r e eδ ψ δ ψθ ψ θ θ θ λψ λ− − = + − + −  
 	 (3)

where δ1 and δ2 = fitting hydraulic parameter corresponding 
to the microporous and macroporous regions, respectively 
[M-1LT2]; and λ = weight factor [-].

Costa & Cavalcante (2020) demonstrated that the δ 
parameter is inversely proportional to the air entry pressure 
and is given by:

( )( )exp 1 exp 1
airψ

δ

−
=  	 (4)

where ψair is the air entry value [ML-1T-2].

3. Analysis and results

The results from phase 1, characterized by the running 
of a diversity types of machine learning algorithms with 
scikit-learn default settings, are presented in Table 2. The 
extra trees and random forest were the best models, achieving 
cross validation R2 greater than 0.85 and cross-validation 
RMSE less than 0.05. The decision tree algorithm has R2 

Table 2. Phase 1 - Evaluation of different machine learning models with scikit-learn default hyperparameters.
Model Training RMSE Cross-validation RMSE Training R2 Cross-validation R2

Extra trees 0.001 0.040 0.99 0.90
Random forest 0.017 0.046 0.98 0.86
Decision tree 0.001 0.056 0.99 0.79
KNN 0.049 0.068 0.84 0.70
SVM (rbf) 0.081 0.088 0.57 0.49
MLP (relu) 0.087 0.092 0.50 0.44
MLP (logistic) 0.098 0.100 0.37 0.35
LR 0.099 0.101 0.36 0.34
MLP (identity) 0.100 0.101 0.35 0.33
MLP (tanh) 0.097 0.101 0.38 0.33
SVM (linear) 0.100 0.102 0.35 0.32
Dummy 0.124 0.124 0.00 0.00
SVM (poly) 0.090 0.183 0.47 -2.50
SVM (sigmoid) 7.328 7.143 -3516.33 -3383.65
Notes: Extra trees is the extremely randomized trees, KNN is the K-Nearest-Neighbors algorithm, SVM is the Support Vector Machine algorithm and in parenthesis is the 
kernel used, MLP is the Multi-Layer Perceptron algorithm and in parenthesis is the activation function used.
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of 0.99 in training, but it presented an inferior performance 
in generalization phase. K-nearest neighbors (KNN) is the 
fourth best algorithm analyzed with 0.70 cross-validation R2.

Support vector machine (SVM), multi-layer perceptron 
(MLP) and logistic regression (LR) didn’t perform satisfactorily 
with default settings. The dummy algorithm is a simple 
regressor that just uses the mean value of the volumetric 
water content of the training set, it was used to compare the 
RMSE with the other estimators. Using extra trees algorithm, 
the cross-validation RMSE was improved in 0.084 compared 
to that obtained with the dummy algorithm. The SVM with 
sigmoid kernel and scikit-learn default settings couldn’t find 
a pattern in the training dataset.

The extra trees algorithm was the best model analyzed 
in phase 1, so it was selected to phase 2. This algorithm is 
an ensemble of decision trees with all the hyperparameters 
to control how trees are grown, plus all the parameters to 
control the ensemble itself. A decision tree is formed by roots 
nodes and leaf nodes. The root node is the question to make 
a decision and the leaf node is the answer after all questions 
(Géron, 2019). Figure 4 presents an example of decision tree, 
where the root nodes set thresholds towards the leaf node 
with the corresponding value of volumetric water content. 
The function used to measure the quality of the split was 
the mean squared error (mse). In Figure 5, the regression of 
this tree is shown. The extra trees algorithm fits a number 
of randomized decision trees on various subsamples of the 
dataset using random thresholds for each feature rather than 
searching for the best possible thresholds, and uses averaging 
to join the predictions from each decision tree (Géron, 2019).

The extra trees algorithm was refined by varying 
the hyperparameters of the forest and trees to generate a 
model with higher generalization performance. To find 
this model, the grid search cross-validation was evaluated 
varying the n_estimators from 8 to 40, random_state from 
0 to 30 in multiples of 2, min_samples_split from 2 to 5, 
min_samples_leaf from 1 to 4, max_features from 1 to 6, 
and ccp_alpha with 0, 0.0001 and 0.0002.

In total 152064 combinations were evaluated, and the 
hyperparameters of the best estimator were: n_estimators = 24, 

random_state = 10, min_samples_leaf = 1, min_samples_split 
= 2, max_features = 6, ccp_alpha = 0. Figure 6 illustrates 
the learning curve of the best extra trees model, which tells 
how the performance of this estimator varies according to 
the amount of data. The R2 in the training set reaches the top 
with R2 = 0.99, and the R2 in validation increases very fast 
with data reaching R2 = 0.90. It displays that the amount of 
data leverages the generalization capacity of the algorithm, 
which could reach up until R2 = 0.99.

Figure 7 shows the graph of the estimator’s evaluation 
in the test set. High scattering occurs at θ ranges with few 
amounts of data. The coefficient of determination in the test 
set is R2 = 0.90, and the θ error in a 95% confidence interval 
is between 0.029 cm3/cm3 to 0.043 cm3/cm3. This order of 
magnitude can negatively influence the results depending 
on the soil type, especially in low porosity soils, where a 
volumetric water content variation of this magnitude can be 
significant in the saturated zone of the curve. However, the 
algorithm will decrease this error as new data is computed.

An interesting aspect is that the decision tree-based 
estimators (such as extra trees) provide the relative importance 
of each parameter for the prediction of volumetric water 
content by the model. Feature importance is a weighted 
average of how much the trees nodes that use that feature 
reduce Gini impurity, then the results are scaled to adds up to 
1 (Géron, 2019). Table 3 presents this result, indicating that 
suction is the most significant feature, followed by porosity, 
and percentage of sand.

Suction is the most relevant variable because it makes 
the volumetric water content vary from dry to saturated and 
this makes it out of scale. The other variables have similar 
importance to each other, despite the percentage of gravel 
and silt that have feature importance close to zero, probably 
because the granulometry are linearly dependent on the 
fourth-dimensional hyperplane where the sum of all the 
percentages results 100%.

Figure  8 illustrates some predictions of the model 
for a (a) sandy, (b) silty, and (c) clayey soil. Visually, there 
is a good adherence between predicted and experimental 
results. The model is able to predict the SWRC with the 

Figure 4. A decision tree example.
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Figure 5. A decision tree regression example.

Figure 6. Learning curve of extremely randomized trees.

Figure 7. Evaluation in the test set of extremely randomized trees.

Figure 8. Prediction of the soil water retention curve with extremely 
randomized trees machine learning algorithm: (a) for a sandy soil 
with 73% of sand; (b) for a silty soil with 85% of silt; (c) for a 
clayey soil with 89% of clay.

Table 3. Feature importance for predicting the soil water retention 
with extremely randomized trees.

Feature Feature importance
Suction ψ 0.427
Porosity n 0.155

% Sand 0.127
% Clay 0.103

Plasticity index PI 0.085
% Gravel 0.058

% Silt 0.045



Albuquerque et al.

Albuquerque et al., Soil. Rocks, São Paulo, 2022 45(3):e2022000222 7

three well-defined sections, presenting the saturated zone, 
the desaturation zone and the residual zone. Some points are 
far from the machine learning predictions because part of 
the data was used for testing the model. In Figure 8a, there 
are some valleys and picks, and probably the first point is an 
outlier. In some areas, increasing suction causes an increase in 
volumetric water content, which is not physically defensible. 
This occurs because the algorithm tries to better fit the data 
of different types of soils and due to measurement errors.

To overcome these deficiencies and obtain a continuous 
and smooth curve, a model of soil water retention can be 

fitted to the predictions of the machine learning model. The 
saturated volumetric water content parameter was set equal 
to the porosity. The graphics on the left of the Figure 9 show 
the adjustment of Cavalcante’s & Zornberg’s (2017) function 
to machine learning predictions, and on the right are the 
adjustment of van Genuchten’s (1980) function. Cavalcante’s 
& Zornberg’s (2017) function fits well the predicted silty soil 
presented, but got lower coefficient of determination R2 for 
the sandy and clayey soils. van Genuchten’s (1980) model 
present a visually pleasing performance to fit the sandy and 
silty soils analyzed; machine learning and the curves almost 

Figure 9. Prediction of the soil water retention curve with Cavalcante & Zornberg (2017) and with van Genuchten (1980) fitting extremely 
randomized trees prediction with saturated volumetric water content equal to porosity: (a) and (b) experimental points from dataset for 
a sandy soil with 73% of sand; (c) and (d) experimental points from dataset for a silty soil with 85% of silt; (e) and (f) experimental 
points from dataset for a clayey soil with 89% of clay.
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overlap in all regions. The porosity of the analyzed clayey 
soil is 0.41 and probably has some measurement error.

Table 4 and Table 5 presents, respectively, the adjusted 
parameters and coefficient of determination R2 for Cavalcante’s 
& Zornberg’s (2017) function and van Genuchten’s (1980) 
function. The δ parameter is inversely proportional to the 
air entry pressure as demonstrated by Costa & Cavalcante 
(2020). So, the sandy and clayey soil fitted with Cavalcante’s 
& Zornberg’s (2017) function have similar air entry pressure 
and the silty soil has a higher air entry pressure. The clayey 
soil fitted with van Genuchten’s (1980) function resulted in 
unusual parameters of avg and m, this was due to the points 
predicted by the machine learning model in the saturated 
zone being far from measured porosity.

For bimodal soils, Costa’s & Cavalcante’s (2021) model 
can be used to fit the predictions. Figure 10 shows the fit 
of the silty and clayey soil with Costa & Cavalcante (2021) 
function. Comparing with Figure 9c, Costa’s & Cavalcante’s 
(2021) function fits better to the silty soil analyzed than 
Cavalcante’s & Zornberg’s (2017) function. Table 6 shows 
the adjusted parameters and coefficient of determination R2 
for Costa’s & Cavalcante’s (2021) function. The silty soil 
has microporous that results in an air entry pressure about 
1800 kPa, and macroporous with an air entry pressure of 
10 kPa. The clayey soil analyzed resulted 22 kPa and 10-4 kPa 
for microprous and macroporous, respectively. This low value 
of air entry for macroporous was due to the function trying 
to fit the machine learning data and the saturated volumetric 
water content of 0.41. The use of bimodal SWRC models 
is necessary for modeling the entire SWRC of soils with a 
bimodal pore size distribution, common in many Brazilian 
tropical formations (Kühn et al., 2021; Futai & Almeida, 
2005; Cordão-Neto et al., 2018; Miguel & Bonder, 2012).

Although Cavalcante’s & Zornberg’s (2017) function 
didn’t model as well as Costa’s & Cavalcante’s (2021) 

and van Genuchten’s (1980) functions, its advantages are: 
analytical solutions for transient unsaturated flow problems 
and fewer adjusted parameters.

4. Conclusion

In this paper, the performance of machine learning 
models for predicting the soil water retention curve was 
evaluated using a dataset with 794 measured water retention 
and suctions points from 51 different soils with a wide 
range of soil properties. Several models have been trained, 
such as linear regression, logistic regression, multi-layer 

Table 4. Cavalcante’s & Zornberg’s (2017) parameters and coefficient 
of determination of fitting to the machine learning prediction data.

Parameters Sandy soil Silty soil Clayey soil
θs (cm3/cm3) 0.49 0.44 0.41
θr (cm3/cm3) 0.05 0.04 0.04
δ (kPa-1) 0.0176 0.0122 0.0170
R2 0.86 0.97 0.84

Table 5. van Genuchten’s (1980) parameters and coefficient of 
determination of fitting to the machine learning prediction data.

Parameters Sandy soil Silty soil Clayey soil
θs (cm3/cm3) 0.49 0.44 0.41
θr (cm3/cm3) 0.00 0.00 0.03
avg (kPa-1) 0.005 0.084 1.1×10-7

nvg (-) 0.401 1.377 0.349
mvg (-) 1.534 0.289 54.245
R2 0.99 0.99 0.96

Figure 10. Prediction of the soil water retention curve with Costa 
& Cavalcante (2021) fitting extremely randomized trees prediction 
with saturated volumetric water content equal to porosity: (a) 
experimental points from dataset for a silty soil with 85% of silt; (b) 
experimental points from dataset for a clayey soil with 89% of clay.

Table 6. Costa’s & Cavalcante’s (2021) parameters and coefficient 
of determination of fitting to the machine learning prediction data.

Parameters Silty soil Clayey soil
θs (cm3/cm3) 0.44 0.41
θr (cm3/cm3) 0.00 0.04
δ 1(kPa-1) 0.0001 0.0082
δ 2(kPa-1) 0.0178 1758.0848
λ 0.235 0.742
R2 0.99 0.99
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perceptron (with identity, sigmoid, hyperbolic tangent 
activation functions), support vector machine (with radial 
basis function, linear and sigmoid kernels), k-nearest-
neighbors, decision tree, random forest, and extremely 
randomized trees (extra trees). Extra trees regressor was the 
best model with scikit-learn default settings, it was selected 
by measurement of the performance on the cross-validation 
dataset referring to root mean squared error (RMSE) and 
coefficient of determination R2.

This model was then fine-tuned varying its training 
hyperparameters. For the training set, RMSE = 0.001 and 
R2 = 0.99. For the cross-validation set, RMSE = 0.039 
and R2 = 0.90. And for the test set, RMSE = 0.037 and 
R2 = 0.90. The most important features, in decreasing order, 
for prediction were: suction, porosity, percentage of sand, 
percentage of clay, plasticity index, percentage of gravel, 
and percentage of silt.

Alternatives to obtain a continuous and smooth curve 
from the machine learning model were presented by fitting 
soil water retention functions. Cavalcante’s & Zornberg’s 
(2017) function reached R2 between 0.84 and 0.97 and has 
the advantage of having analytical solutions, and fewer 
parameters. van Genuchten’s (1980) function reached R2 
between 0.96 and 0.99. Costa’s & Cavalcante’s (2021) 
function reached R2 = 0.99 in the silty and clayey soils. 
Its advantages are being able to fit a bimodal soil model 
to the predictions of the machine learning estimator, and 
according to Costa & Cavalcante (2021), it’s efficient 
in representing bimodal soils, and mathematically and 
physically consistent.

In the preliminary stage of design projects, where not 
much data is readily available, the model developed can 
be used to predict the engineering behavior of unsaturated 
soils. It may be utilized to guide the geotechnical engineers 
throughout the preliminary analyses and design procedures.

It’s important to highlight that machine learning 
models can always be updated by presenting new training 
soil samples as new data with measured suction, volumetric 
water content, and corresponding characterization parameters 
become available.

This is a work in progress and the quality of predictions 
will be better the greater the collaboration. Instructions on 
how to collaborate with this project are provided in the 
Appendix A.
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List of symbols

avg	 Fitting parameter of van Genuchten’s 
(1980) function [M-1LT2]

ccp_alpha	 Complexity parameter used for minimal 
cost-complexity pruning

mvg	 Fitting parameter of van Genuchten’s 
(1980) function [-]

max_features	 Number of features to consider when 
looking for the best split

min_samples_leaf	 Minimum number of samples required 
to be a leaf node

min_samples_split	 Minimum number of samples required 
to split an internal node

mse	 Mean squared error
n	 Porosity [L3L-3]
nvg	 Fitting parameter of van Genuchten’s 

(1980) function [-]
n_estimators	 Number of trees in the forest
PI	 Plasticity index
R2	 Coefficient of determination
RMSE	 Root mean squared error
random_state	 Random state of parameters initialization
δ	 Fitting parameter of Cavalcante’s & 

Zornberg’s (2017) function [M-1LT2]
θ	 Volumetric water content [L3L-3]
θs	 Volumetric water content at saturation 

(L3L-3)
θr	 Residual volumetric water content 

[L3L-3]
ψ	 Soil suction [ML-1T-2]
ψair	 Air entry pressure [ML-1T-2]
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Appendix A. How to collaborate.

To add new data to the machine learning set, one should sign up at the website (https://www.geofluxo.com/) and go to the 
restricted area, then to applications, Figure A1.

Figure A1. Applications page at https://geofluxo.com/geoapps/.

Then, one should select the SWRC AI application. On the application page, (https://geofluxo.com/geoapps/swrc-ai/) it is 
possible to insert the inputs and come up with the outputs values plus the chart with the artificial intelligence fit.

Figure A2. SWRC AI application page.

If the user scrolls down and hit the form button, Figure A3, he will be redirected to a webpage that does not host the 
application itself, but allows the user to collaborate with new data to the dataset.

Figure A3. SWRC AI form button.
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Once the user access the form page at https://geofluxo.com/geoapps/swrc-ai/form/, it is possible to write an introduction 
about the data, the percentages of gravel, sand, clay and silt, porosity, plasticity index, and insert several points of suction 
and volumetric water content.

Figure A4. SWRC AI form.

Once the form is submitted, the admins will accept or deny the new dataset. If accepted, the new dataset will integrate the 
next machine learning training session.


