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ABSTRACT. In this work, we investigate the propagation of rotational solitary waves over a submerged
obstacle in a vertically sheared shallow water channel with constant vorticity. In the weakly nonlinear,
weakly dispersive regime the problem is formulated in the forced Korteweg-de Vries equation framework.
The initial value problem for this equation is solved numerically using a Fourier pseudospectral method
with an integrating factor. Solitary waves are taken as initial data and their interactions with an obstacle
are analysed. We identify three types of regimes according to the intensity of the vorticity. A rotational
solitary wave can bounce back and forth over the obstacle remaining trapped for large times, it can pass
over the obstacle without reversing its direction or the wave can be blocked, i.e., it bounces back and forth
above the obstacle until reaching a steady state. Such behaviour resembles the classical damped spring-mass
system.
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1 INTRODUCTION

The forced Korteweg-de Vries (fKdV) equation has been used as a model to describe several
problems in hydrodynamics for instance, problems related to the propagation of water waves
over topographic obstacles, flow of water over rocks, [2, 16], ship wakes and ocean waves
generated by storms [10].

For an irrotational flow of an incompressible fluid with constant density, it is well known that the
flow over an obstacle is governed by two parameters, namely, the amplitude of the obstacle and
the Froude number, which is defined as
Up
Vgho'

where Uy is the speed of the uniform flow, g is the acceleration of gravity and Ay is the far field

F =

depth of a shallow water channel. The fKdV equation arises as a model to study nearly-critical
flows (F =~ 1) for submerged obstacles with small amplitudes when compared to the average
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depth. A careful study on this model was first done by Wu and Wu [18] and later by several other
authors [1,5,6,9,15,19].

On the light of the fKdV framework, trapped waves have been extensively studied in the past few
years. The terminology “trapped wave” is used to describe waves that remain trapped in a certain
region of space, generally above an obstacle or in low-pressure regions. Grimshaw et al. [8] used
the fKdV equation to investigate the interaction of a solitary wave with a external force of small
amplitude asymptotically and numerically. They found regimes in which solitary waves remain
partially or totally trapped at the external force. Lee and Whang [14] and Lee [13] considered a
two-bumped obstacle and found solutions for the fKdV equation that remained trapped between
the two obstacles for a certain period of time. Besides, the numerical stability of these trapped
waves were analysed by disturbing their initial amplitudes as well as the obstacle heights. In
the same spirit, Kim and Choi [12] verified that trapped waves have to cross a certain energy
barrier in order to leave the region between the two bumps. Later, Flamarion and Ribeiro-Jr [7]
studied the numerical stability of solitary trapped waves in a low pressure region with respect to
perturbations of the amplitude of the initial data as well as the intensity of the pressure using the
full Euler equations.

Considering a vertically sheared background flow in the presence of an even bottom, Johnson
and Freeman [11] deduced a KdV-type equation, in which coefficients depend on the vorticity
and the speed of the flow in the depth of the channel. More recently, Flamarion et al. [5] used
asymptotic analysis for the full Euler equations to extend the KdV equation [11] to a rotational
fKdV equation that can be used to model rotational flows with constant vorticity over obstacles.
Then, they used the deduced rotational fKdV to validate their numerical methods to study rota-
tional waves generated from rest by a current-topography interaction for the full Euler equations.
Properties of this model were later reported in [4]. Although we use the rotational fKdV equa-
tion [5] in this article, our focus is on solitary wave interactions with a submerged obstacle not
on the wave generation problem as done by Flamarion et al. [5]

In this work, we investigate numerically rotational solitary waves interactions with a submerged
obstacle in a shallow water channel with a vertically sheared current using the rotational fKdV
equation [5] as a model. Although there are many works on trapped waves for irrotational flows,
to the best of our knowledge, there are no articles considering a sheared background flow. In our
numerical simulations, we identify that when the vorticity is weak, rotational solitary waves tend
to bounce back and forth above the obstacle remaining trapped for large times. Their ampli-
tudes oscillate at each rebound and increase as time goes on. This indicates that all these waves
may accumulate enough Kinect energy to pass over the obstacle at some point. Besides, when
the vorticity is strong, rotational solitary waves can be blocked, i.e., these waves bounce back
and forth above the obstacle a few times and then become stationary. Such behaviour resem-
bles a damped spring-mass system, but here, the damping is due to the vorticity. Moreover, the
numerical stability of these waves are investigated by disturbing the amplitude of the initial data.
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This paper is organized as follows. In section 2 we present the mathematical formulation of
the rotational fKdV equation. The numerical methods are presented in section 3, the numerical
results in section 4 and the conclusion in section 5.

2 THE ROTATIONAL FORCED KORTEWEG-DE VRIES EQUATION

We consider a two-dimensional incompressible flow of an inviscid fluid with constant density
in the presence of gravity force and a vertically sheared current with a submerged obstacle. In
the weakly nonlinear, weakly dispersive regime Flamarion et al. [5] deduced the dimensionless
fKdV equation

=281 G — 2831 f & + 3141 § &y + J1 Gr = I (), 2.1

as a model to describe the flow over obstacles with small amplitudes. Here, we denote by & (x,¢)
the free-surface displacement over the undisturbed surface and /(x) the submerged obstacle. The
coefficients in (2.1) are defined as

/ Q+2y(Q) 1 Q2 +3Qy(Q) +37(Q)? ; 1
31 = , 441 = 7 y J1 = )
27(Q)*(Q+71(Q)) 3 QP Q+v(Q) 3(Q)

where

Q VQr+4

NQ) = -5+

2 2

and € is the vorticity parameter. The vertically sheared current with constant vorticity (@ = —€)

is defined as
U(y) =Qy+7v(Q)+ef,

where f is a constant and € is a small positive parameter. The flow is called supercritical,
subcritical or critical depending on whether f > 0, f <0 or f =0.

When the bottom is flat (b, = 0), the fKdV equation (2.1) has solitary wave solutions given by

2J 4J
¢ (x,1) = Asech®(k(x—ct)), where ¢ = f— 22 a=2

K. 22
I Iy 22)

It is worth mentioning that when f = 2J;k* /I3 the solitary wave solutions are stationary.

3 NUMERICAL METHODS

We solve the fKdV equation (2.1) through a Fourier pseudospectral method with an integrating
factor. It solves the linear part of equation (2.1) exactly, which avoids numerical instabilities is-
sues due to the dispersive term. The computational domain [—L, L] is periodic with a uniform
grid with N points and step Ax = 2L/N. Spatial derivatives are computed spectrally [17]. Fur-
thermore, the time evolution is computed using the Runge-Kutta fourth-order method (RK4) with
time step Az. Flamarion et al. [S] considered a similar numerical method and tested its resolution
with respect to N and Ax. They verified that solution is accurately captured using different grids.
Therefore, for convenience we set the following parameters: L = 1000, N = 213 and Ar = 0.01.
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wave

Figure 1: Sketch of the physical problem.

The initial condition of equation (2.1) is taken as a solitary wave defined in equation (2.2) and
the submerged obstacle is modelled by the localised function

h(x) = d(tanh(x — B) — tanh(x + f3)). 3.1

Since h decays to zero as |x| — oo, for large values of L, we can approximate the boundary
conditions by periodic conditions. A sketch of the physical problem at t = 0 is depicted in Figure
1. Unless mentioned otherwise, we fix § = 10~ and B = 20 in all following simulations.

In this paper we do not attempt an exhaustive study of trapped waves, instead, we present a few
examples and highlight their main properties. For this reason, we limit ourselves to consider
solitary waves as in equation (2.2) with amplitude A = 0.5. However, the results presented here
can be easily extended for solitary waves with different amplitudes.

4 NUMERICAL RESULTS

In the absence of a variable bottom topography, the fKdV equation (2.1) has solitary wave solu-
tions (2.2), and steady solutions can be obtained by taking f = 2J;k*/I5;. Notice that if a solitary
wave is above the obstacle (see Figure 1), steady waves are no longer given by the formula (2.2).
Although the amplitude of the obstacle is small, it still affects the solitary wave speed. In order
to find solitary waves that bounce back and forth above the obstacle, we disturb f slightly by
taking

f=2J1k*/I; +0.01,

which implies that ¢ = 0.01 is the solitary-wave speed when the bottom is flat.

Figure 2 (top left) displays the evolution of a trapped solitary wave above the obstacle (3.1). The
solitary wave is initially set with its crest located at x = 0. This wave starts moving downstream
until it reaches the shallower region, and then, it is reflected back and moves upstream. This dy-
namic is repeated for large times (see Figure 2 (bottom)). Details of how the amplitude changes
as a function of the position of the solitary-wave crest is depicted in Figure 2 (top right). It is
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Figure 2: Top (left): trapped solitary wave over the obstacle. Top (right): amplitude of the trapped
wave as a function of its crests position. Bottom: the crest position of the solitary wave as a
function of time. Parameters: A = 0.5, f = 0.26 and Q = 0.

interesting to observe that when the wave bounces back and forth where the bottom is nearly
flat (—10 < x < 10) its amplitude remains unchanged. In addition, the amplitude of this wave
oscillates increasing over time which leads us to conclude that this wave might overcome the
obstacle at some point. These results agree qualitatively with the ones reported on the works of
Grimshaw et al. [8] and in the recent work of Ermakov and Stepanyants [3].

Similar regimes were found for Q € [0,2). Furthermore, the trapping mechanism turn out to be
robust with respect to perturbations of the initial data, in the sense that for small perturbations of
the amplitude of the initial data, the wave solution still remains trapped above the obstacle.

Besides the solitary trapped wave displayed in Figure 2, we also find regimes in which the wave
is blocked. In this case, the solitary wave bounces back and forth above the obstacle until it
reaches a steady state. Blocked waves only occur when Q is negative. In this case, the solitary
waves propagate downstream reaching the shallower region (x = 20) and then are reflected back.
However, differently from the previous case, these waves are reflected back before reaching the
shallower region (x = —20). They move back and forth above the obstacle, but their speed
decreases until they reach a steady state approaching a wave-limit. A particular case of this
dynamic is depicted in Figure 3 (top left) and its amplitude as a function of its crest position in
Figure 3 (top right). In the amplitude vs. crest position space, the equation (2.1) can be interpreted
as a dynamical system in which the amplitude of wave-limit and its crest position is a stable spiral
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point. Somehow, the vorticity acts similar to the manner in which a damping acts in a spring-mass
system (see Figure 3 (bottom)). Moreover, if we disturb the initial amplitude of the solitary wave,
this wave still approaches the very same wave-limit, which shows that the blocking mechanism
is robust with respect to small perturbations of the amplitude of the initial data.
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Figure 3: Top (left): trapped solitary wave over the obstacle. Top (right): amplitude of the trapped
wave as a function of its crests position. Bottom: the crest position of the solitary wave as a
function of time. Parameters: A = 0.5, f =0.3377 and Q = —1.3.

We point out that for each value of Q fixed in the interval (—1.7,0), the rotational solitary wave
approaches a wave-limit at large times. Although, these wave-limits are close to each other, they
are not the same. For each value of Q € (—1.7,0) we have a different wave-limit. Figure 4 shows
the crest position of rotational solitary waves as a function of time for different values of Q. As
we can see, the solution reaches an equilibrium faster when the vorticity is stronger. In addition,
when it becomes larger (Q < —1.7) rotational waves are no longer blocked. These waves seem
to have enough energy to pass over the obstacle without reversing their direction. We call them
passage waves.

The results presented here help us understand some important features of trapped rotational
solitary waves over a submerged obstacle. Although the fKdV is a reduced model, its solutions
agree well with solutions of the full model when the obstacle has small amplitude and the chan-
nel is shallow [5]. Thus, we conjecture that the results present here still hold for the full Euler
equations.
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Figure 4: The crest position of solitary waves as a function of time for different values of Q.
Parameters: A = 0.5, f = 0.3377.

5 CONCLUSIONS

In this paper, we have investigated rotational solitary wave interactions with a submerged obsta-
cle in a vertically sheared channel. We have considered the weakly nonlinear, weakly dispersive
regime which allowed us to formulate the problem in rotational fKdV framework. Numerically,
we investigated how the sheared flow affects the interaction between solitary waves and an obsta-
cle. These interactions were classified into thee types according to the intensity of the vorticity,
namely, trapped waves, blocked waves and passage waves. Moreover, we found that the vorticity
acts as a damping in the solitary-wave crest position vs. time space, which resembles a damped
spring-mass system. This study is the first step in understanding the dynamic of rotational solitary
waves over submerged obstacles, with further investigations to be pursued in the future.
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