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ABSTRACT. In this article, residual indicators were used to characterize the quality of the numerical
solution of the advection-diffusion-reaction equation in a saturated porous medium. Both large and small
advection regimes were considered. The small advection was exemplified by a problem with constant data,
while non-constant data was considered for the large advection regime. In this case, residual quantities asso-
ciated with the data must be incorporated into the residual estimates related to the spatial approximation and
an auxiliary problem must be solved for the correct obtainment of the temporal estimates. The presentation
of the residual indicators as a surface on the finite element mesh provides a detailed view of the regions that
need refinement, allows to infer the effect of each estimate on the composition of the global estimator and,
in addition, allows to follow the evolution of the residual surfaces as the contaminant front advances in the
simulation process. In turn, the numerical values of the indicators allow to delimit the elements that will be
refined, to compare the magnitude of the contributions among themselves, between different meshes and a
better understanding of the composition of the global estimates.

Keywords: advection-dispersion-reaction, θ -scheme, finite element, residual error.

1 INTRODUCTION

Computational models that implement numerical solutions for the solute migration in saturated
porous media regularly appear in scientific publications. This problem, in general, involves de-
scription of phenomena such as retardation, reaction and sorption. Additionally, spatial and
temporal dependence of equation coefficients includes additional effort to obtain numerical or
analytical solutions.

Analytical solutions are not available for all types of phenomena and numerical solutions be-
come the main tool for studying the transport of contaminants in porous media. Nevertheless,
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342 NUMERICAL RESULTS ON THE RESIDUAL ERROR INDICATOR

computational schemes are not immune to errors from various sources and computational meth-
ods depends both on the choice of approximation techniques and the quality of the underlying
mesh [5]. The a priori error estimates are important tools for error estimates that provide the
basis for the development of numerical methods. However, a posteriori measures are essential to
determine quantitative measure of the obtained solution and to improve the solution where it is
needed by using an adaptive strategy.

This paper is based on the residual estimator proposed by Verfürth [14]. Additional discussion
and results are presented by Praetorius [11] and Verfürth [15]. The numerical examples considers
the uniform flow with constant data and non-uniform flow with non-constant data.

Next sections presents the contaminant transport equation, finite element method with θ -scheme,
the additional assumptions for residual error, residual components for each finite element,
residual error estimator and residual error indicators.

2 MODEL PROBLEM FOR CONTAMINANT TRANSPORT

The model for residual estimates is given by the advection-dispersion-reaction equation (2.1)
which provides the concentration C = C(x,y, t), in a domain Ω ⊂ R2, as function of space and
time (See [3], [2]),

∂tC−div(D∇C)+ v ·∇C+λC = f in Ω× (0, t f ]

C = 0 in ΓD× (0, t f ]

n ·D∇C = g in ΓN× (0, t f ]

C =C0 in Ω for t = 0

(2.1)

where Ω is a open, bounded, connected set in R2 with a polygonal cross-section with a Lipschitz
boundary Γ = ΓD∪ΓN , ΓD∩ΓN = /0. The function C is affected by a combination of effects that
includes the combination of diffusion and dispersion (D), the velocity field (v), the first order
reaction function (λ ), the source term ( f ) and the boundary conditions (g and C0). The initial
condition, provided by C0 depends only on space [11].

3 FINITE ELEMENT METHOD

To derive the space-time approximation of (2.1), using finite element method (FEM), multiply
the equation (2.1) by a test function w and use integration by parts to obtain the the weak form
(3.1): ∫

Ω

∂tCwdΩ+∇C ·D∇wdΩ+ v ·∇CwdΩ+λCwdΩ =∫
Ω

f wdΩ+
∫

ΓN

gwdS f or all w ∈ H1
D(Ω).

(3.1)

where H1
D(Ω) denotes the subspace of the Sobolev space with functions that vanish on the

Dirichlet boundary ΓD.

The time derivative was approximated by the first order finite difference while the others
time dependent quantities are approximated by the θ -scheme. Formally, for a fixed parameter

Trends Comput. Appl. Math., 22, N. 3 (2021)
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θ ∈ [1/2,1], the time dependent quantities are Cn,θ := θCn +(1−θ)Cn−1, Dn,θ := θDn +(1−
θ)Dn−1, vn,θ = θvn +(1−θ)vn−1, λ n,θ = θλ n +(1−θ)λ n−1, f n,θ := θ f n +(1−θ) f n−1 and
gn,θ := θgn +(1− θ)gn−1. The quantities Dn,θ

h , vn,θ
h , λ

n,θ
h , f n,θ

h and gn,θ
h are the finite element

representation of data in the finite element mesh, which is kept fixed for all time steps n.

Replacing the approximations in the weak form (3.1), the FEM approximation with θ -scheme
has a unique solution for each time step τ . After an algebraic manipulation the finite element
formulation can be written as a(Cn,w) = L(w) where a(Cn,w) is the bilinear form (3.2) and
L(w) is the linear form (3.3)

a(Cn,w) =
∫

Ω

[
1
τ

Cn +θλ
n,θ
h Cn +θvn,θ

h ·∇Cn
]

wdΩ+∫
Ω

θ∇Cn ·Dn,θ
h ∇wdΩ−

∫
ΓN

θn ·Dn,θ
h ∇CnwdS

(3.2)

L(w) =
∫

Ω

[
Cn−1

τ
+(θ −1)

[
λ

n,θ
h Cn−1 + vn,θ

h ·∇Cn−1
]]

wdΩ+∫
Ω

(θ −1)∇Cn−1 ·Dn,θ
h ∇w+(θ f n

h − (1−θ) f n−1
h )wdΩ+∫

ΓN

(1−θ)n ·Dn−1,θ
h ∇Cn−1wdS.

(3.3)

The forms (3.2) and (3.3) are essential for FEM implementation using FEniCS methodology [1].

A detailed presentation about FEM is presented in reference [4]. Next section presents the
residual error estimator from Verfürth [14, 15].

4 RESIDUAL ERROR COMPONENTS

Residual error estimate have contributions from each finite element in mesh, data approximation
and due to time approximation scheme. These are local quantities that are calculated for each
element K and for each edge E.

Element Residual (RK) and edge or face residual (RE ) are provided by the expressions (4.1) and
(4.2):

RK = fI−
Cn−Cn−1

τ
− vn,θ

h ·∇(θCn +(1−θ)Cn−1)+

div(Dn,θ
h ∇(θCn +(1−θ)Cn−1))−λ

n,θ
h (θCn +(1−θ)Cn−1)

, (4.1)

RE =


−JE(nNE ·D

n,θ
h ∇(θCn +(1−θ)Cn−1)), E * Γ

gI−nNE ·D
n,θ
h ∇(θCn +(1−θ)Cn−1), E ⊂ ΓN

0, E ⊂ ΓD

, (4.2)

where J is the Jump operator, the functions fI and gI are projection functions on to finite element
space and defined by fI(·, t) = πn(θ f n +(1−θ) f n−1) and gI(·, t) = πn(θgn +(1−θ)gn−1).

Trends Comput. Appl. Math., 22, N. 3 (2021)
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344 NUMERICAL RESULTS ON THE RESIDUAL ERROR INDICATOR

The representation of data in the finite element space give rise to additional terms due to
the space-time approximation. Analogously to the residual contributions, element and edge
contributions are provided by expressions (4.3) and (4.4):

DK =−div(Di f f Dn
∇(θCn +(1−θ)Cn−1))+Di f f vn×

∇(θCn +(1−θ)Cn−1)−Di f f λ
n(θCn +(1−θ)Cn−1)

(4.3)

where Di f f Dn := Dn,θ
h −Dn,θ , Di f f vn := vn,θ

h − vn,θ , Di f f λ n := λ
n,θ
h −λ n,θ , and edge or face

data residuals are defined by:

DE =


[
n ·Di f f Dn∇(θCn +(1−θ)Cn−1)

]
, E * Γ

n ·Di f f Dn
∇(θCn +(1−θ)Cn−1), E ⊂ ΓN

0, E ⊂ ΓD

. (4.4)

4.1 Residual indicators

The residual error indicators are the local quantities defined for each element K and for each edge
E which take in account contributions from elements and data based on the respective quantities
for data and elements.

Interior and jump indicators defined by:

(ηK +Θ)K =
{

α
2
K ||RK ||2L2(K)+α

2
K ||DK ||2L2(K)

}1/2
,

(ηE +Θ)E =
{

ε
− 1

2 αE ||RE ||2L2(E)+ ε
− 1

2 αE ||DE ||2L2(E)

}1/2
.

(4.5)

while spatial indicator, which is a composition of interior and jump indicators, are formally:

(η +Θ)KE =
{
(ηK +Θ)2

K +(ηE +Θ)2
E
}1/2 (4.6)

with αS = min{hSε−
1
2 ,β−

1
2 }, for S ∈ {K,E} a local parameter of an element or an edge and

hS the respective diameter; ε is the smallest eigenvalue of the dispersion matrix and β > 0 is a
limiting factor for λ − (1/2)div(v) > β . These constant values ε and β are related to the extra
conditions required for residual error estimates. The details are presented in [14].

The contributions due to time approximation are related to magnitude of the groundwater veloc-
ity field. According to Verfürth [15], if the norm of velocity is limited by a constant value Cc

with moderated size, them small advection regime provides a suitable error estimate. However, if
norm of velocity is much greater than some specific quantity, then additional estimates are needed
to obtain a suitable error estimate due large advection regime. In formulas, small advection gov-
erns groundwater movement if ||v(x, t)||/Ccε

1
2 · max{ε,β} 1

2 , while ||v(x, t)|| � ε
1
2 max{ε,β} 1

2

define a large advection regime for groundwater.

In the small advection case, the temporal estimate is obtained by means of

|||Cn−Cn−1|||2 = ε||∇(Di f fCn)||2 +β ||Di f fCn||2. (4.7)

Trends Comput. Appl. Math., 22, N. 3 (2021)
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The temporal residual indicator in the element was the (4.7) restricted to element E, that is,
(ηE)τ = |||Cn−Cn−1|||E .

In large advection case, an stationary reaction-diffusion auxiliary problem is necessary to obtain
limitation for the dual norm in each step of the contaminant transport simulation [15]. For each
time step, the weak form for stationary reaction-diffusion problem is:∫

Ω

[
∇C̃n ·Dε ∇w+βC̃nw

]
dΩ =

∫
Ω

vn,θ
h ·∇(Di f fCn)wdΩ.

with a finite element space consisting of continuous piece-wise linear functions. In this case, the
residual contribution to element due to auxiliary problem was:

(η̃n)2 = α
2
K ||v

n,θ
h ·∇(Cn−Cn−1)+ ε4C̃n−βC̃n||2 + ε

− 1
2 αE ||J

(
n ·∇C̃n) ||2.

Therefore, the temporal indicator for large advection problem was set to:

(ηE)τ =
{
|||Cn−Cn−1|||2 +(η̃n)2 + |||C̃n|||2

}1/2
. (4.8)

4.2 Additional considerations

The Python code was implemented using FEniCS Project [9], [8]. The finite element approxi-
mation for contaminant transport equation is implemented directly by means of the bilinear and
linear forms provided in (3.2) and (3.3), respectively.

In order to represent error indicators as surfaces over finite element mesh, the values for indi-
cators were used to define a class that overload a expression over the individual cell index from
finite element error indicators array. The forms for indicators were evaluated considering a dis-
continuous Galerkin method and the surface was presented with the finite element functions over
the mesh.

The calculations involving data estimates assumes that the data Dn,θ , vn,θ , λ n,θ , f n,θ have an ac-
curate representation. Here a higher order finite element space was used instead of a refined mesh
to simplify the calculations, although both refined mesh and high order elements are allowed.

Parameter αS was represented by means of a function over the same mesh and finite element
space that was used to solve contaminant transport. Values were approximated by use of the cell
diameter measures evaluated over all the cell indexes inside a FEniCS class. The error indicators
were defined based on the residual expressions from previous presentation. For interior elements
the αS parameter was used as defined on the code that follows, however, edge elements consider
that the operator avg(·), available on FEniCS [1], provide an estimate. The code for the αS

parameter, as a function over the finite element mesh, is provided:

def AlphaS(mesh,epsilon,beta,C):

tolerance=1.0E-5

class my_func(Expression):

Trends Comput. Appl. Math., 22, N. 3 (2021)
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def __init__(self,mesh,epsilon,beta):

self.mesh = mesh

self.epsilon = epsilon

self.beta = beta

def eval_cell(self, values, x, ufc_cell):

dolfin_cell = Cell(self.mesh, ufc_cell.index)

if beta==0.0:

values[0]=(1.0/np.sqrt(epsilon))*dolfin_cell.diameter()

else:

intermed=(1.0/np.sqrt(epsilon))*dolfin_cell.diameter()

values[0] =min(intermed,1.0/np.sqrt(beta))

alphaS=my_func(mesh,epsilon,beta);

alphaS=interpolate(alphaS,C)

return alphaS

The temporal residual contributions were based on the solution of the auxiliary problem and on
the same considerations above. Finally, the analytical solution, CA, when available, was evaluated
by means of numerical quadrature package QUADPACK, which is available in SciPy [7]. To
compare analytical and numerical values at nodal points the array format available in NumPy,
[13], was used. The graphical results were presented using Matplotlib [6].

5 APPLICATION

5.1 Small advection with constant data

This section consider the contaminant transport equation on a rectangular domain Ω = (x0,x1)×
(y0,y1) = (0.0,3000.0)× (0.0,1500.0) and is an adaptation from the problem presented in
[10]. The physical parameters are Dx = 100.0 m2

d ,Dy = 20.0 m2

d for longitudinal and transversal
dispersion, vx = 0.2 m

d and vy = 0.0 m
d for velocity components and constant reaction λ = 0 ∈ R.

The Figure 1 provides a graphical view of the domain Ω, the boundaries ΓD and ΓN , the velocity
field, the function over the Dirichlet boundary and the initial condition. The Dirichlet boundary is
on ΓD = {x0}× [y0,y1] and the expression (5.1) provides the normalized concentration function.

C(x,y, t) =

{
1.0, for x = 0, |y−750.0|< 115.0, t > 0
0 otherwise

(5.1)

Neumann boundary is on ΓN =Γ\ΓD with g= n ·∇(C). The initial condition is C(x,y, t0 = 0) = 0
for all x ∈Ω.

The Figure 2 shows the normalized concentration function C = C(x,y, t), the profiles and the
level curves for finite element approximation with nx = 2ny = 300 triangular elements in each
direction and le f t/right orientation, lagrangian linear functions, θ = 1, time step τ = 2.50d,
t f inal = 1000.0d.

Trends Comput. Appl. Math., 22, N. 3 (2021)
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Figure 1: The domain Ω, the Dirichlet boundary ΓD, the Neumann boundary ΓN and the function
C at x = 0.

Figure 2: Numerical solution, level curves and profiles in X ,Y directions.

Trends Comput. Appl. Math., 22, N. 3 (2021)
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The numerical results are compared with the analytical solution for aquifer with infinite width
and finite-width solute source given by the expression (5.2). A more detailed discussion and
further references are available at [16].

CA(x,y, t) =
x√
πDx

exp
(

xV
2Dx

)∫ t/4

0

1
Z3 exp

(
−αZ4− x2

4DxZ4

)
×[

er f c

(
Y1− y

2Z2
√

Dy

)
− er f c

(
Y2− y

2 ·Z2
√

Dy

)]
dZ

(5.2)

where er f c(·) = 1− er f (·) and er f (·) is the error function, α = V 2/4Dx + λ , V = vx is the
velocity, Y1 and Y2 the lower and upper limits of contaminant source at x = 0, respectively.

Figure 3: Error function, level curves and profiles in X ,Y directions.

The Figure 3 illustrates the error function E = |CA(x,y, t)−C(x,y, t)| at specific time of simulation
process.

It can be observed that the biggest error occurs in the discontinuity of the boundary function
which is a result finite element mesh approximation using continuous functions. It is also ob-
served that the magnitude of the error decreases rapidly with the distance from the points of
discontinuity and that the advances of contaminant front is much smaller than the error due to
discontinuity.

A direct calculation provides that ε = 4 and β = 0.0. Due to small value of velocity field, small
advection governs groundwater flow. The spatial residual ((η+Θ)KE =ηKE ) indicator, the resid-
ual indicator due to element ((η +Θ)K) and residual due to edge ((η +Θ)E ) are presented in
Figures 4, 5 and 6, respectively.

Trends Comput. Appl. Math., 22, N. 3 (2021)
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Figure 4: Spatial error indicator, level curves and profiles in X ,Y directions.

Figure 5: Element error, level curves and profiles in X ,Y directions.

Figure 6: Jump error indicator, level curves and profiles in X ,Y directions.

Trends Comput. Appl. Math., 22, N. 3 (2021)
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The element and jump indicators capture the region of discontinuity, but there is a drastic vari-
ation in the magnitude of the estimates. In both cases, the indicators advance with a plume of
contamination, but the magnitude of the estimates in the discontinuity region exceeds any of the
other estimates in the finite element mesh.

From the joint analysis of the indicators, the dominance of the jump indicators over the indicators
of the elements in the composition of the spatial indicator can be concluded. This dominance is
accentuated around the points of discontinuity and the magnitude of dominance varies over the
finite element mesh. This dominance, expressed locally by means of the relationship between the
indicators, is reflected in the global estimates as presented in [12].

A more detailed view of the relationship between the residual indicators and the error func-
tion, around the points of greatest variation of error function can be obtained by analyzing the
results presented in the Table 1. In this table are the values of the nodes from finite element
mesh, the values from of the numerical and analytical solutions, the error and the indicators
for a set of points such that E > 0.5max(E). Due to the maximum value of the order O(10−5)
(ητ,max = 3.58 ·10−05), the temporal indicator was considered insignificant in this scenario and
was disregarded from the analysis.

Table 1: The numerical solution and the analytical solution for infinite domain with finite width
font, the real error and error indicators for a set of points such that E > 0.5max(E).

(x,y) C CA E (η +Θ)KE (η +Θ)K (η +Θ)E

(10.0,630.0) 0.1955 0.2240 0.0286 7.3409 0.0499 7.3407
(20.0,630.0) 0.2953 0.3233 0.0279 3.9684 0.0237 3.9683
(30.0,630.0) 0.3479 0.3660 0.0181 3.0211 0.0178 3.0211
(10.0,640.0) 0.7934 0.7644 0.0290 6.9242 0.0499 6.9240
(20.0,640.0) 0.6816 0.6535 0.0281 4.0881 0.0286 4.0880
(30.0,640.0) 0.6171 0.5988 0.0183 2.5756 0.0178 2.5755
(10.0,860.0) 0.7934 0.7644 0.0290 7.3409 0.0499 7.3407
(20.0,860.0) 0.6816 0.6535 0.0281 3.9684 0.0237 3.9683
(30.0,860.0) 0.6171 0.5988 0.0183 3.0211 0.0178 3.0211
(10.0,870.0) 0.1955 0.2240 0.0286 4.5142 0.0305 4.5141
(20.0,870.0) 0.2953 0.3233 0.0279 3.5722 0.0237 3.5721
(30.0,870.0) 0.3479 0.3660 0.0181 2.7178 0.0176 2.7178

As final results, Figure 7 presents the profiles of the differences and the profiles of the indicators
for a distinct set of finite element meshes. The analysis indicates that nx = 300 = 2ny provides
more accurate solutions than the other meshes. Qualitatively, the residual indicators decrease in
value as the number of elements in the meshes increases, as long as the time step is kept con-
stant. In addition, the indicators preserve the dominance of the jump indicators over the element
indicators. Finally, it was observed that the temporal indicators have a qualitative behavior that

Trends Comput. Appl. Math., 22, N. 3 (2021)
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resembles the element indicator, shown in Figure 7 -c, however, but with both different order of
magnitude and maximum values.

(a) Profiles of E = |CA−C|. (b) Profiles of ηKE .

(c) Profiles of ηK . (d) Profiles of ηE .

Figure 7: Profiles for a series of meshes with nx = 200,250,300 and nx = 400 at specific time.
Profile for error function evaluated at y = 530 and profiles for error indicators evaluated at y =

300.

5.2 Large advection with non-constant data

This example is an adaptation from the problem presented in [17]. The contaminant trans-
port is defined on a rectangular domain Ω = (x0,x1)× (y0,y1) with a variable velocity field
v = (vx(x,y),vy(x,y)) and a spatial dependence on the dispersion matrix D = D(x,y). The ve-
locity field varies in both coordinated directions by means of linear mathematical relationship
and the dispersion assumes a quadratic variation in principal components. Mathematically, the
relations are:

v = (vx,vy) = (u0 · (x+1),−u0 · (y+1))

Trends Comput. Appl. Math., 22, N. 3 (2021)



i
i

“TEMA-A1-1456” — 2021/7/16 — 14:50 — page 352 — #12 i
i

i
i

i
i

352 NUMERICAL RESULTS ON THE RESIDUAL ERROR INDICATOR

D =

[
dxx(x,y) dxy(x,y)
dyx(x,y) dyy(x,y)

]
=

[
D0u2

0 · (x+1)2 0
0 D0u2

0 · (y+1)2

]
where u0,D0 are constant values. The flow has a Dirichlet boundary with zero
constant value at ΓD = {x0}× (y0,y1)∪{y0}× (x0,x1) and a Neumann boundary on
ΓN = {x1}× (y0,y1)∪{y1}× (x0,x1) with values g = n ·D∇C. The source function was set to
f (x,y, t) = 0 and the initial condition was set to

C(x,y, t = 0) = exp
(
− (x−µ1)

2

2σ2
1
− (y−µ2)

2

2σ2
2

)
.

where µ1,µ2,σ1 and σ2 are constants. The Figure 8 is a schematic presentation of the domain
with boundaries and initial concentration function.

Figure 8: Schematic representation of domain, velocity field, initial condition, Dirichlet and Neu-
mann boundaries.

The Figure 9 shows the concentration function C = C(x,y, t), the profiles and the level curves
for finite element approximation with nx = ny = 200 triangular elements in each direction and
le f t/right orientation, lagrangian linear functions, θ = 1/2, time step τ = .001, t f inal = 2.50,
µ1 = µ2 = 5 and σ1 = σ2 = 0.5.

Unlike the previous case, analytical solution are not available, both the dispersion and velocity
data are space dependent functions and the flow is considered to be under large advection dom-
inance. In this case, it is appropriate to use residual error indicators to access the quality of the
numerical solution obtained using the finite element method.

The spatial residual indicator, ((η +Θ)KE ), the residual indicator due to element, ((η +Θ)K),
residual due to edge, ((η +Θ)E ) and temporal indicator, (ητ ) are presented in Figures 10, 11,
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Figure 9: Numerical solution, level curves and profiles in X , and Y directions.

Figure 10: Spatial error indicator, level curves and profiles in X , and Y directions.

Figure 11: Element indicator, level curves and profiles in X , and Y directions.
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Figure 12: Edge indicator, level curves and profiles in X , and Y directions.

Figure 13: Temporal error indicator, level curves and profiles in X , and Y directions.

12 and 13, respectively. The spatial residual indicator is composed of the estimates of the ele-
ments, jumps and respective data contributions. This could be partitioned into the contributions
of elements and jumps, but it was conveniently incorporated into spatial estimates. The temporal
indicator, in turn, adds the solution of the diffusive problem to the temporal estimates of the small
advection regime.

Analogously to the previous case, the joint analysis of the results shows the predominance of
jump indicators. Now the dominance was accentuated around the points of maximum value of
initial condition function. However, it can be argued that, due to the smoothness of the data,
the finite element mesh provides an appropriate representation for the data and, as a result, the
indicators do not vary sharply as in the previous case. Despite this, the representation of the data
in the finite space is not exact and introduces residual estimates due to the data approximation.
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In this scenario, the residual temporal estimates, Figure 13, and the residual estimates of the
elements are of same order of magnitude and, therefore, cannot be ignored. However, the varia-
tions are more oscillatory and it can be seen that the maximum values occur in the same region
where the maximums of the other estimates occur. It can be argued that spatial approximation
has a strong influence on the temporal estimates due to diffusion associated problem, but a more
detailed investigation was necessary.

A more detailed view of the relationship between the residual indicators can be obtained by ana-
lyzing the results presented in the Table 2. In this table, are a few values of the numerical solution
and error indicators such C > 0.975 ·max(C). The analysis and comparisons of these results pro-
vides an better understanding of the relationship between the error indicators: maximum values
for spatial and edge indicators are of order O(10−02) and order of maximum value for element
indicator is O(10−03), which is one order greater than the temporal indicator. It evidences that
around the maximum values of concentration, temporal indicators has a smaller importance.

Table 2: The numerical solution and the error indicators for a set of points such that C > 0.975 ·
max(C).

(x,y) C (η +Θ)KE (η +Θ)K (η +Θ)E ητ

(4.9,4.0) 0.0640 0.0333 0.0087 0.0321 0.0005
(5.0,4.0) 0.0640 0.0338 0.0086 0.0327 0.0008
(4.7,4.1) 0.0643 0.0231 0.0088 0.0213 0.0009
(4.8,4.1) 0.0646 0.0304 0.0088 0.0291 0.0006
(4.9,4.1) 0.0648 0.0212 0.0088 0.0193 0.0009
(5.0,4.1) 0.0648 0.0229 0.0087 0.0212 0.0005
(5.1,4.1) 0.0646 0.0328 0.0086 0.0316 0.0008
(5.2,4.1) 0.0642 0.0290 0.0084 0.0278 0.0005
(4.6,4.2) 0.0643 0.0277 0.0088 0.0262 0.0009
(4.7,4.2) 0.0648 0.0299 0.0088 0.0286 0.0006

Similar to Figure 7, the behavior of residual indicators for successive refinements of finite ele-
ment meshes is shown in Figures 14 and 15. In the same way as in the previous case, the residual
values decrease for successive refinements as long as the time step is kept constant. It should be
noted that the time indicators now have the same order of magnitude as the element indicators
and that, in addition, they still maintain a similar qualitative behavior.

6 CONCLUSIONS

The presentation of the indicators as a surface over the finite element mesh provides an insight
into the influence of contributions on the global estimator and the magnitude of relationships
between the various individual contributions. The availability of the analytical solution allows to
obtain a broader view of the behavior of the residual estimator and to infer the strict dependence
between the residual estimates, the finite element mesh and the temporal partition. The mesh’s
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(a) Profiles of ηKE . (b) Profiles of ηK .

Figure 14: Spatial and element indicators profiles, at y = 4., for a series of meshes with nx =

100,200 and nx = 300 at specific time.

(a) Profiles of ηK . (b) Profiles of ητ .

Figure 15: Jump and temporal indicators profiles, at y = 4., for a series of meshes with nx =

100,200 and nx = 300 at specific time.

inability to capture abrupt variations in the data was reflected in the residual indicators and, as
a logical consequence, in the residual estimates. In the case where the data is non-constant and
smooth, the finite element space adequately captures the variations, but the data representation
errors are inserted and must be taken into account when calculating the estimates or indica-
tors. The dominance of advective processes increases the computational work to obtain residual
estimates associated with the temporal partition in relation to the problems with dispersive dom-
inance. In both cases, advective or dispersive dominance, the surfaces can be used to access the
regions of greatest variation and define components that do not have significant contributions to
the estimates. In addition, it is possible to monitor the variations in the surfaces of the indicators
associated with the evolution of the contaminant distribution function.
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