SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Article References

SOUSA, B. A.  and  CORREIA, R. T. P.. Phenolic content, antioxidant activity and antiamylolytic activity of extracts obtained from bioprocessed pineapple and guava wastes. Braz. J. Chem. Eng. [online]. 2012, vol.29, n.1, pp. 25-30. ISSN 0104-6632.  http://dx.doi.org/10.1590/S0104-66322012000100003.

    Aguilera-Carbo, A., Hernández, J., Augur, C., Prado-Barragan, L., Favela-Torres, E. and Aguilar, C., Ellagic acid production from biodegradation of creosote bush ellagitannins by Aspergillus niger in solid state culture. Food and Bioprocess Technology, 2, no. 2, p. 208-212(2009). [ Links ]

    Apostolidis, E., Kwon, Y. and Shetty, K., Inhibitory potential of herb, fruit and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Innovative Science Emerging Technology, 8, no.1, p. 46-54(2007). [ Links ]

    Bocco, A., Cuvelier, M., Richard, H. and Berset, C., Antioxidant activity and phenolic composition of citrus peel and seed extracts. Journal Agricultural and Food Chemistry, 46, no. 6, p. 2123-2129(1998). [ Links ]

    Cheplik, S., Kwon, Y., Bhowmik, P. and Shetty, K., Phenolic-linked variation in strawberry cultivars for potential dietary management of hyperglycemia and related complications of hypertension. Bioresource Technology 101, no.1, p. 404-413(2010). [ Links ]

    Correia, R. T., McCue, P., Magalhães, M. M., Macêdo, G. and Shetty, K., Production of phenolic antioxidants by the solid-state bioconversion of pineapple waste mixed with soy flour using Rhizopus oligosporus. Process. Biochemistry, 39, no. 12, p. 2167-2172 (2004). [ Links ]

    Cruz, J. M., Dominguez, J. M., Dominguez, H. and Parajo, J. C., Antioxidant and antimicrobial effects of extracts from hydrolysates of lignocellulosic materials. Journal Agricultural Food Chemistry, 49, no. 5, p. 2459-2464 (2001). [ Links ]

    FAOSTAT, Food and Agriculture Organization of the United Nations Database. Available at www.faostat.fao.org. (Accessed in November 2010). [ Links ]

    Hounsome, N., Hounsome, B., Tomos, D. and Edward-Jones, G., Plant metabolites and nutritional quality of vegetables. Journal of Food Science, 73, no. 4, p. R48-R65 (2008). [ Links ]

    Kaur, C. and Kapoor, H., Antioxidants in fruits and vegetables - the millennium's health, International. Journal Food Science Technology, 36, no. 7, p. 703-725 (2001). [ Links ]

    Kim, Y., Jeong, Y., Wang, M., Lee, W. and Rhee, H., Inhibitory effect of pine extracts on α-glucosidase activity and postprandial hyperglycemia. Nutrition, 21, no. 6, p. 756-761 (2005). [ Links ]

    Kwon, Y., Vattem, D. and Shetty, K., Clonal herbs of Laminaceae species against diabetes and hypertension. Asia Pacific Journal Clinical Nutrition, 15, no. 1, p. 107-118 (2006). [ Links ]

    Kwon, Y., Apostolidis, E. and Shetty, K., Inhibitory potential of wine and tea against α-amylase and α-glucosidase for management of hyperglycemia linked to type 2 diabetes. Journal of Food Biochemistry, 32, no. 1, p. 15-31 (2008). [ Links ]

    Lunceford, N. and Gugliucci, A., Ilex paraguariensis extracts inhibit AGE formation more efficiently than green tea. Fitoterapia, 76, no. 5, p. 419-427(2005). [ Links ]

    Mantovani, J., Correa, M., Cruz, M., Ferreira, M., Natale, W., Uso como fertilizante do resíduo de processamento de goiabas. Revista Brasileira de Fruticultura, 26, no. 2, p. 339-342(2004). [ Links ]

    McCue, P. and Shetty, K., A model for the involvement of lignin degradation enzymes in phenolic antioxidant mobilization from whole soybean during solid-state bioprocessing by Lentinus edodes. Process Biochemistry, 40, no. 34, p. 1143-1150(2005). [ Links ]

    McCue, P. and Shetty, K., Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro. Asia Pacific Journal Clinical Nutrition, 13, no. 1, p. 101-106 (2004). [ Links ]

    Morton, L., Caccetta, R., Puddey, I. and Croft, K., Chemistry and biological effects of dietary phenolic compounds: relevance to cardiovascular disease. Clinical Experimental Pharmacology Physiology, 27, no. 3, p. 152-159 (2000). [ Links ]

    Naczk, M. and Shahidi, F., Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis, 41, no. 5, p. 1523-1542(2006). [ Links ]

    Randhir, R. and Shetty, K., Mung beans processed by solid-state bioconversion improves phenolic content and functionality relevant for diabetes and ulcer management. Innovative Science Emerging Technology, 8, no. 2, p. 197-204(2007). [ Links ]

    Randhir, R., Kwon, Y. and Shetty, K., Effect of thermal processing on phenolics antioxidant activity and health-relevant functionality of select grain sprouts and seedlings. Innovative Science Emerging Technology, 9, no. 3, p. 355-364(2008). [ Links ]

    Rogério, M., Borges, V., Neiva, J., Rodriguez, N. and Pimentel, J., Valor nutritivo de resíduo de abacaxi. 1. Consumo, digestibilidade, balances enérgetico e nitrogenados. Arquivo Brasileiro Medicina Veterinária Zootecnia, 59, no. 3, p. 773-781 (2007). [ Links ]

    Rohn, S., Rawel, M. and Kroll, J., Inhibitory effects of plant phenols on the activity of selected enzymes. Journal Agricultural Food Chemistry, 50, no. 12, p. 3566-3571 (2002). [ Links ]

    Torres de Pinedo, A., Penalver, P. and Morales, J. C., Synthesis and evaluation of new phenolic-based antioxidants: Structure-activity relationship. Food Chemistry, 103, no. 1, p. 55-61(2007). [ Links ]

    Youdim, K. and Joseph, J., A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: a multiplicity of effects. Free Radical Biology Medicine, 30, no. 6, p. 583-594(2001). [ Links ]

    Vattem, D. and Shetty, K., Solid-state production of phenolic antioxidants from cranberry pomace by Rhizopus oligosporus. Food Biotechnology, 16, no. 3, p. 189-210 (2002). [ Links ]

    Zheng, W. and Wang, S. Y., Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. Journal Agricultural and Food Chemistry, 51, no.2, p. 502-509 (2003). [ Links ]

    Zheng, Z. and Shetty, K., Solid state fermentation and value-added utilization of fruit and vegetable processing by-products. In: Wiley Encyclopedia of Food Science and Technology, 2nd Edition, Edited by F.J. Francis, Wiley Publishers, NY, p. 2165-2174(1999). [ Links ]