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ABSTRACT. In this work we obtain a variational formulation and a priori estimates for approximate
solutions of a problem involving fractional diffusion equations.
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1 INTRODUCTION

Fractional calculus has gained much prominence in recent decades, due to its applications in
different fields of science, in particular, engineering, providing several useful tools to solve dif-
ferential and integral equations and other problems involving special functions of mathematical
physics, in addition to their extensions and generalizations in one and more variables. Among
the various applications of fractional calculus we can cite the flow of a fluid, rheology, dynamic
processes in self-similar and porous structures, diffusive transport similar to diffusion, electrical
networks, probability and statistics, theory of control of dynamical systems and viscoelasticity
(see [6]).

Anomalous diffusion can be characterized by both Levy flights, mathematically represented by
the fractional Laplacian, as well as long rests, described by the time-fractional derivative. In this
case, the appropriate equation, according to Schneider and Wyss [9] and Metzler and Klafter [8],
is given by

ut +D1−α
t (−∆)γ u = 0, (1.1)
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674 A PRIORI ESTIMATES FOR THE GALERKIN METHOD

where γ ∈ (0,1) and Dβ

t ϕ denotes the fractional derivative of ϕ of order β > 0 in the Riemann-
Liouville sense, that is, α ∈ (0,1) (see Definition 2.2). In this way, the equation (1.1) can be
rewritten as the equation

ut +∂t

∫ t

0
gα(t− s)(−∆)γ u(s)ds = 0, (1.2)

where gα is the function defined in (1.4).

Let us discuss the following problem for a fractional diffusion equation
ut +∂t(gα ∗ (−∆)γ u) = f , Ω× [0,T ],
u = 0, ∂Ω× [0,T ],
u(x,0) = u0(x), Ω,

(1.3)

where 0 < α < 1, T > 0, 0 < γ < 1, Ω is a smooth bounded domain of Rn, ∗ denotes the
convolution product and gα is the Gel’fand Shilov function defined by

gα(t) =

{
tα−1

Γ(α) , t > 0,

0, t ≤ 0,
(1.4)

where Γ is the Euler gamma function. The function f belongs to L1(0,T ;L2) and also to
L∞(0,T ;L2). Furthermore, the fractional Laplacian operator can be defined in its spectral form
by (see section 2.5.1 of [7]):

(−∆)γ u(x) :=
∞

∑
k=1

λ
γ

k (u,ek)L2(Ω) ek(x), (1.5)

where γ ∈ (0,1), λk are eigenvalues, and ek are eigenfunctions of (−∆) with Dirichlet boundary
conditions, that is,

−∆ek = λkek, in Ω,

ek = 0, on ∂Ω.

Fractional-order diffusion equations describe anomalous diffusion phenomena, which help in the
analysis of systems such as: plasma diffusion, fractal diffusion, anomalous diffusion on liquid
surfaces, analysis of heart beat histograms in healthy individuals, among other physical systems
(see [1] and [2]).

For the variational formulation of the problem we will use the integral form of Problem (1.3),
given by {

u = u0−gα ∗ (−∆)γ u+1∗ f = 0, Ω× [0,T ],
u = 0, ∂Ω× [0,T ],

(1.6)

We will give the variational formulation and prove a priori estimates for the approximate so-
lutions of the integral equation (1.6). Those results are useful to apply the Galerkin method
(see [4]), which consists of finding approximate solutions to the problem, projecting it into finite-
dimensional subspaces, dealing with fractional-order linear differential equations with initial
values.

Trends Comput. Appl. Math., 23, N. 4 (2022)
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2 PRELIMINARIES

In this section we present some definitions and notations for the present work.

Definition 2.1. Let Ω = [a,b] (−∞ < a < b < ∞) be a finite interval over R. Riemann-Liouville
fractional integrals, Iα

a+ of order α ∈ R (α > 0) are given by:

(Iα

a+ f )(t) =
1

Γ(α)

∫ t

a
(t− s)α−1 f (s)ds, t > a,

where Γ(α) is the gamma function and f ∈ L1[a,b].

Definition 2.2. Riemann-Liouville fractional derivatives, Dα

a+ of order α ∈ R (α > 0) is given
by

(Dα

a+ f )(t) =
(

d
dt

)n

(In−α

a+ f )(t), (n = [α]+1, t > a),

where [α] means the integer part of α and f : I→ R. We take n = α , if α ∈ N0.

Definition 2.3. Caputo fractional derivative of order α , on an interval [a,b]⊂ R, is given by

(cDα

a+ϕ)(t) :=

[
Dα

a+

(
ϕ(s)−

n−1

∑
k=0

ϕ(k)(a)
k!

(s−a)k

)]
(t),

where n = [α]+1 if α /∈ N0 and n = α , if α ∈ N0.

Note that the Problem (1.3) can be rewritten as
ut +D1−α

t (−∆x)
γ u = f , Ω× [0,T ],

u(x,0) = u0(x), Ω.

(2.1)

Where 0 < γ < 1 and 0 < α < 1. In fact, since 0 < α < 1 and 1−α < 1, we have to

D1−α
t [(−∆)γ u] = ∂t (gα ∗ (−∆)γ u) .

We will use the following spaces L∞(0,T ;L2(Ω)), L2(0,T ;Hγ(Ω)) and L1(0,T ;L2(Ω)), where
Ω is an open on Rn. We remember that Lp(Ω) is the space of all measurable functions f : Ω→R,
with ∥ f∥Lp(Ω) < ∞ such that

∥ f∥Lp(Ω) :=

{
(
∫

Ω
| f |pdx)1/p , if 1≤ p < ∞,

esssupΩ | f |, if p = ∞.
(2.2)

Definition 2.4. Let X a Banach space. The space Lp(0,T ;X) consists of all measurable functions

u : (0,T )→ X

Trends Comput. Appl. Math., 23, N. 4 (2022)
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with

∥u∥Lp(0,T ;X) =

(∫ T

0
∥u(t)∥p

X dt
)1/p

< ∞

for 1≤ p < ∞, and
∥u∥L∞(0,T ;X) = sup

t∈(0,T )
∥u(t)∥X < ∞.

For simplicity, we sometimes denote Lp(0,T ;Lp(Ω)) by Lp(0,T ;Lp). Furthermore, we denote
the inner product in L2 by (·, ·) and in Hγ by (·, ·)Hγ .

The fractional Sobolev space Hγ is a Hilbert space and is defined below.

Definition 2.5 (Definition A.5, [7]). For any γ ≥ 0

Hγ(Ω) :=

{
u =

∞

∑
k=1

ukek ∈ L2(Ω) : ∥u∥2
Hγ (Ω) :=

∞

∑
k=1

λ
γ

k u2
k < ∞

}
, (2.3)

where (λk,ek) are the eigenvalues and their respective eigenvectors of (−∆) with Dirichlet
boundary conditions, whose norm coincides with ∥(−∆)γ/2u∥L2 , according to equation (1.5).

Before we present Theorem 2.1 we need the following definitions.

Definition 2.6. Let A ∈Mn(R), z ∈C and α > 0. We define the matrix α-exponential function by

eAz
α := zα−1

∞

∑
k=0

Ak zαk

Γ[(k+1)α]
.

Definition 2.7. A weighted space of continuous functions is of the form

Cn−α [a,b] =
{

g(t) : (t−a)n−α g(t) ∈C[a,b],∥g∥Cn−α =
∥∥(t−a)n−α g(t)

∥∥
C

}
.

We use the following existence and uniqueness theorem for a Cauchy problem of a fractional
matrix equation with a Caputo derivative (see [6]).

Theorem 2.1 (Theorem 7.14, [6]). The following initial value problem

(cDα

a+Y )(x) = AY (x)+B(x), (2.4)

Y (a) = b, (b ∈ Rn), (2.5)

where A ∈Mn(R) and B ∈C1−α([a,b]), has a single continuous solution given by

Y =
∫ x

a
eA

α(x−ξ )[B(ξ )+Ab]dξ +b. (2.6)

Also, we need the following result which can be found in [3] and references therein.

Trends Comput. Appl. Math., 23, N. 4 (2022)
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Theorem 2.2. Let (H,(·, ·)) be a real Hilbert space, f ∈ L2(0,T ;H) and α ∈ (0,1). Then∫ T

0
( f (t),gα ∗ f (t))dt ≥ 0. (2.7)

Lemma 2.1 (Lemma 2.22, [6]). Let α > 0 and let n be given by n = [α]+1, if α /∈N and n = α ,
if α ∈ N0. If y(x) ∈ ACn[a,b] or y(x) ∈Cn[a,b], then

(
Iα

a+
cDα

a+y
)
(x) = y(x)−

n−1

∑
k=0

y(k)(a)
k!

(x−a)k (2.8)

In particular, if 0 < α < 1 and y(x) ∈ AC[a,b] or y(x) ∈C[a,b], then(
Iα

a+
cDα

a+y
)
(x) = y(x)− y(a). (2.9)

Definition 2.8. We define the Sobolev space

H1
1,loc(R+) := {ϕ ∈ L1

loc(R+);ϕ
′ ∈ L1

loc(R+)}. (2.10)

Lemma 2.2 (Lemma 6.2, [5]). Let T > 0 and Ω ⊂ Rd be an open set. Let k ∈ H1
1,loc(R+) be

nonnegative and nonincreasing function. Then for any v ∈ L2((0,T )×Ω) and any v0 ∈ L2(Ω)

there holds ∫
Ω

v∂t(k ∗ [v− v0])dx≥ |v(t)|L2(Ω)∂t

(
k ∗
[
|v|L2(Ω)−|v0|L2(Ω)

])
(t),

for each t ∈ (0,T ).

3 MAIN RESULTS

In this section, we obtain the variational formulation and a priori estimates for the approximate
solutions of Problem (1.3). Here, we perform formal calculations so that u is considered as regular
as necessary.

3.1 Variational formulation

For the variational formulation we will use the integral form of Problem (1.3), given by

u = u0−gα ∗ (−∆)γ u+1∗ f , (3.1)

as long as the fractional Laplacian applied to u is continuous, where u = 0 on the boundary of Ω

and γ ∈ (0,1). Multiplying (3.1) by v ∈ Hγ such that v = v(x) and, integrating over Ω, we have∫
Ω

uvdx =
∫

Ω

u0vdx−
∫

Ω

(gα ∗ (−∆)γ u)vdx+
∫

Ω

(1∗ f )vdx . (3.2)

Trends Comput. Appl. Math., 23, N. 4 (2022)
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Thus, using Fubini theorem and knowing that the fractional Laplacian is self-adjoint on L2, in
addition to having the semigroup property, we obtain∫

Ω

(gα ∗ (−∆)γ u)vdx =
∫ t

0
gα(t− s)

∫
Ω

(−∆)γ u(s,x)v(x)dxds

=
∫ t

0
gα(t− s)

∫
Ω

(−∆)
γ

2 u(s,x)(−∆)
γ

2 v(x)dxds

=
∫

Ω

(∫ t

0
gα(t− s)(−∆)

γ

2 u(s,x)ds
)
(−∆)

γ

2 v(x)dx

= (gα ∗ (−∆)
γ

2 u,(−∆)
γ

2 v).

Thus, it follows from equation (3.2) that

(uuu,v) = (u0,v)− (gα ∗ (−∆)
γ

2 u,(−∆)
γ

2 v)+(1∗ f ,v) (3.3)

or
(uuu,v) = (u0,v)− (gα ∗u,v)Hγ +(1∗ f ,v), (3.4)

where the equation (3.4) gives us the variational form of the problem. We denote (gα ∗u,v)Hγ by
B[u,v; t]. Now, let us build the approximate solutions. For this, consider a base {vk}k orthogonal
to Hγ that is orthonormal to L2(Ω).

For every natural number m, consider the vector subspace

V m = [v1, · · · ,vm]

and,

um(t) =
m

∑
j=1

β
j

m(t)v j, (3.5)

where we must determine the coefficients β
j

m(t)(0≤ t ≤ T and j = 1, · · · ,m) such that

β
j

m(0) = (u0,v j) j = 1, · · · ,m (3.6)

and
(um,v j) = β

j
m(0)−B[um,v j; t]+ (1∗ f ,v j) . (3.7)

Theorem 3.3. If f ∈ L∞(0,T ;L2), then for every integer m = 1,2, · · · , there is a single
differentiable function um, given by (3.5), satisfying equations (3.6) and (3.7).

Proof. Suppose um has the form equation (3.5). The proof consists in to show the existence and
uniqueness of β

j
m(t). So,

(um,vk) =

(
m

∑
j=1

β
j

m(t)v j,vk

)
= β

k
m(t),

Trends Comput. Appl. Math., 23, N. 4 (2022)



i
i

“A5-1678-9698” — 2022/10/11 — 18:13 — page 679 — #7 i
i

i
i

i
i

M. E. DE S. LIMA, E. C. DE OLIVEIRA and A. DA C. VIANA 679

because {v j} j is orthonomal. Furthermore,

B[um,vk; t] = (gα ∗ (−∆)
γ

2 um,(−∆)
γ

2 vk) = gα ∗ ((−∆)
γ

2

m

∑
j=1

β
j

m(t)v j,(−∆)
γ

2 vk)

= gα ∗ (
m

∑
j=1

β
j

m(t)(−∆)
γ

2 v j,(−∆)
γ

2 vk) =
m

∑
j=1

(gα ∗β
j

m)(t)(v j,vk)Hγ

=
m

∑
j=1

(gα ∗β
j

m)(t)e
jk,

where e jk = (v j,vk)Hγ . Define f k(t) = (1∗ f (t),vk). So, from equation (3.7), we have

β
k
m(t)−β

j
m(0)+

m

∑
j=1

e jk(gα ∗β
j

m)(t) = f k(t). (3.8)

Let X =


β 1

m(t)
...

β n
m(t)

, X0 =


β 1

m(0)
...

β n
m(0)

, A = [ei j] and F =


( f ,v1)

...
( f ,vm)

.

We can rewrite (3.8) in the following matrix form

X−X0 +gα ∗ (AX) = 1∗F, (3.9)

So, equation (3.9) can be rewritten as

g1−α ∗ (X−X0)+1∗ (AX) = 1∗g1−α ∗F ⇒c Dα X +AX = g1−α ∗F .

Thus, by hypothesis, as f ∈ L∞(0,T ;L2), it follows that g1−α ∗F ∈C1−α([0,T ]). Therefore, by
Theorem 2.1, it follows the existence and uniqueness of β

j
m. □

3.2 A priori estimates

In this section we prove a priori estimates given by the following theorem.

Theorem 3.4. Let α ∈ (0,1). If f ∈ L1(0,T ;L2), then

∥um∥L∞(0,T ;L2) ≤ ∥u0m∥L2 +∥ f∥L1(0,T ;L2). (3.10)

If, additionally, f ∈ L∞(0,T ;L2), then

∥um∥L1(0,T ;Hγ ) ≤
T 1−α

cΓ(2−α)
∥u0m∥L2 +

T
3−α

2

cΓ(2−α)
1
2
∥ f∥L∞(0,T ;L2). (3.11)

Proof. Since um is the function defined in (3.5) and guaranteed by Theorem 3.3, we multiply
equation (3.7) by β

j
m and sum with j running from 1 to m, to get

∥um∥2
L2 = (u0m,um)− (gα ∗um,um)Hγ +(1∗ f ,um)L2 . (3.12)

Trends Comput. Appl. Math., 23, N. 4 (2022)
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We note that um ∈ L2(0,T ;Hγ). In fact, looking at the expression (3.5) we can infer that

∥um(t)∥2
L2(0,T ;Hγ ) ≤

m

∑
j=1

∫ T

0
∥β j

m(t)v j(·)∥2
Hγ dt ≤

m

∑
j=1

∫ T

0
|β j

m(t)|2 dt∥v j∥Hγ

=
m

∑
j=1
∥β j

m(t)∥2
L2(0,T )∥v j∥Hγ < ∞ ,

since β
j

m ∈ L2(0,T ), v j ∈ Hγ and the sum is finite. So, by Theorem 2.2, we have

(gα ∗um,um)Hγ ≥ 0.

It follows from this and from equation (3.12) that

∥um∥2
L2 ≤ (u0m,um)L2 +(1∗ f ,um)L2 ≤ ∥u0m∥L2∥um∥L2 +∥ f∥L1(0,T ;L2)∥um∥L2 ,

where we have used Hölder inequality and Minkowski integral inequality. Hence,

∥um(t)∥L2 ≤ ∥u0m∥L2 +∥ f∥L1(0,T ;L2). (3.13)

This proves (3.10). For the proof of estimate (3.11) let us observe that

u = u0−gα ∗ (−∆)γ u+1∗ f ⇒c Dα
t u =−(−∆)γ u+g1−α ∗ f , (3.14)

so that,
(cDα

t u,u)+∥u∥2
Hγ = (g1−α ∗ f ,u). (3.15)

But, putting k = g1−α in Lemma 2.2, we have

(cDα
t u,u)≥ ∥u∥L2

cDα
t ∥u∥L2 , (3.16)

with u ∈ L2(0,T ).

By estimating (3.10), it is immediate to see that um ∈ L2(0,T ;L2). So (3.16) holds for um.
Therefore, (3.15) gives us

∥um∥L2
cDα

t ∥um∥L2 +∥um∥2
Hγ ≤ ∥g1−α ∗ f∥L2∥um∥L2 . (3.17)

From the continuous inclusion L2 ←↩ Hγ , it follows that there is a constant c > 0 such that
c∥um∥L2 ≤ ∥um∥Hγ . Therefore,

c∥um∥L2

[
1
c

cDα
t ∥um∥L2 +∥um∥Hγ

]
≤ ∥g1−α ∗ f∥L2∥um∥L2 , (3.18)

implying
cDα

t ∥um∥L2 + c∥um∥Hγ ≤ ∥g1−α ∗ f∥L2 . (3.19)

Trends Comput. Appl. Math., 23, N. 4 (2022)
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Applying Iα

0+ to (3.19), we have by Lemma 2.1

∥um∥L2 −∥u0m∥L2 + cgα ∗∥um∥Hγ ≤ gα ∗∥g1−α ∗ f∥L2 , (3.20)

implying

gα ∗∥um∥Hγ ≤ 1
c
[∥u0m∥L2 +gα ∗∥g1−α ∗ f∥L2 ] . (3.21)

Using Minkowski integral inequality, we can estimate ∥g1−α ∗ f∥L2 . In fact,

∥g1−α ∗ f∥2
L2 =

∫
Ω

∣∣∣∣∫ t

0
g1−α(t− s) f (s,x)ds

∣∣∣∣2 dx

≤
∫

Ω

∫ t

0
| f (s,x)|2 dg2−α(t− s)dx

≤
∫ t

0
g1−α(t− s)ds∥ f∥2

L∞(0,T ;L2)

=
t1−α

Γ(2−α)
∥ f∥2

L∞(0,T ;L2)

≤ T 1−α

Γ(2−α)
∥ f∥2

L∞(0,T ;L2),

for t ∈ (0,T ). Then, we can write

∥g1−α ∗ f∥L2 ≤
T (1−α)/2

Γ(2−α)1/2 ∥ f∥L∞(0,T ;L2). (3.22)

So, applying g1−α to (3.21), we have

∥um∥L1(0,T ;Hγ ) ≤
T 1−α

cΓ(2−α)
∥u0m∥L2 +

T
3−α

2

cΓ(2−α)
1
2
∥ f∥L∞(0,T ;L2), (3.23)

which is the desired result. □

4 CONCLUDING REMARKS

In this work we obtained the variational formulation and an estimate a priori of Problem (2.1),
results that will help us to apply Galerkin’s method and enable us to prove the existence and
uniqueness of the solution to Problem (2.1). Later, we will investigate the existence of global
solutions and their stability. Also, one will be able to implement numerical simulations.

Trends Comput. Appl. Math., 23, N. 4 (2022)
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