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ABSTRACT. In this paper, we describe an a posteriori error analysis for a conforming dual mixed scheme
of the Poisson problem with non homogeneous Dirichlet boundary condition. As a result, we obtain an a
posteriori error estimator, which is proven to be reliable and locally efficient with respect to the usual norm
on H(div;Ω)×L2(Ω). We remark that the analysis relies on the standard Ritz projection of the error, and
take into account a kind of a quasi-Helmholtz decomposition of functions in H(div;Ω), which we have
established in this work. Finally, we present one numerical example that validates the well behavior of our
estimator, being able to identify the numerical singularities when they exist.

Keywords: mixed finite element methods, a posteriori error estimator, reliability, efficiency.

1 INTRODUCTION

It is well known that when the solution of a variational formulation obtained by applying a finite
element method, is not smooth enough, the quality of approximation could be not good enough.
This motivates us to derive an a posteriori error estimator, which is reliable and efficiency. This
would allow us to establish that the estimator behaves as the error of the method, which in gen-
eral is not known. Then, considering an appropriate adaptive refinement algorithm, we can obtain
approximations of the formulation, of better quality, by detecting the region where this estimator
is more dominant. In the context of mixed finite element methods, there are a lot of references
dedicated to the a posteriori error analysis. For instance, in [1] an a posteriori error estima-
tor only for the flux unknown is derived, using Raviart-Thomas (RT) or Brezzi-Douglas-Marini

*Corresponding author: Rommel Bustinza – E-mail: rbustinz@ing-mat.udec.cl
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Fı́sica Aplicadas, Universidad Católica de la Santı́sima Concepción, Alonso de Ribera 2850, Concepción, Chile – E-mail:
tomas@ucsc.cl https://orcid.org/0000-0003-2396-8869
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(BDM) as its space of approximation. The analysis that yields this estimator, relies on a classical
Helmholtz decomposition. On the other hand, in [10], the authors present two a posteriori error
estimators for a dual mixed formulation for the Poisson problem, approximating the flux in the
Raviart-Thomas space. In this case, the derivation of the estimator is obtained under a saturation
assumption. This requirement is circumvented in [12], where a reliable and efficient a posteriori
error estimator for the natural norm, is derived. We remark that four different kind of a posteri-
ori error estimators for Raviart-Thomas mixed finite elements, are provided in [23]. Concerning
second order elliptic equation with mixed boundary condition, in [17] the authors developed an
a posterior error analysis for the mixed finite element method with a Lagrange multiplier.

In [9], an a posteriori error analysis for an augmented mixed formulation of the Poisson prob-
lem with mixed boundary conditions, is developed. This is performed with the help of the Ritz
projection of the error, and covers the reliability and efficiency of the estimator. It is important
to remark that this technique has been successfully applied to other problems, such as the the
Brinkman model in [2], the Darcy flow in [6] and [7], the Stokes system in [3] and [5], and the
Oseen equations in [8], for example.

In this paper, we deduce a reliable and efficient residual a posteriori error estimator for the Pois-
son problem with non homogeneous Dirichlet boundary condition, considering a dual mixed
finite element method. To achieve this, we take into account the Ritz projection of the error, mea-
sured in the standard H(div;Ω)×L2(Ω) norm. We also establish another kind of quasi Helmholtz
decomposition of H(div;Ω) in the plane. We remark that in this process, no saturation assump-
tion is required, and its extension to 3D case is not difficult. We remark that in [1] the a posteriori
error analysis is performed to a homogeneous Dirichlet problem, focusing in obtain an estimator
for the H(div;Ω) norm of the flux error. Then, the results of the current work can be seen as a
natural extension of what is described in [1], since we deduce an a posteriori error estimator for
the norm of the error of the flux and potential unknowns, that is reliable and efficient.

The rest of the article is organized as follows: In Section 2 we present the model problem, as
well as the corresponding dual mixed formulations, at continuous and discrete levels. Next, the a
posteriori error analysis with non homogeneous Dirichlet is described in Sections 3. This includes
the introduction of the Ritz projection of the error, as well as the key tool for deducing a reliable
a posteriori error estimator: a quasi-Helmholtz decomposition of functions in H(div;Ω). Finally,
one numerical example confirming our theoretical results are reported in Section 4. We end this
introduction with some notation to be used throughout the paper. Given any Hilbert space H, we
denote by H2 the space of vectors of order 2 with entries in H. Finally, we use C or c, with or
without subscripts, to denote generic constants, independent of the discretization parameter, that
may take different values at different occurrences.

2 MODEL PROBLEM AND VARIATIONAL FORMULATIONS

Let Ω be a bounded and simply connected domain in R2 with polygonal boundary Γ. Then, given
f ∈ L2(Ω) and g∈H1/2(Γ), we consider the model problem: Find u∈H1(Ω) such that−∆u = f

Trends Comput. Appl. Math., 23, N. 3 (2022)
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in Ω and u = g on Γ. Since we are interested in dual mixed methods, we rewrite the Dirichlet
problem as the first order system: Find (σσσ ,u) such that σσσ = −∇u in Ω, div(σσσ) = f in Ω, and
u = g on Γ. Hence, proceeding in the usual way, we arrive to the following dual mixed variational
formulation: Find (σσσ ,u) ∈ H(div;Ω)×L2(Ω) such that

a(σσσ ,τττ)− b(u,τττ) = −〈τττ ·nnn,g〉 ∀τττ ∈ H(div;Ω) ,

−b(w,σσσ) = −
∫

Ω

f w ∀w ∈ L2(Ω) ,
(2.1)

where 〈·, ·〉 denotes the duality pairing between H−1/2(Γ) and H1/2(Γ) with respect to L2(Γ)-
inner product, and the bilinear forms a : H(div;Ω)×H(div;Ω)→R and b : L2(Ω)×H(div;Ω)→
R, are given by a(ζζζ ,τττ) :=

∫
Ω

ζζζ · τττ and b(w,τττ) :=
∫

Ω
wdiv(τττ), respectively. Thanks to the clas-

sical Babuška-Brezzi theory (cf. Section 5 in [16]), it can be shown that there exists a unique
pair (σσσ ,u) ∈ H(div;Ω)× L2(Ω) solution of (2.1). For the discretization, we assume that Ω

is a polygonal region and let {Th}h>0 be a regular family of triangulations of Ω̄ such that
Ω̄ = ∪{T : T ∈ Th }. For any triangle T ∈ Th, we denote by hT its diameter and define the
mesh size h := max{hT : T ∈ Th }. In addition, given an integer ` ≥ 0 and a subset S of R2,
we denote by P`(S) the space of polynomials in two variables defined in S of total degree at
most `, and for each T ∈Th, we define the local Raviart-Thomas space of order κ ≥ 0 (cf. [20]),
RT κ(T ) := [Pκ(T )]2 ⊕Pκ(T )xxx ⊆ [Pκ+1(T )]2 ∀xxx ∈ T . Then, given an integer r ≥ 0, we
define the finite element subspaces Hσσσ

h,r := {τττh ∈ H(div;Ω) : τττh|T ∈ RT r(T ) , ∀T ∈ Th }
and Hu

h,r :=
{

vh ∈ L2(Ω) : vh|T ∈ Pr(T ) , ∀T ∈ Th
}

. Under these assumptions, and apply-
ing a discrete version of the Babuška-Brezzi theory (see Section 5 in [16]), we can ensure that
there exists only one (σσσh,uh) ∈ Hσσσ

h,r×Hu
h,r such that

a(σσσh,τττh) − b(uh,τττh) = −〈τττh ·nnn,g〉 ∀τττh ∈ Hσσσ
h,r ,

−b(wh,σσσh) = −
∫

Ω

f wh ∀wh ∈ Hu
h,r .

(2.2)

Moreover, the following result is established.

Theorem 2.1. Let (σσσ ,u) and (σσσh,uh) be the solutions of (2.1) and (2.2), respectively. If (σσσ ,u) ∈
[Hr(Ω)]2×Hr(Ω), and div(σσσ) ∈Hr(Ω), 0 < r ≤ k+1, then there exists C > 0, independent of
the mesh size, such that

||σσσ −σσσh||H(div;Ω)+ ||u−uh||L2(Ω) ≤C hr (|σσσ |[Hr(Ω)]2 + |u|Hr(Ω)+ |div(σσσ)|Hr(Ω)

)
.

Proof. We refer to the proofs of Theorems 3.2 and 3.3 in [16], as well as the classical error
estimates for the L2-orthogonal projection onto Pr. We omit further details. �

3 A POSTERIORI ERROR ANALYSIS

In this section, we follow [4] (see also [5]), and develop an a posteriori error analysis for the
discrete scheme (2.2), taking into account an appropriate Ritz projection of the error and a quasi-
Helmholtz decomposition. We first introduce some notations and results, concerning the Clément
and Raviart-Thomas interpolation operators.

Trends Comput. Appl. Math., 23, N. 3 (2022)
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3.1 Notation and some well known results

Given T ∈Th, we let E(T ) be the set of its edges. By Eh we denote the set of all edges (counted
once) induced by the triangulation Th. Then, we write Eh = EI ∪EΓ, where EI := {e ∈ Eh : e⊆
Ω} and EΓ := {e ∈ Eh : e ⊆ Γ}. Similarly, Nh will denote the list of all vertices (counted once)
induced by the triangulation Th. Then we define NI := Nh ∩Ω and NΓ := {xxx ∈ Nh : xxx ∈ Γ}.
As a result, we have that Nh = NI ∪ NΓ. In addition, for each T ∈ Th, N(T ) := {xxx ∈ Nh :
xxx is a vertex of T}, and for each e∈Eh, N(e) := {xxx∈Nh : xxx is a vertex of e}. Now, given xxx∈Nh,
T ∈Th and e ∈ Eh, we set

ω(xxx) :=
⋃

T∈Th
xxx∈N(T )

T , ω(e) :=
⋃

xxx∈N(e)

ω(xxx) , ω(T ) :=
⋃

xxx∈N(T )

ω(xxx) .

Also, for each T ∈ Th, we fix a unit normal exterior vector nnnT := (n1,n2)
t, and let tttT :=

(−n2,n1)
t be the corresponding fixed unit tangential vector along ∂T . From now on, when no

confusion arises, we simply write nnn and ttt instead of nnnT and tttT , respectively. In addition, let q
and τττ be scalar - and vector -valued functions, respectively, that are smooth inside each element
T ∈ Th. We denote by (qT,e,τττT,e) the restriction of (qT ,τττT ) to e. Then, given e ∈ EI , we define
the jump of q and of the tangential component of τττ at xxx ∈ e, by

[[q]] := qT,e−qT ′,e , [[τττ · ttt]] := τττT,e · tttT + τττT ′,e · tttT ′ ,

where T and T ′ are the two elements in Th sharing the edge e ∈ EI . On boundary edges e ∈ EΓ,
we set [[τττ · ttt]] := τττT,e · tttT , where T ∈ Th is such that ∂T ∩ e 6= /0. Finally, given a smooth scalar
field v and a vector field τττ = (τ1,τ2)

t, we define

curl(v) :=

 ∂v
∂x2

− ∂v
∂x1

 and rot(τττ) :=
∂τ2

∂x1
− ∂τ1

∂x2
.

Next, we introduce the Clément interpolation operator Ih : H1(Ω) → Xh (cf. [15]), where
Xh := {vh ∈ H1(Ω) : vh

∣∣
T ∈P1(T ) , ∀T ∈ Th}. The following lemma establishes the main

local approximation properties of Ih.

Lemma 3.1. There exist constants c1,c2 > 0, independent of h, such that for all v∈H1(Ω), there
holds

‖v− Ih(v)‖Hm(T ) ≤ c1 h1−m
T |v|H1(ω(T )) , ∀m ∈ {0,1} ,∀T ∈Th ,

and

‖v− Ih(v)‖L2(e) ≤ c2 h1/2
e |v|H1(ω(e)) ∀e ∈ Eh ,

where he denotes the length of the side e ∈ Eh.

Proof. We refer to [15]. �

Trends Comput. Appl. Math., 23, N. 3 (2022)
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On the other hand, we also need to introduce the Raviart-Thomas interpolation operator (see
[11, 20]), πr

h : [H1(Ω)]2 → Hσσσ
h , which given τττ ∈ [H1(Ω)]2, πr

hτττ ∈ Hσσσ
h is characterized by the

following conditions:

∀e ∈ Eh : ∀q ∈Pr(e) :
∫

e
π

r
h(τττ) ·nnnq =

∫
e
τττ ·nnnq , when r ≥ 0 , (3.1)

and
∀T ∈Th : ∀ρρρ ∈ [Pr−1(T )]2 :

∫
T

π
r
h(τττ) · ρρρ =

∫
T

τττ · ρρρ , when r ≥ 1 . (3.2)

The operator πr
h satisfies the following approximation properties.

Lemma 3.2. There exist constants c3,c4,c5 > 0, independent of h, such that for all T ∈Th

∀τττ ∈ [Hm(Ω)]2 : ‖τττ−π
r
h(τττ)‖[L2(T )]2 ≤ c3 hm

T |τττ|[Hm(T )]2 1≤ m≤ r+1 , (3.3)

for all τττ ∈ [Hm(Ω)]2 with div(τττ) ∈ Hm(Ω),

||div(τττ−π
r
h(τττ))||L2(T ) ≤ c4 hm

T |div(τττ)|Hm(T ) , 0≤ m≤ r+1 , (3.4)

and for any τττ ∈ [H1(Ω)]2

∀e ∈ Eh : ‖τττ ·nnn−π
r
h(τττ) ·nnn‖L2(e) ≤ c5 h1/2

e ‖τττ‖[H1(Te)]2
, (3.5)

where Te ∈Th, such that it contains e on its boundary. Proof. See e.g. [11] or [20]. �

In addition, the interpolation operator πr
h can also be defined as a bounded linear operator from

the larger space [Hs(Ω)]2∩H(div;Ω) into Hσσσ
h , for all s∈ (1/2,1] (see, e.g. Theorem 3.16 in [19]).

In this case, there holds the following interpolation error estimate

∀T ∈Th : ‖τττ−π
r
h(τττ)‖[L2(T )]2 ≤ C hs

T

{
‖τττ‖[Hs(T )]2 + ‖div(τττ)‖L2(T )

}
.

Taking into account (3.1) and (3.2), it is not difficult to show that

div(πr
h(τττ)) = Pr

h(div(τττ)) , (3.6)

where Pr
h : L2(Ω)→Hu

h is the L2−orthogonal projector. On the other hand, it is well known (see,
e.g. [14]) that for each v ∈ Hm(Ω), with 0 ≤ m ≤ r + 1, there exists C > 0, independent of h,
such that

∀T ∈Th : ‖v−Pr
h(v)‖L2(T ) ≤ C hm

T |vvv|Hm(T ) . (3.7)

3.2 Reliability of the estimator

Let (σσσ ,u) ∈ ΣΣΣ := H(div;Ω)×L2(Ω) and (σσσh,uh) ∈ Hσσσ
h,r×Hu

h,r ⊆ ΣΣΣ be the unique solution to
problems (2.1) and (2.2), respectively. We provide ΣΣΣ with its usual inner product

〈(ρρρ,z),(τττ,v)〉ΣΣΣ := (ρρρ,τττ)H(div;Ω)+(z,v)L2(Ω) ∀(ρρρ,z),(τττ,v) ∈ ΣΣΣ ,

Trends Comput. Appl. Math., 23, N. 3 (2022)
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which induces the norm

||(τττ,v)||ΣΣΣ :=
(
||τττ||2H(div;Ω) + ||v||

2
L2(Ω)

)1/2
∀(τττ,v) ∈ ΣΣΣ .

Next, we consider the Ritz projection of the error with respect to 〈·, ·〉ΣΣΣ as the unique element
(σ̄σσ , ū) ∈ ΣΣΣ, such that

∀(τττ,v) ∈ ΣΣΣ : 〈(σ̄σσ , ū),(τττ,v)〉ΣΣΣ = A((σσσ −σσσh,u−uh),(τττ,v)) , (3.8)

where the global bilinear form A : ΣΣΣ×ΣΣΣ→ R arises from the variational formulation (2.1), after
adding its equations, that is

A((ρρρ,w),(τττ,v)) := a(ρρρ,τττ)− b(w,τττ) − b(v,ρρρ) ∀(ρρρ,w),(τττ,v) ∈ ΣΣΣ .

We remark that the existence and uniqueness of (σ̄σσ , ū) ∈ ΣΣΣ is guaranteed by the Lax-Milgram
Lemma. Moreover, we point out that the properties of the bilinear forms a(·, ·) and b(·, ·) implies
that A(·, ·) satisfies a global inf-sup condition, i.e., there exist α > 0 such that

α ||(ζζζ ,w)||ΣΣΣ ≤ sup
θ 6=(τττ,v)∈ΣΣΣ

A((ζζζ ,w),(τττ,v))
‖(τττ,v)‖ΣΣΣ

, ∀(ζζζ ,w) ∈ ΣΣΣ .

This particularity allows us to bound the error in terms of the solution of its Ritz projection, as
follows:

α ||(σσσ −σσσh,u−uh)||ΣΣΣ ≤ sup
θ 6=(τττ,v)∈ΣΣΣ

A((σσσ −σσσh,u−uh),(τττ,v))
‖(τττ,v)‖ΣΣΣ

= ||(σ̄σσ , ū)||ΣΣΣ . (3.9)

Then, according to (3.9), and with the purpose of obtaining a reliable a posteriori error estimate
for the discrete scheme (2.2), it is enough to bound from above the Ritz projection of the er-
ror. To this aim, the next result will be useful, and can be seen as a kind of a quasi-Helmholtz
decomposition of functions in H(div;Ω).

Lemma 3.3. For each τττ ∈ H(div;Ω), there exist χ ∈ H1(Ω) and ΦΦΦ ∈ [H1
0 (Ω)]2, such that

τττ = curl(χ) + ΦΦΦ +
d
2

(
x1−a
x2−b

)
, (3.10)

where (a,b)t is any fixed point belonging to Ω, and d := 1
|Ω|
∫

Ω
div(τττ). In addition, there exists

C > 0, such that

|χ|H1(Ω) + ‖ΦΦΦ‖[H1(Ω)]2 ≤ C‖τττ‖H(div;Ω) . (3.11)

Proof. We first introduce the space M := {ζζζ ∈ H(div;Ω) :
∫

Ω
div(ζζζ ) = 0}. Next, for each

τττ ∈ H(div;Ω), we decompose div(τττ) = div(τ̃ττ) + d, where τ̃ττ := τττ − d
2

(
x1−a
x2−b

)
∈ M.

Trends Comput. Appl. Math., 23, N. 3 (2022)
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We remark that ‖div(τττ)‖2
0,Ω = ‖div(τ̃ττ)‖2

0,Ω + d2 |Ω|. Then, since div(τ̃ττ) ∈ L2
0(Ω), and invok-

ing Corollary I.2.4 in [18], there exists ΦΦΦ ∈ [H1
0 (Ω)]2 such that div(ΦΦΦ) = div(τ̃ττ) in Ω and

‖ΦΦΦ‖1,Ω ≤ c‖div(τττ)‖0,Ω. This implies that

div
(

τττ − ΦΦΦ − d
2
(x1−a,x2−b)t

)
= 0 in Ω

and
〈(

τττ − ΦΦΦ − d
2
(x1−a,x2−b)t

)
·nnn,1

〉
Γ

= 0 ,

where (a,b)t is a fixed point belonging to Ω. Hence, by Theorem I.3.1 in [18], there exists a
stream function χ ∈ H1(Ω) such that τττ − ΦΦΦ − d

2 (x1− a,x2− b)t = curl(χ) in Ω. In addition,
we have

|χ|2H1(Ω) = ||curl(χ)||2L2(Ω) =

∥∥∥∥τττ − ΦΦΦ − d
2
(x1−a,x2−b)t

∥∥∥∥2

L2(Ω)

≤ 2
(
||τττ||2[L2(Ω)]2 + ||ΦΦΦ||

2
[L2(Ω)]2 +

d2

4
||(x1−a,x2−b)||2[L2(Ω)]2

)
≤ 2

(
||τττ||2[L2(Ω)]2 + ||ΦΦΦ||

2
[L2(Ω)]2 +

d2

4
(
diam(Ω)

)2 |Ω|
)

≤ 2 max
{

1,c2 +
1
4
(
diam(Ω)

)2
}
||τττ||2H(div;Ω) .

As a result, we establish (3.11), and we end the proof. �

Now, considering χ and ΦΦΦ as the ones provided by Lemma 3.3 for a given τττ ∈ H(div;Ω), we
introduce χh := Ih(χ), and define

τττh := curl(χh) + π
r
h(ΦΦΦ)+

d
2

(
x1−a
x2−b

)
∈ Hσσσ

h , (3.12)

which is referred as a discrete quasi-Helmholtz decomposition of τττh. Therefore, we can write

τττ− τττh = curl(χ−χh) + ΦΦΦ−π
r
h(ΦΦΦ) , (3.13)

that verifies

div(τττ− τττh) = div(ΦΦΦ−π
r
h(ΦΦΦ)) (3.14)

On the other hand, it is not difficult to check the following orthogonality relation

A((σσσ −σσσh,u−uh),(ζζζ h,vh)) = 0 , ∀(ζζζ h,vh) ∈ ΣΣΣh := Hσσσ
h ×Hu

h . (3.15)

From now on, given (τττ,v) ∈ ΣΣΣ, we associate it with the discrete pair (τττh,0) ∈ ΣΣΣh, where τττh is
defined as in (3.12). Hence, considering (3.15) with (ζζζ h,vh) := (τττh,0), and knowing that (σσσ ,u)
is the unique solution of problem (2.1), we obtain

〈(σ̄σσ , ū),(τττ,v)〉ΣΣΣ = A((σσσ −σσσh,u−uh),(τττ− τττh,v))

= −〈(τττ− τττh) ·nnn,g〉−
∫

Ω

f v−A((σσσh,uh),(τττ− τττh,v)) .

Trends Comput. Appl. Math., 23, N. 3 (2022)
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Equivalently,

(σ̄σσ ,τττ)H(div;Ω) = F1(τττ− τττh) ∀τττ ∈ H(div;Ω) ,

(ū,v)L2(Ω) = F2(v) ∀v ∈ L2(Ω) ,

where F1 : H(div;Ω)→ R and F2 : L2(Ω)→ R are the bounded linear functionals defined by

F1(ρρρ) := −〈ρρρ ·nnn,g〉 −
∫

Ω

σσσh ·ρρρ +
∫

Ω

uh div(ρρρ) , ∀ρρρ ∈ H(div;Ω) ,

F2(w) := −
∫

Ω

( f −div(σσσh))w , ∀w ∈ L2(Ω) .

Hence, taking into account (3.13) and (3.14), and the fact that πk
h(ΦΦΦ) ·nnn = 0 on Γ, we can rewrite

F1(τττ− τττh) as follows

F1(τττ− τττh) = R1(ΦΦΦ) + R2(χ) ,

where

R1(ΦΦΦ) := −
∫

Ω

(σσσh +∇huh) · (ΦΦΦ−π
k
h(ΦΦΦ)) + ∑

T∈Th

∫
∂T∩EI

uh (ΦΦΦ−π
k
h(ΦΦΦ)) ·nnn ,

R2(χ) := −〈curl(χ−χh) ·nnn,g〉−
∫

Ω

σσσh · curl(χ−χh) .

Our aim now is to obtain upper bounds for each one of the terms F2(v), R1(ΦΦΦ) and R2(χ).

Lemma 3.4. For any v ∈ L2(Ω) there holds

|F2(v)| ≤

(
∑

T∈Th

‖ f −div(σσσh)‖2
L2(T )

)1/2

‖v‖L2(Ω) .

Proof. The proof follows from a straightforward application of Cauchy-Schwarz inequality. �

Lemma 3.5. There exists C > 0, independent of h, such that

|R1(ΦΦΦ)| ≤C

(
∑

e∈EI

he ‖[[uh]]‖2
[L2(e)]2 + ∑

T∈Th

h2
T‖∇uh +σσσh‖2

[L2(T )]2

)1/2

‖τττ‖H(div;Ω) .

Proof. It is a slight modification of Lemma 3.5 in [5]. We omit further details. �

Lemma 3.6. Under the assumption that g ∈ H1(Γ), there exists C > 0, independent of h, such
that

|R2(χ)| ≤C

(
∑

T∈Th

h2
T‖rot(σσσh)‖2

L2(T )

+ ∑
e∈E(T )

he

(
‖[[σσσh · ttt]]‖2

L2(e∩EI)
+

∥∥∥∥σσσh · ttt +
dg
dttt

∥∥∥∥2

L2(e∩EΓ)

))1/2

‖τττ‖H(div;Ω) .
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i
i

“A9-1626” — 2022/8/12 — 10:33 — page 557 — #9 i
i

i
i

i
i

T. P. BARRIOS, R. BUSTINZA and C. CAMPOS 557

Proof. Knowing that curl(χ − χh) · nnn = d
dttt (χ − χh) on Γ, and after integrating by parts, we

deduce

R2(χ) = 〈curl(χ−χh) ·nnn,g〉+
∫

Ω

σσσh · curl(χ−χh)

=

〈
d
dttt

(χ−χh),g
〉
+ ∑

T∈Th

∫
T

σσσh · curl(χ−χh)

= −
〈

χ−χh,
dg
dttt

〉
+ ∑

T∈Th

(∫
T

rot(σσσh)(χ−χh) − 〈χ−χh,σσσh · ttt〉∂T

)

= ∑
T∈Th

∫
T

rot(σσσh)(χ−χh) +
∫

EI

(χ−χh) [[σσσhhh · ttt]] −
∫

EΓ

(χ−χh)

(
σσσh · ttt +

dg
dttt

)
.

⇒ |R2(χ)| ≤ ∑
T∈Th

‖rot(σσσh)‖L2(T )‖χ−χh‖L2(T ) + ∑
e∈EI

‖χ−χh‖L2(e)‖[[σσσh · ttt]]‖L2(e)

+ ∑
e∈EΓ

‖χ−χh‖L2(e)

∥∥∥∥σσσh · ttt +
dg
dttt

∥∥∥∥
L2(e)

.

Therefore, the proof is completed invoking Lemma 3.1, the Cauchy-Schwarz inequality, the
regularity of the mesh and (3.11). �

The previous results suggest the definition of the following residual estimator

η :=

(
∑

T∈Th

η
2
T

)1/2

, (3.16)

where

η
2
T := ‖ f −div(σσσh)‖2

L2(T ) + h2
T ‖σσσh +∇uh‖2

[L2(T )]2 + h2
T‖rot(σσσh)‖2

L2(T )

+ ∑
e∈E(T )

he

(
‖[[uh]]‖2

L2(e∩EI)
+ ‖[[σσσh · ttt]]‖2

L2(e∩EI)
+

∥∥∥∥σσσh · ttt +
dg
dttt

∥∥∥∥2

L2(e∩EΓ)

)
.

An upper bound for ||(σ̄σσ , ū)||ΣΣΣ is established in the next lemma, in terms of (3.16).

Lemma 3.7. Assuming that g ∈H1(Γ), there exists a constant C > 0, independent of h, such that

||(σ̄σσ , ū)||ΣΣΣ ≤ C η . (3.17)

Proof. Invoking Lemmas 3.5 and 3.6, we deduce that there exists C > 0, independent of h, such
that

|F1(τττ− τττh)| ≤C

(
∑

T∈Th

h2
T‖σσσh +∇uh‖2

[L2(T )]2 + ∑
e∈Eh

he

(
‖[[σσσh · ttt]]‖2

L2(e∩EI)

+

∥∥∥∥σσσh · ttt +
dg
dttt

∥∥∥∥2

L2(e∩EΓ)

+ ‖[[uh]]‖2
L2(e∩EI)

))1/2

‖τττ‖H(div;Ω) .

Hence, (3.17) follows from the above bound, Lemma 3.4 and a discrete Cauchy-Schwarz
inequality. �
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The following theorem establishes the main result of this section, which is the reliability and
efficiency of the estimator η .

Theorem 3.2. There exists a positive constant Crel, independent of h, such that

||(σσσ −σσσh,u−uh)||ΣΣΣ ≤ Crel η . (3.18)

Additionally, there exists Ceff > 0, independent of h, such that

η
2
T ≤ Ceff ||(σσσ −σσσh,u−uh)||ΣΣΣ(T ) , (3.19)

where ∀T ∈ Th : ||(τττ,vvv)||2
ΣΣΣ(T ) := ‖τττ‖2

H(div;T ) + ‖vvv‖
2
L2(T ). Proof. The reliability of η , (3.18),

follows from (3.9) and Lemma 3.7. The efficiency of η , (3.19), is treated in the next subsection.
We omit further details. �

3.3 Efficiency of the estimator

In this subsection we prove the local efficiency of the estimator η (cf. (3.19)). We begin by
introducing some notations and preliminary results. Given T ∈ Th and e ∈ E(T ), we let ψT

and ψe be the standard triangle-bubble and edge-bubble functions, respectively. In particular, ψT

satisfies ψT ∈P3(T ), supp(ψT ) ⊆ T , ψT = 0 on ∂T , and 0 ≤ ψT ≤ 1 in T . Similarly, ψe|T ∈
P2(T ), supp(ψe)⊆ ωe := ∪{T ′ ∈Th : e ∈ E(T ′)}, ψe = 0 on ∂ωe, and 0≤ ψe ≤ 1 in ωe. We
also recall from [21] that, given k ∈ N∪{0}, there exists an extension operator L : C(e)→C(T )
that satisfies L(p) ∈Pk(T ) and L(p)|e = p ∀ p ∈Pk(e). Additional properties of ψT , ψe, and L
are collected in the following lemma.

Lemma 3.8. For any triangle T there exist positive constants c1, c2, c3 and c4, depending only
on k and the shape of T , such that for all q ∈Pk(T ) and p ∈Pk(e), there hold

||ψT q||2L2(T ) ≤ ||q||
2
L2(T ) ≤ c1 ||ψ1/2

T q||2L2(T ) , (3.20)

||ψe p||2L2(e) ≤ ||p||
2
L2(e) ≤ c2 ||ψ1/2

e p||2L2(e) , (3.21)

c4 he ||p||2L2(e) ≤ ||ψ
1/2
e L(p)||2L2(T ) ≤ c3 he ||p||2L2(e) , (3.22)

Proof. See Lemma 4.1 in [21]. �

The following inverse estimate will also be useful.

Lemma 3.9. Let `,m ∈ N∪{0} such that ` ≤ m. Then, for any triangle T , there exists c > 0,
depending only on k, `,m and the shape of T , such that

|q|Hm(T ) ≤ ch`−m
T |q|H`(T ) ∀q ∈Pk(T ) . (3.23)

Proof. See Theorem 3.2.6 in [14]. �

Trends Comput. Appl. Math., 23, N. 3 (2022)
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Since f = div(σσσ) in Ω, we have that

|| f −div(σσσh)||L2(T ) = ||div(σσσ −σσσh)||L2(T ) .

Lemma 3.10. There exists C1 > 0, independent of the meshsize, such that for any T ∈Th

hT ||σσσh +∇uh||[L2(T )]2 ≤ C1

(
‖u−uh‖L2(T ) + hT ||σσσ −σσσh||[L2(T )]2

)
.

Proof. We introduce ρρρh := σσσh +∇uh in T . Then, taking into account the property (3.20) and
integrating by parts, we have

c−1
1 ||ρρρh||2[L2(T )]2 ≤ ||ψ

1/2
T ρρρh||2[L2(T )]2 =

∫
T
(σσσh +∇uh) ·ψT ρρρh

=
∫

T
σσσh ·ψT ρρρh +

∫
T

∇uh ·ψT ρρρh =
∫

T
σσσh ·ψT ρρρh−

∫
T

uh div(ψT ρρρh)

=
∫

T
(σσσh−σσσ) ·ψT ρρρh +

∫
T
(u−uh)div(ψT ρρρh) .

Now, applying Cauchy-Schwarz inequality as well as inverse inequality (3.23) and property
0≤ ψT ≤ 1, we derive

c−1
1 ||ρρρh||2[L2(T )]2 ≤

{
||σσσ −σσσh||[L2(T )]2 ||ψ

1/2
T ρρρh||[L2(T )]2

+ ||u−uh||L2(T )‖div(ψT ρρρh)‖[L2(T )]2

}
≤ ||σσσ −σσσh||[L2(T )]2 ||ρρρh||[L2(T )]2 +

√
2||u−uh||L2(T ) ||∇(ψT ρρρh)||[L2(T )]2×2

≤ C
{
||σσσ −σσσh||[L2(T )]2 +

√
2h−1

T ||u−uh||L2(T )

}
||ρρρh||[L2(T )]2 .

Hence, simplifying ||ρρρh||[L2(T )]2 and multiplying by the factor hT , we complete the proof of the
lemma. �

In the following lemma, we bound the jump of uh,

Lemma 3.11. There exists C2 > 0, independent of the mesh size, such that for any e ∈ EI

he||[[uh]]||2L2(e) ≤ C2

{
||u−uh||2L2(ωe)

+ ||σσσ −σσσh||2[L(ωe)]2

}
. (3.24)

Proof. First, given e ∈ EI we set ωe := T ∪ T ′, with T, T ′ ∈ Th such that e = ∂T ∩ ∂T ′.
Next, we introduce wh := [[uh]] on e and ρρρe := ψe L(wh)nnnT,e in ωe, which belongs to H(div,ωe).
Taking into account (3.21), knowing that [[u]] = 0 on EI , and integrating by parts, we derive

c−1
2 ||wh||2L2(e) ≤ ||ψ

1/2
e wh||2L2(e) =

∫
e
ψeL(wh)[[uh−u]] =

∫
e
[[uh−u]]ρρρe ·nnnT

=
∫

ωe

(uh−u)div(ρρρe) +
∫

ωe

∇h(uh−u) ·ρρρe

=
∫

ωe

(uh−u)div(ρρρe) +
∫

ωe

(σσσh +∇huh) ·ρρρe +
∫

ωe

(σσσ −σσσh) ·ρρρe .
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Using the fact that
∫

ωe
=
∫

T +
∫

T ′ and applying Cauchy-Schwarz inequality, we deduce

c−1
2 ||wh||2L2(e)

≤ ‖u−uh‖L2(T )‖div(ρρρe)‖L2(T )+‖u−uh‖L2(T ′)‖div(ρρρe)‖L2(T ′)

+‖σσσh +∇uh‖[L2(T )]2‖ρρρe‖[L2(T )]2 + ‖σσσh +∇uh‖[L2(T ′)]2‖ρρρe‖[L2(T ′)]2

+‖σσσ −σσσh‖[L2(T )]2‖ρρρe‖[L2(T )]2 + ‖σσσ −σσσh‖[L2(T ′)]2‖ρρρe‖[L2(T ′)]2 .

(3.25)

Now, invoking the inverse inequality (3.23) and knowing that 0 ≤ ψe ≤ 1 in ωe together with
(3.22), we arrive for each T ∈ ωe

‖div(ρρρe)‖L2(T ) ≤
√

2‖∇ρρρe‖[L2(T )]2×2 ≤ c
√

2h−1
T ‖ρρρe‖[L2(T )]2

= c
√

2h−1
T ‖ψ

1/2
e L(wh)‖L2(T ) ≤ cc3

√
2h−1/2

T ‖wh‖L2(e) .

This inequality, together with (3.22), allow us to rewrite (3.25) as follows: There exists c > 0
independent of mesh size, such that

c||wh||2L2(e) ≤
{

h−1/2
T ‖u−uh‖L2(T )+h−1/2

T ′ ‖u−uh‖L2(T ′)

+hT ‖σσσh +∇uh‖[L2(T )]2 + hT ′‖σσσh +∇uh‖[L2(T ′)]2

+hT‖σσσ −σσσh‖[L2(T )]2 + hT ′‖σσσ −σσσh‖[L2(T ′)]2

}
‖wh‖L2(e) .

Then the proof follows after multiplying by he, and applying Lemma 3.10. �

Lemma 3.12. There exists C3 > 0, independent of the meshsize, such that for any T ∈Th

hT ||rot(σσσh)||L2(T ) ≤ C3 ||σσσ −σσσh||[L2(T )]2 .

Proof. We introduce ρh := rot(σσσh) in T . Then, invoking the property (3.20), rot(σσσ) = 0 in T ,
and integrating by parts, we have

c−1
1 ||ρh||2L2(T ) ≤ ||ψ

1/2
T ρh||2[L2(T )]2 =

∫
T

rot(σσσh)ψT ρh

=
∫

T
rot(σσσh−σσσ)ψT ρh =

∫
T
(σσσh−σσσ) · curl(ψT ρh) .

Now, applying Cauchy-Schwarz inequality, as well as inverse inequality (3.23) and the fact that
0≤ ψT ≤ 1 in T , we derive

c−1
1 ||ρh||2[L2(T )]2 ≤ ||σσσ −σσσh||[L2(T )]2 ||curl(ψT ρh)||[L2(T )]2

= ||σσσ −σσσh||[L2(T )]2 ||∇(ψT ρh)||[L2(T )]2

≤C ||σσσ −σσσh||[L2(T )]2h−1
T ||ψT ρh||L2(T )

≤C h−1
T ||σσσ −σσσh||[L2(T )]2 ||ρh||L2(T ) .

Trends Comput. Appl. Math., 23, N. 3 (2022)
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Hence, simplifying ||ρh||[L2(T )]2 and multiplying by the factor hT , we complete the proof of the
lemma. �

The tangential component jump of σσσh is treated in the next lemma.

Lemma 3.13. There exists C4 > 0, independent of the mesh size, such that for any e ∈ EI

he||[[σσσh · ttt]]||2L2(e) ≤ C4 ||σσσ −σσσh||2[L(ωe)]2
. (3.26)

Proof. Given e ∈ EI , let T, T ′ ∈ Th such that ωe = T ∪T ′ and they share e, i.e. ∂T ∩ ∂T ′ = e.
Denoting by wh := [[σσσh · ttt]] on e, and using 3.21, it follows that

c−1
2 ||wh||2L2(e) ≤ ||ψ

1/2
e wh||2L2(e) =

∫
e
ψe L(wh) [[σσσh · ttt]]

=
∫

e
ψe L(wh)σσσh · tttT +

∫
e
ψe L(wh)σσσh · tttT ′

=−
∫

ωe

curl(ψeL(wh)) ·σσσh +
∫

ωe

ψeL(wh) rot(σσσh)

=
∫

ωe

curl(ψeL(wh)) · (σσσ −σσσh) +
∫

ωe

ψeL(wh) roth(σσσh) ,

(3.27)

where in the last equality we take into account∫
ωe

curl(ψeL(wh)) ·σσσ = −
∫

ωe

curl(ψeL(wh)) ·∇u =
∫

∂ωe

ψeL(wh)∇u · ttt = 0 .

In addition, realizing that
∫

ωe
=
∫

T +
∫

T ′ and applying Cauchy-Schwarz inequality, we deduce

c−1
2 ||wh||2L2(e) ≤ ‖curl(ψeL(wh))‖[L2(T )]2‖σσσ −σσσh‖[L2(T )]2

+‖ψeL(wh)‖L2(T )‖rot(σσσh)‖L2(T )

+‖curl(ψeL(wh))‖[L2(T ′)]2‖σσσ −σσσh‖[L2(T ′)]2

+‖ψeL(wh)‖L2(T ′)‖rot(σσσh)‖L2(T ′) .

(3.28)

Now, knowing that 0≤ ψ
1/2
e ≤ 1, and taking into account (3.22), for each T ∈Th, we deduce

‖ψeL(wh)‖L2(T ) ≤ c3h1/2
T ‖wh‖L2(e) . (3.29)

Now, the inverse inequality (3.23)), the fact that 0≤ψ
1/2
e ≤ 1 in ωe, together with (3.22)), implies

for each T ∈ ωe
‖curl(ψeL(wh))‖[L2(T )]2 = ‖∇(ψeL(wh))‖[L2(T )]2

≤ ch−1
T ‖ψeL(wh)‖L2(T ) ≤ ch−1

T ‖ψ
1/2
e L(wh)‖L2(T )

≤ cc3h−1/2
T ‖wh‖L2(e) .

(3.30)
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Inequalities (3.29) and (3.30) allow us to rewrite (3.28) as follows: There exists c> 0 independent
of meshsize, such that

c||wh||2L2(e) ≤
{

h−1/2
T ‖σσσ −σσσh‖[L2(T )]2 +h−1/2

T ′ ‖σσσ −σσσh‖[L2(T ′)]2

+ h1/2
T ‖rot(σσσh)‖L2(T ) + h1/2

T ′ ‖rot(σσσh)‖L2(T ′)

}
‖wh‖L2(e) .

Then, (3.26) follows after simplifying ||wh||L2(e), multiplying by h1/2
e and invoking Lemma 3.12.

�

Remark 3.14. The current a posteriori error analysis can be extended to three dimensions. To
this aim, we consider Ω a bounded and simply connected polyhedral domain in R3. Now, given
a partition Th of Ω made of tetrahedral, we take into account similar notations as the ones
introduced in Section 3, with face instead of edge. In addition, for any smooth enough vector
field ρρρ , respectively, we set curl(ρρρ) := ∇ × ρρρ , while the jump of tangential trace of ρρρ across
e ∈ Eh, by

[[nnn×ρρρ]] :=

{
nnnT,e×ρρρT,e + nnnT ′,e×ρρρT ′,e e ∈ EI ,

nnnT,e×ρρρT,e e ∈ EΓ ,

where T ,T ′ ∈ Th are the pair of tetrahedral sharing the face e ∈ EI . On the other hand, when
e∈ EΓ, by T ∈Th we refer to the unique element having e as a boundary face. Now, following the
ideas given in the proof of Lemma 3.3, and applying Theorem I.3.5 in [18], we can establish the
3D-version of the quasi-Helmholtz decomposition of functions belonging to H(div;Ω) presented
in Lemma 3.3, which in addition is also stable (invoking Theorem 2.1 in [13]). This means that
for any τττ ∈ H(div;Ω), there exist χχχ ∈ [H1(Ω)]3 and ΦΦΦ ∈ [H1

0 (Ω)]3, such that

τττ = curl(χχχ) + ΦΦΦ +
d
3

x1−a
x2−b
x3− c

 ,

where (a,b,c)t is any fixed point belonging to Ω, and d := 1
|Ω|
∫

Ω
div(τττ). In addition, there exists

C > 0, such that

|χχχ|2[H1(Ω)]3 + ||ΦΦΦ||
2
[H1(Ω)]3 ≤ C ||τττ||2H(div;Ω) .

Then, proceeding in analogous way as in Section 3, we prove a similar result to Theorem 3.2,
where the local a posteriori error estimator now reads as

η
2
T := || f +div(σσσh)||2[L2(T )]3 + h2

T ‖σσσh +∇uuuh‖2
[L2(T )]3 + h2

T ‖curl(σσσh)‖2
[L2(T )]3

+ ∑
e∈E(T )∩EI

{
he ‖[[uuuh]]‖2

[L2(e)]3 +he ‖[[nnn×σσσh]]‖2
[L2(e)]3

}
+ ∑

e∈E(T )∩EΓ

he ‖nnn× (σσσh + ∇ggg)‖2
[L2(e)]3 . (3.31)
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4 NUMERICAL EXAMPLE

In this section, we present one numerical example illustrating the performance of the dual mixed
method when applied to the Poisson problem, with Dirichlet condition, as well as of the cor-
responding adaptive procedure. We consider the lowest finite element RT 0(T )−P0(T ) for
our approximation. We remark that the computational implementation has been done using a
MATLAB code.

Hereafter, the number of degrees of freedom (unknowns) is given by N := number of edges +
number of elements, induced by the triangulation. Moreover, the involved individual and total er-

rors are defined as e0(u) := ‖u−uh‖L2(Ω), e(σσσ) :=
(
‖σσσ−σσσh‖2

[L2(Ω)]2 +‖div(σσσ−σσσh)‖2
L2(Ω)

)1/2

and e := (e0(u)2 + e(σσσ)2)1/2, where (σσσ ,u) ∈ H(div;Ω)×L2(Ω) and (σσσh,uh) ∈ Hσσσ
h,r×Hu

h,r are
the corresponding unique solutions of the continuous (2.1) and discrete (2.2) formulations. Ad-
ditionally, if e and e′′′ stand for the errors at two consecutive triangulations with N and N′ number
of degrees of freedom, respectively, we set the experimental rate of convergence of the global

error as r := −2
log(e/e′′′)

log(N/N′)
. We define r0(u) and r(σσσ) in analogous way.

The data f and g for our example, are chosen so that the exact solution is u(x,y) =
xy

(x+1.05)2 + y2 , and Ω := (−1,1)2\[0,1]2. We notice that in this case u has a singularity at

(−1.05,0), which does not belong to Ω, but it is very close to ∂Ω. Then, u has a numerical
singularity in a neighborhood of (−1,0) ∈ Γ.

Then, the purpose of this example, is to show the performance of the following adaptive algorithm
(cf. [22]). Given an a posteriori error estimator η := ∑

T∈Th

η
2
T :

1. Start with a coarse mesh Th.

2. Solve the Galerkin scheme for the current mesh Th.

3. Compute ηT for each triangle T ∈Th.

4. Consider stopping criterion and decide to finish or go to the next step.

5. Apply Blue-green procedure to refine each element T ′ ∈Th such that

ηT ′ ≥
1
2

max{ηT : T ∈Th} .

6. Define the resulting mesh as the new Th and go to step 2.

Table 1 reports the histories of convergence of the individual and total errors for a sequence of
uniform and adaptive refinements, respectively. We notice that the adaptive refinement algorithm
is able to recognize the numerical singularity, and then the induced sequence of adapted meshes
let us to improve the quality of approximation, better than the corresponding when uniform re-
finement is performed. In addition, we observe that index of efficiency e/η remains bounded,

Trends Comput. Appl. Math., 23, N. 3 (2022)
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indicating that η is reliable and efficient, despite the fact that g in this case is not piecewise poly-
nomial. Figure 1 displays some adapted meshes, generated by the proposed adaptive algorithm,
from which we observe that the numerical singularity is detected.

Table 1: History of convergence of Example provided, considering uniform (up) and adaptive
(bottom) refinements.

N e0(u) r0(u) e(σσσ) r(σσσ) e r η e/η

34 4.6846e-01 – 4.2795e+00 – 4.3051e+00 – 806.54 0.0053

128 3.8157e-01 0.3095 4.5340e+00 – 4.5500e+00 – 434.93 0.0105

496 2.3974e-01 0.6862 5.1609e+00 – 5.1665e+00 – 213.32 0.0242

1952 1.1636e-01 1.0552 4.5542e+00 0.1826 4.5557e+00 0.1837 103.90 0.0438

7744 5.4734e-02 1.0947 4.5472e+00 0.0022 4.5475e+00 0.0026 50.360 0.0903

30848 2.0412e-02 1.4272 3.4610e+00 0.3950 3.4611e+00 0.3951 23.629 0.1465

123136 5.4906e-03 1.8972 1.8229e+00 0.9264 1.8229e+00 0.9264 11.484 0.1587

34 4.6846e-01 – 4.2795e+00 – 4.3051e+00 – 806.54 0.0053

99 3.8166e-01 0.3835 4.5365e+00 – 4.5526e+00 – 434.93 0.0105

192 2.3979e-01 1.4034 5.2105e+00 – 5.2160e+00 – 213.28 0.0245

289 1.1864e-01 3.4415 4.7172e+00 0.4865 4.7187e+00 0.4901 103.90 0.0454

386 5.9916e-02 4.7210 4.8647e+00 – 4.8651e+00 – 50.740 0.0959

483 3.6723e-02 4.3672 4.1212e+00 1.4798 4.1213e+00 1.4802 25.579 0.1611

580 3.3800e-02 0.9067 3.2165e+00 2.7084 3.2167e+00 2.7083 17.125 0.1878

1021 3.2498e-02 0.1389 2.4170e+00 1.0106 2.4172e+00 1.0105 11.726 0.2061

1747 2.2408e-02 1.3843 1.8179e+00 1.0606 1.8181e+00 1.0607 8.7937 0.2067

3633 2.2308e-02 0.0122 1.2888e+00 0.9395 1.2890e+00 0.9393 6.0359 0.2136

7208 6.5209e-03 3.5904 8.8348e-01 1.1024 8.8350e-01 1.1027 4.2152 0.2096

14979 3.9386e-03 1.3786 6.3307e-01 0.9113 6.3309e-01 0.9113 2.9475 0.2148

29052 1.7638e-03 2.4257 4.4686e-01 1.0517 4.4687e-01 1.0517 2.1120 0.2116

56844 1.1159e-03 1.3639 3.2513e-01 0.9476 3.2513e-01 0.9476 1.5154 0.2146

114267 4.5185e-04 2.5896 2.2625e-01 1.0386 2.2625e-01 1.0386 1.0765 0.2102

219394 2.8879e-04 1.3725 1.6567e-01 0.9555 1.6567e-01 0.9555 0.7781 0.2129
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Figure 1: Adapted meshes corresponding (top-bottom, left-right) to 192, 386, 3633 and 29052
dofs, for Example considered, with Dirichlet boundary condition (based on η).
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CONCLUDING REMARKS

In this paper, we have developed an a posteriori error analysis for a dual mixed formulation of
Poisson problem in the plane, with non homogeneous Dirichlet boundary condition. By estab-
lishing a new kind of quasi-Helmholtz decomposition of functions in H(div;Ω) (cf. Lemma 3.3),
we are able to obtain an a posteriori error estimator, which consists of six residual terms, and
results to be reliable and locally efficient with respect to the error measured in its natural norm
on H(div;Ω)×L2(Ω). In this sense, we have generalized the results obtained in previous works
( [1], [10], for example), and without invoking the so called saturation assumption.

The results of numerical experiment, included in this work, are in agreement with our theoretical
analysis. Here, we notice that the estimator is able to help us to identify which part of the do-
main is localized the numerical singularity of the exact solution. As a consequence, the adaptive
algorithm, based on this estimator, let us to improve the quality of the approximation.

Finally, since Lemma 3.3 can be proved for 3d case too, the current work can be extended to 3d,
obtaining a reliable and locally efficient residual a posteriori error estimator, consisting also of
six residual terms (cf. (3.31)).
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