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1. Introduction

The problem of slope stability is quite recurrent in 
everyday life, whether on natural or built slopes. Every 
year several cases of failure are reported in the most diverse 
places around the world, especially in inhabited places, on 
highways, railways or even in the mining industry. The causes 
can be diverse, either by anthropic actions, extreme natural 
phenomena or a combination of both. For this reason, 
geotechnical engineering is also dedicated to the study of 
this type of engineering problem, in which the consequences 
usually cause economic and environmental damage and loss 
of human lives, for instance.

In traditional deterministic analyses of slope stability, 
the uncertainties related to the problem are commonly 
neglected. The better understanding of these uncertainties, 
intrinsic or epistemic, has become an object of great interest 
in geotechnical research in the last two decades (Jiang et al., 
2022).

The intrinsic uncertainties are mainly related to the 
spatial variability of the materials that constitute the analyzed 

engineering systems. In slope stability problems, the natural 
variability of soil strength and other properties is a source 
of intrinsic uncertainty. On the other hand, the epistemic 
uncertainties, those that theoretically can be reduced by the 
adoption of good practices, are originated by diverse sources, 
such as simplified mathematical mechanical models, ground 
investigation methods, as well as the difficulty to reproduce 
in laboratory what happens in nature (Melchers & Beck, 
2018). All these practices allow simplifications in order to 
make it possible for Geotechnical Engineering to perform 
consistent analyses, although they are not exact (Husein 
Malkawi et al., 2000).

An important source of epistemic uncertainty in slope 
stability analysis is the variability of the answers provided 
by the limit equilibrium methods widely used in most of the 
software dedicated to this discipline. In this context, the aim 
of this paper is to show how deterministic and probabilistic 
responses behave as a function of the choice of different limit 
equilibrium methods. The deterministic analyses are performed 
from the factor of safety (FS) concept, and the probabilistic 
analyses, from the direct coupling of these limit equilibrium 

Abstract
This work presents the validation of the Morgenstern-Price method implemented in the 
Risk Assessment applied to Slope Stability (RASS) computational program to carry out 
deterministic and probabilistic analyses of slope stability. Deterministic analyses, based 
on the factor of safety approach, are performed using limit equilibrium methods. The 
probabilistic ones, on the other hand, are carried out through the direct coupling of these 
methods to the First Order Reliability Method (FORM). Initially, two benchmark cases 
are presented for validation of the computational routine related to the Morgenstern-Price 
method. Next, two illustrative examples are presented, with the investigation of the critical 
surfaces defined by deterministic and probabilistic criteria, which correspond to the minimum 
factor of safety, the maximum probability of failure, and the maximum quantitative risk. 
In the set of stability analyses, it was verified that both the numerical responses and the 
geometry of the critical surfaces can vary depending on the choice of the limit equilibrium 
method and the criterion for identifying the critical surface. The different possibilities 
presented by the methodology used in this study define not only a critical surface, but a set 
of critical surfaces that can help in the engineering decision-making process and slope risk 
management, complementing the widely used purely deterministic analyses in geotechnics.

Keywords
Slope stability  
Limit equilibrium methods  
Factor of safety  
Direct coupling  
Reliability  
Quantitative risk assessment

#Corresponding author. E-mail address: higor.assis@unesp.br
1Universidade Estadual Paulista, Departamento de Engenharia Civil e Ambiental, Bauru, SP, Brasil.
Submitted on December 3, 2022; Final Acceptance on April 1, 2023; Discussion open until August 31, 2023.

Article

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0844-3917
https://orcid.org/0000-0002-1888-7637


Assis & Nogueira, Soil. Rocks, São Paulo, 2023 46(2):e2023013522 2

Comparative study of deterministic and probabilistic critical slip surfaces applied to slope stability using limit equilibrium methods and the First-Order 
Reliability Method

methods to the First-Order Reliability Method (Ang & Tang, 
1984). The variability of FS considering several limit equilibrium 
methods is discussed when the analyses are performed by 
deterministic and especially probabilistic approaches.

2. Methodology

Probabilistic analyses of slope stability can be performed 
using different methodologies such as direct coupling of limit 
equilibrium methods to reliability methods and simulation 
techniques (Leonel et al., 2011; Siacara et al., 2020). In this 
approach, the transformation methods are used to provide the 
probabilistic response for each of the listed failure modes. 
Each failure mode is represented by a limit state function, 
which is a response given by a representative mechanical 
model (Phoon, 2008). In the slope stability problem, the FS 
is the response provided by the limit equilibrium methods, 
which feeds the probabilistic model and represents the failure 
mode, which is the rupture of the slope by shear. To carry 
out the analyses presented in this paper, it was used the 
program Risk Assessment applied to Slope Stability (RASS), 
developed by the authors for deterministic and probabilistic 
analyses of slope stability. The Morgenstern-Price method 
implemented in RASS follows the formulation presented 
in detail by Zhu et al. (2005). RASS also has the Ordinary, 
Simplified Bishop (Bishop) (Bishop, 1955), Simplified Janbu 
(Janbu) and Corrected Simplified Janbu (Janbu (f0)) methods 
(Janbu, 1954a, b, 1973). The Spencer method (Spencer, 
1967, 1973) is a particular case of the Morgenstern-Price 
method (Morgenstern & Price, 1965), contemplated by the 
formulation presented in this paper. The detailed formulation 
of the mentioned limit equilibrium methods are presented by 
Fredlund & Krahn (1977), Abramson et al. (2001).

2.1 Morgenstern-Price method

Several limit equilibrium methods, based on the slice 
method, have been developed throughout the 20th century for 
slope stability analyses. These methods are based on statics 
equations and require some assumptions to make the problem 
statically determined. In general, these assumptions are related 
to the interslice normal forces and interslice tangential forces. 
The Morgenstern-Price method is considered a rigorous method 
because it completely satisfies the equilibrium of forces in two 
directions and moments (Morgenstern & Price, 1965). To make 
this possible, the method adopts an interslice force function, 
which relates the tangential forces to the normal forces acting on 
the sides of the slices positioned on the abscissa x, establishing a 
relationship that can be constant or variable along the horizontal 
extension of the slope slip surface, according to Equation 1:

( )S f x Eλ=  
	 (1)

where S is the tangential interslice force, E is the normal 
interslice force, λ  is an unknown scaling factor e f(x) is the 

interslice force function. As presented by Zhu et al. (2005), 
f(x) can be written as given by Equation 2:
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where xL and xR are abscissa of the left and right ends of the 
failure surface, respectively, so that [ ], .L Rx x x∈  Therefore, 
the FS can be written as presented by Equation 3:
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in which, Ri is the sum of the shear resistances contributed 
by all forces acting on the ith slice except the normal shear 
forces, and Ti is the sum of the components of these forces 
tending to cause instability, as given by Equations 4 and 5:

( )cos cos

tan ' ' sec
i i i i i i i

i i i i

R W Q U

c b

α ω α

ϕ α

 = + − − 
+



	 (4)

( )i i i i i iT W sen Q senα ω α= − − 	 (5)

where Wi is the self-weight of ith slice, ai is the slope of the 
base of the slice relative to the horizontal, Qi is the external 
force acting on the ith slice, wi is the angle between the 
vertical and the direction of the external force Qi, Ui is the 
resultant water force acting on the base of the ith slice, 'iϕ  
is the soil friction angle along the base of the ith slice, ci’ 
is the soil cohesion along the base of the ith slice. From 
imposing the force equilibrium of ith slice and resolving in 
the perpendicular direction and in the direction parallel to 
the slip surface, and substituting the former into the latter, 
Equation 6 is given in the form:
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where Ei and Ei-1 corresponds to the normal interslice forces 
acting on the left and right side of ith slice, respectively, and 
fi and fi-1 are the values of f(x) assumed on the left and right 
side of the ith slice, respectively.

Equations 7, 8 and 9 refer to a rearrangement of the 
equations using the variables 1iψ − , iφ − , iφ  for changing 
variables:
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According to the Morgenstern-Price method, the value 
of FS is defined at the intersection between the curves of 
the factor of safety of forces (FSf) and the factor of safety 
of moments (FSm) as a function of λ. The calculation of λ 
is given according to the Equation 10:
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2.2 First-Order Reliability Method

The First-Order Reliability Method (FORM) has been 
widely used in structural reliability (Ang & Tang, 1984). 
Recently, FORM has been also considered as an important 
alternative to Monte Carlo Simulation method (MCS) (Cho, 
2007, 2010) in probabilistic slope stability analysis, since 
it provides significantly lower computational cost (Ji et al., 
2018; Siacara et al., 2022). The method involves defining a 
representative failure mode function, which is linearised from 
the Taylor series expansion by a tangent hyperplane around 
the most probable failure point, named the design point (y*). 
This function is called the limit state function (g(X)), in 
which X is a vector of random variables associated with the 
problem ( [ ]1, 2, , TX X Xn= …X ). In summary, it consists 
in solving an optimization problem, which seeks to find y*, 
in order to minimizes the reliability index (β ), subject to 
( ) 0g =X . The solution of the problem is performed using the 

Hasofer-Lind-Rackwitz-Fiessler (HLRF) algorithm (Hasofer 
& Lind, 1974; Rackwitz & Fiessler, 1978), and requires the 
transformation of the random variables from the physical space 
() to the standard uncorrelated normal space () (Lebrun & 
Dutfoy, 2009), where β  is defined, according to Equation 11:

( )* *( )Tβ = y y 	 (11)

Thus, the probability of failure, given by ( ) 0Pf P g = ≤ X  
can be estimated as Equation 12:

( )Pf β≈ Φ − 	 (12)

in which ( )Φ   is the standard normal cumulative distribution 
function (Ang & Tang, 1984).

2.3 Slope stability limit state function

Slope stability analyses consist of assessing the shear 
strength of the soil mass on a given slip surface. According 

to the limit equilibrium theory, the slope instability is verified 
when FS 1≤ . In agreement with this condition, the limit state 
function is given by Equation 13:

( ) ( ) 1.00g FS= −X X 	 (13)

Thus, the solution of the slope stability problem, 
according to the reliability approach, provides a probabilistic 
response that represents the probability of the FS of the 
slope assuming a value less than or equal to 1.00 (Fenton 
& Griffiths, 2008).

2.4 Quantitative risk assessment

One of the widely accepted definitions of risk is that it 
can be quantified from the product of the probability of failure 
and the consequence associated with that failure (Melchers 
& Beck, 2018). In the probabilistic stability analyses of 
two-dimensional slopes, the values of Pf are obtained for the 
evaluated multiple surfaces of rupture. Each of these surfaces 
has a mobilized soil area corresponding to the sum of the 
areas of the lamellae. This area is also called the active zone 
and is delimited by the slope surface and the slip surface. 
Considering a slope strip of unit width, the consequence of 
shear failure can be represented in a simplified way by the 
constant C (Jiang et al., 2022; Zhang & Huang, 2016), which 
represents the mobilized volume of soil ([ ] 3 1C L L−= ). Thus, 
for the slope stability problem, the quantitative risk (Rv) can 
be written according to Equation 14:

 fRv P C=  	 (14)

2.5 Criteria for identifying critical slip surfaces

According to the deterministic approach to slope 
stability, the critical slip surface is defined by investigation 
and identified from the lowest calculated FS value, among 
a predefined set of trial slip surfaces. In this way, the 
minimum FS value (FSmin) is the criterion that defines the 
critical deterministic slip surface. Conversely, the critical 
probabilistic slip surfaces can be defined by different criteria, 
such as maximum Pf value (Pfmax) and maximum Rv (Rvmax) 
value, according to the methodology presented for carrying 
out the probabilistic analyses via direct coupling of the limit 
equilibrium methods to the FORM.

2.6 Benchmarks

Two cases are presented to validate the RASS code 
implemented to evaluate the FS using the Morgenstern-Price 
method. In both cases the slopes consist of homogeneous soil 
and the same slip surface is evaluated. The difference is that 
in case 2 there is the inclusion of the piezometric line, while 
in case 1 there is not, as presented in Figure 1:

The Morgenstern-Price formulation implemented in 
RASS followed the algorithm presented by Zhu et al. (2005) 
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and for this reason these cases were chosen for validation of the 
computational code written by the authors. The geotechnical 
parameters used in the analyses are the same as in the original 
example. For deterministic analyses, only the mean values (µX) 
of the random variables are used. Table 1 brings a description 
of the variability of these parameters, with their respective 
coefficients of variation (COVX) and probability density 
function (PDFX) that best describes the random variable X:

The values of COVX and PDFX will be used only in the 
probabilistic analyses, at the appropriate moment of this work. 
It is important to note that Spencer’s method is a particular 

case of the Morgenstern-Price method, where f(x) takes 
constant value over the entire domain of x. According to this 
particularity, Table 2 presents the FS and λ values calculated 
with the RASS program using the Spencer’s method, in which 
interslice force function is constant ( ( )0 1f xµ ν= = ⇒ = ):

Table 3 presents the FS and λ results for the Morgenstern-
Price method with variable f(x), called half-sine function, 
in which µ=v=1:

As shown, RASS provided results very similar to those 
reported by the reference papers, with maximum relative 
errors of 0.109% and 0.309% for FS and λ , respectively. 
These results then allow the validation of the Morgenstern-
Price method calculation routine included in RASS, to be 
used in direct coupling.

2.7 Critical slip surfaces

As an extension of the benchmarks presented, in this 
section a set of deterministic and probabilistic analyses is 
presented, with investigation of the critical surfaces of the 
slopes relative to cases 1 and 2. About 10,000 experimental 

Figure 1. Benchmark cases (Zhu et al., 2005).

Table 1. Variability of geotechnical parameters according to Phoon 
& Kulhawy (1999).

X c’ (kPa) φ ’ (º)
µX 28.74 20.00

COVX 30% 10%
PDFX Lognormal Lognormal

The soil unit weight (y) was considered as a deterministic variable: y = 18.85 kN/m3.

Table 2. Comparison of FS and l values computed by RASS using Spencer’s method.

Case
FS λ Error* (%)

Fredlund & 
Krahn (1977)

Zhu et al. 
(2005) RASS Fredlund & 

Krahn (1977)
Zhu et al. 

(2005) RASS FS λ

1 2.076 2.075 2.074 0.254 0.258 0.258 0.048 0.000
2 1.833 1.831 1.833 0.234 0.240 0.240 0.109 0.000

* Relative error between values reported by Zhu et al. (2005) and RASS.

Table 3. Comparison of FS and λ values computed by RASS using Morgenstern-Price method.

Case
FS λ Error* (%)

Fredlund & 
Krahn (1977)

Zhu et al. 
(2005) RASS Fredlund & 

Krahn (1977)
Zhu et al. 

(2005) RASS FS λ

1 2.076 2.074 2.073 0.318 0.324 0.323 0.096 0.309
2 1.832 1.831 1.832 0.290 0.299 0.299 0.055 0.000

* Relative error between values reported by Zhu et al. (2005) and RASS.
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sliding surfaces were analysed, using different limit equilibrium 
methods. The surfaces analysed are circular and defined by 
the coordinates of centre (xc, yc) and radius (r). The critical 
surfaces were identified according to the deterministic and 
probabilistic criteria of FSmin, Pfmax and Rvmax. The results are 
presented in Table 4:

Figure 2 illustrates the deterministic and probabilistic 
critical surfaces, defined by the different identification criteria 
and limit equilibrium methods used in the analyses:

The knowledge of the geometry of the critical surface 
of a slope is important because it is the boundary between the 
passive and active zones, which corresponds to the volume 
of soil to be mobilized in an eventual slope rupture. Knowing 

the boundary that delimits these zones is essential for project 
development or even the verification of existing reinforced 
slopes, for example. In a nail-reinforced slope, the length 
of the anchors that enter the passive zone is determinant in 
the safety condition of the system. Therefore, if there are 
uncertainties in the methods employed in the analyses, due 
to the simplifying hypotheses that they adopt, it is expected 
that different critical surfaces are identified, as well as 
different safety levels are observed through the values of 
FSmin, Pfmax and Rvmax. Another behaviour observed is the 
position of the Rvmax surfaces, which in most cases were 
positioned between the deeper FSmin and shallower Pfmax 
surfaces. This was the main reason for the adoption of the 

Table 4. Results of the deterministic and probabilistic critical slip surfaces for cases 1 and 2.

Case Limit equilibrium method Criterion xc (m) yc (m) R (m) FS β Pf Rv (m3/m)

1 Bishop FSmin 7.0000 25.0000 25.9608 1.9959 5.2161 9.15E-08 1.39E-05
Pfmax 5.0000 25.7500 26.2336 2.0377 4.9977 2.91E-07 3.35E-05
Rvmax 5.0000 25.7500 26.2336 2.0377 4.9977 2.91E-07 3.35E-05

Janbu FSmin 8.2500 19.5000 21.6113 1.8333 4.5201 3.09E-06 5.48E-04
Pfmax 6.2500 21.5000 22.7350 1.8725 4.3614 6.47E-06 8.67E-04
Rvmax 6.7500 21.0000 22.4334 1.8544 4.3714 6.18E-06 8.90E-04

Janbu (f0) FSmin 8.0000 21.0000 22.7779 1.9860 5.2119 9.36E-08 1.60E-05
Pfmax 5.5000 24.5000 25.2043 2.0374 4.9897 3.03E-07 3.72E-05
Rvmax 5.7500 24.0000 24.8103 2.0284 4.9956 2.94E-07 3.72E-05

Spencer FSmin 7.0000 25.0000 25.9608 1.9926 5.1999 9.99E-08 1.52E-05
Pfmax 4.7500 26.0000 26.4172 2.0460 4.9748 3.27E-07 3.64E-05
Rvmax 5.0000 25.7500 26.2336 2.0341 4.9804 3.18E-07 3.66E-05

Morgenstern-Price FSmin 7.0000 25.0000 25.9608 1.9925 5.1988 1.00E-07 1.53E-05
Pfmax 4.7500 26.0000 26.4172 2.0455 4.9738 3.29E-07 3.66E-05
Rvmax 5.0000 25.7500 26.2336 2.0336 4.9768 3.24E-07 3.73E-05

2 Bishop FSmin 7.7500 21.7500 24.8095 1.8132 4.3463 6.93E-06 1.54E-03
Pfmax 6.5000 21.0000 23.6666 1.8349 4.2591 1.03E-05 1.92E-03
Rvmax 6.7500 20.7500 23.5563 1.8273 4.2635 1.01E-05 1.95E-03

Janbu FSmin 7.2500 20.7500 23.7641 1.6624 3.4405 2.90E-04 6.04E-02
Pfmax 7.0000 20.7500 23.6595 1.6680 3.4367 2.95E-04 5.91E-02
Rvmax 7.2500 20.7500 23.7641 1.6624 3.4405 2.90E-04 6.04E-02

Janbu (f0) FSmin 7.5000 21.2500 24.2867 1.8049 4.1725 1.51E-05 3.25E-03
Pfmax 6.7500 20.7500 23.5563 1.8191 4.1244 1.86E-05 3.60E-03
Rvmax 7.0000 20.7500 23.6595 1.8119 4.1279 1.83E-05 3.68E-03

Spencer FSmin 7.7500 21.7500 24.8095 1.8116 4.3461 6.93E-06 1.54E-03
Pfmax 6.2500 21.2500 23.7809 1.8415 4.2554 1.04E-05 1.88E-03
Rvmax 6.7500 20.7500 23.5563 1.8253 4.2610 1.02E-05 1.97E-03

Morgenstern-Price FSmin 7.7500 21.7500 24.8095 1.8109 4.3447 6.98E-06 1.55E-03
Pfmax 6.2500 21.2500 23.7809 1.8408 4.2542 1.05E-05 1.89E-03
Rvmax 6.7500 20.7500 23.5563 1.8245 4.2597 1.02E-05 1.98E-03
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Figure 2. Deterministic and probabilistic critical slip surfaces.

may be another surface with Pf slightly smaller than Pfmax, 
but which mobilizes a volume of soil capable of causing 
more severe consequences if it ruptures.

Rvmax indentification criterion, because a Pfmax surface can 
be shallow enough to mobilize a volume corresponding to a 
relatively low failure consequence. On the other hand, there 
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2.8 Cumulative distribution function

In an attempt to explain the variability of the probabilistic 
analysis responses regarding the found critical surfaces, the 
constant a was used to modify the limit state function. This 
modification enables the construction of a cumulative density 

function FX(X) of FS(X), such that ( ) ( )XF P FS a = ≤ X X , 
with [ ]0.5, 3.5a∈ , as shown in Figure 3:

Differences are observed in the probability curves due to 
the choice of the limit equilibrium methods, the different critical 
surfaces identified and the existence of acting or non-acting 
pore water pressure. In the presented analyses, the probability 

Figure 3. Cumulative density functions of critical slip surfaces.
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curves of the FSmin surfaces were more distant from the curves 
of Pfmax and Rvmax. However, the curves of Pfmax and Rvmax were 
much closer to each other, when compared to those of FSmin.

2.9 Probability density function

The curve representing the probability density function 
fX(X) of FS(X) can be constructed from the numerical derivation 

of FX(X), so that ( ) ( )'X XF f=X X . Figure 4 presents the 
curve fX(X) for the cases analysed:

The probability curves fX(X) facilitate the visualization 
of the variability of FS(X), because the differences 
become more apparent regarding to those of FX(X) curves. 
No change in behaviour occurs in relation to the curves 
FX(X), because they are just different ways to show the 
same results.

Figure 4. Probability density functions of critical slip surfaces.
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2.10 Fixed slip surface

To complement the analyses already presented, the same 
procedure of construction of FX(X) and fX(X) was employed 
to a slip surface fixed in the region delimited by the set of 
all critical surfaces, according to Figure 5:

These analyses are intended to show the differences 
in the probability distributions of FS(X) of the same slip 
surface, resulting from the choice of different limit equilibrium 
methods in direct coupling. Figure 6 presents the probability 
distribution curves of FS(X) of all critical surfaces, including 
the surface fixed in the critical region:

It is observed that the various possibilities of direct 
coupling produce different probabilistic responses in at 
least two aspects. For the same sliding surface, the curves 

of probability distributions of FS(X) do not coincide with 
each other. Furthermore, when the analyses involve the 
investigation of critical surfaces, the results show that these 
surfaces may be non-coincident. The non-coincidence of the 
identified critical surfaces results in a set of deterministic 
and probabilistic surfaces that define a critical region in the 
analysed cross section instead of a single slip surface. These 
results explain the existence of variability in the responses 
provided by the most widespread methods of limit equilibrium 
in geotechnical practice. Larger differences are observed in 
the responses given by the uncorrected Janbu method. These 
differences evidence the fact that the correction proposed 
by the author of the method, through correction factor f0, 
ensures a better approximation of its response regarding to 
the other methods. It is interesting to note that this procedure 

Figure 5. An overlap of all critical surfaces identified by deterministic and probabilistic criteria and different limit equilibrium methods 
employed in direct coupling.

Figure 6. FS(X) probability distribution curves of the fixed slip surface and all critical surfaces.
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provides, in addition to Pf, the probability that FS(X) assumes 
a value less than or equal to a, for any value of a. Thus, it is 
possible to calculate, for example, the probability of FS(X) 
violating values recommended by technical standards or any 
a value of interest.

Another way of showing the variability of the responses 
of the limit equilibrium methods is presented. From then 
on, responses from the uncorrected Janbu method were 
discarded, due to its high discrepancy when compared to 
the other methods. The FS, Pf and Rv values calculated by 
the different limit equilibrium methods were compared, 
restricting this comparison to the critical surfaces identified 
by the same criterion. All identified critical surfaces have 
a FS, Pf and Rv value, as shown in Table  4. Thus, the 
maximum relative error (Emax) refers to the results of surfaces 
belonging to the same set of critical surfaces, identified 
by the criteria FSmin, Pfmax or Rvmax. The fixed slip surface 
results are also presented. Figure 7 shows the Emax values 
for the analyzed cases:

In both cases analysed, Emax values of FS were 
relatively low, between 0.42% and 1.23%. Emax values are 
quite pronounced in the probabilistic responses, especially 
for case 2, in which the pore water pressure acts on the 
slope. The highest Emax values of Pf and Rv refer to the 
fixed slip surface, reaching 50.29% for case 1 and 168.22% 
for case 2. However, it was observed that Emax decreased 
when the responses of different surfaces, defined by the 
same identification criteria, were compared, between 9.79% 
and 15.32% in case 1, and between 81.09% and 117.56% 
in case 2. These results suggest that the consideration of 
a set of critical surfaces, according to the identification 
criteria presented, tends to minimize the variability of 
the probabilistic responses provided by different limit 
equilibrium methods directly coupled to FORM. On the 
other hand, if only one slip surface is considered, even if 
positioned in the critical region of the slope, the variability 
of the probabilistic responses increases significantly as a 
function of the choice of method, while the deterministic 
responses are practically identical.

3. Concluding remarks

In this paper, analyses of slope stability were presented 
referring to two cases of a slope collected in the literature. Both 
cases served as benchmarks for validating the Morgenstern-
Price method implemented in RASS. The deterministic 
responses of FS and λ were presented, providing relative 
errors of less than 0.3%. Next, the scheme of methods used 
in the direct coupling of limit equilibrium methods to the 
FORM was presented, which made it possible to calculate the 
probabilities of shear failure of the slope, considering c’ and 
φ’ as random variables of the problem. Five limit equilibrium 
methods and three critical surface identification criteria were 
employed, based on FSmin, Pfmax e Rvmax, which allowed the 
identification of a critical fault region in the slope cross 
section instead of a single surface. In addition, the results 
showed the importance of identifying critical surfaces using 
probabilistic and not just deterministic criteria, in order to 
prevent probability calculations from being performed only 
for surfaces determined by FSmin.

The deterministic and probabilistic results showed that 
the uncorrected Janbu method provides very conservative 
responses regarding to the other tested methods, reinforcing 
the importance of adopting the f0 correction factor proposed 
by the author of the method. Another important conclusion 
is that for the analyzed cases, the critical surfaces defined 
by FSmin showed very low variability in the FS responses 
due to the choice of limit equilibrium method. The greatest 
variability observed refers to the probabilistic responses of 
the same surface, fixed in the critical region of the slope. 
On the other hand, less variability was observed in the 
surfaces identified by the probabilistic criteria, being lower 
in case 1 than in case 2.

The use of the analysis framework presented in this 
work, in which the slope stability analyses are carried out 
jointly by different limit equilibrium methods and according 
to deterministic and probabilistic approaches, enriches the 
range of information available to the analyst, assisting in the 

Figure 7. Emax of the answers provided by the limit equilibrium methods, relative to the fixed and critical surfaces.
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engineering decision making process and in the geotechnical 
risk management. As there is no method that provides a real 
answer to the problem, because all methods adopt simplifying 
assumptions to make the problem statically determined, one 
cannot claim categorically which limit equilibrium method 
is better than the others. Thus, the authors suggest the use 
of more than one limit equilibrium method and also the 
adoption of deterministic probabilistic criteria to identify 
critical surfaces, because in general these surfaces are not 
coincident.
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List of symbols

a	 Constant used in the modification of the limit state  
	 function for the construction of the curves FX(X)  
	 and fX(X)

ib 	 Width of ith slice
'c 	 Effective soil cohesion
'ic 	 Effective soil cohesion along the base of the ith slice

C 	 Constant representing the consequence associated  
	 to the slope failure
( )f x 	 Interslice force function
	 Interslice force function value on the left side of  

	 ith slice
1if − 	 Interslice force function value on the right side of  

	 ith slice
ih 	 Height of ith slice

i	 Integer counter for the number of slices
j	 Integer counter that depends on i

n	 Total amount of slices
r	 Radius of the circle describing the critical slip surface

cx 	 Abscissa of the centre of the circle describing the  
	 critical slip surface

Lx 	 Abscissa of the left end of the slip surface
Rx 	 Abscissa of the right end of the slip surface
cy 	 Ordinate of the centre of the circle describing the  

	 critical slip surface
*y 	 Design point

XCOV 	 Coefficient of variation of the random variable X
E	 Normal interslice force

iE 	 Normal interslice force acting on the left side of  
	 the ith slice

1iE − 	 Normal interslice force acting on the right side of  
	 the ith slice

maxE 	 Maximum relative error
FS 	 Factor of safety

minFS 	 Minimum factor of safety
( )FS X 	 Factor of safety as a function of the random variable  

	 vector
( )XF X 	 Cumulative density function of FS(X)
( )Xf X 	 Probability density function of FS(X)

( )g X 	 Limit state function
[ ] P  	 Probability of occurrence of the condition of interest [ ]

Pf 	 Probability of failure
maxPf 	 Maximum probability of failure

XPDF 	 Probability density function of the random variable X
iQ 	 External force acting on the ith slice
iR 	 Sum of the shear resistances contributed by all  

	 the forces acting on the ith slice except the normal  
	 shear interslice forces

nR 	 Sum of the shear resistances contributed by all  
	 the forces acting on the nth slice except the normal  
	 shear interslice forces
Rv	 Risk value given by the constant representing the  
	 volume of soil mobilised at the slope failure

maxRv 	 Maximum risk value
S 	 Tangential interslice force

iT 	 Sum of the components of the Ri forces relating to  
	 the ith slice that tend to cause instability

nT 	 Sum of the components of the Rn forces relating to  
	 the nth slice that tend to cause instability

iU 	 Resultant water force acting on the base of the ith slice
iW 	 Self-weight of ith slice

X 	 Random variable vector x  Abscissa of slope cross  
	 section

iα 	 Angle formed between the horizontal and base of  
	 the ith slice
β 	 Reliability index
γ 	 Soil unit weight
λ	 Scaling factor
µ	 Non-negative exponent specified in function f(x)

Xµ 	 Mean value of the random variable X
ν 	 Non-negative exponent specified in function f(x)
( )Φ  	 Standard normal cumulative distribution function
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'φ 	 Effective friction angle of the soil
iΦ 	 Variable used to rearrange the equations of the  

	 Morgenstern-Price method
'iϕ 	 Effective soil friction angle along the base of the  

	 ith slice
1i−Φ 	 Variable used to rearrange the equations of the  

	 Morgenstern-Price method
1iψ − 	 Variable used to rearrange the equations of the  

	 Morgenstern-Price method
jψ 	 Variable used to rearrange the equations of the  

	 Morgenstern-Price method
iω 	 Angle between the vertical and the direction of the  

	 external force Qi acting on the ith slice
	 Physical space of random variables
	 Standard Gaussian space
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