SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Article References

ROCHA JUNIOR, Adeir Moreira et al. Modulação da proliferação fibroblástica e da resposta inflamatória pela terapia a laser de baixa intensidade no processo de reparo tecidual. An. Bras. Dermatol. [online]. 2006, vol.81, n.2, pp.150-156. ISSN 0365-0596.

    1. Thomas DW, Oneill ID, Harding KG. Cutaneous wound healing: a current perspective. J Oral Maxillofac Surg. 1995;53:442-7. [ Links ]

    2. Rochkind S, Rousso M, Nissan M. Systemic effects of low-power laser irradiation on the peripheral and central nervous system, cutaneous wounds, and burns. Lasers Surg Med. 1989;9:174-8. [ Links ]

    3. Shal WJ, Clever H. Cutaneous Scars: Part I. Int J Dermatol. 1994;33:681-91. [ Links ]

    4. Clark RAF. Cutaneous tissue repair: basic biologic considerations. J Am Acad Dermatol. 1985;13:701-25. [ Links ]

    5. Scharffetter K, Kulozik M, Stolz W, Lankat-Buttgereit B, Hatamochi A, Sohnchen R, et al. Localization of collagen alpha-1 (I) gene expression during wound healing by in situ hybridyzation. J Invest Dermatol. 1989;93:405-12. [ Links ]

    6. Zitelli J. Wound healing for the clinician. Adv Dermatol. 1989;2:243-67. [ Links ]

    7. Vinck EM, Cagnie BJ, Cornelissen MJ, Declereq HA, Cambier DC. Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. Lasers Med Sci. 2003;18:95-9. [ Links ]

    8. Lucas C, Stanborough RW, Freeman CL, Haan de RJ. Efficacy of low level laser therapy on wound healing in human subjects: a systematic review. Lasers Med Sci. 2000;15:81-93. [ Links ]

    9. Nussbaum EL, Biemann I, Mustard B. Comparasion of ultrasound/ultraviolect-c and laser for treatment of pressure ulcers in patients with spinal cord injury. Phys Ther. 1994;74:812-23. [ Links ]

    10. Iusim M, Kimchy J, Pilar T, Mendes DG. Evaluation of the degree of effectiveness of biobeam low level narrow band light on the treatment of skin ulcers and delayed postoperative wound healing. Orthopedics. 1992;15:1023-6. [ Links ]

    11. Bihari I, Mester AR. The biostimulative effect of low level laser therapy of longstanding crural ulcers using helium neon laser, helium neon plus infrared lasers, and noncoherent light: preliminary report of a randomized double blind comparative study. Laser Ther. 1989;1:75-8. [ Links ]

    12. Chromey PA. The efficacy of carbon dioxide laser surgery for adjunct ulcer therapy. Clin Podiatr Med Surg. 1992;9:709-19. [ Links ]

    13. Sugrue ME, Carola NJ, Leen EJ, Feeley TM, Moore DJ, Shabik GD. The use of infrared laser therapy in the treatment of venous ulceration. Ann Vasc Surg. 1990;4:179-81. [ Links ]

    14. Abergel RP, Meeker CA, Lam TS, Dwyer RM, Dwyer RM, Lesavoy MA, et al. Control of connective tissue metabolism by lasers: recent developments and future prospects. J Am Acad Dermatol. 1984;11:1142-50. [ Links ]

    15. Haas AF, Isseroff RR, Wheeland RG, Rood PA, Graves PJ. Low-energy helium-neon laser irradiation increases the motility of human keratinocytes. J Invest Dermatol. 1990;94:822-6. [ Links ]

    16. Yu W. The effects of photo-irradiation on the secretion of TGF and PDGF from fibroblast in vitro. Lasers Surg Med Suppl. 1994;6:8. [ Links ]

    17. Pourreau-Schneider N, Ahmed A, Soudry M, Jacquemier J, Kopp F, Franquin JC, et al. Helium-neon laser treatment transforms fibroblasts into myofibroblasts. Am J Pathol. 1990;137:171-8. [ Links ]

    18. Gogia PP, Hurt BS, Zirn TT. Wound management with whirlpool and infrared cold laser treatment: a clinical report. Phys Ther. 1988;68:1239-42. [ Links ]

    19. Lundeberg T, Malm M. Low-power He-Ne laser treatment of venous leg ulcers. Ann Plast Surg. 1991;27:537-9. [ Links ]

    20. Allendorf JD, Bessler M, Huang J, Kayton ML, Laird D, Nowygrod R, et al. Helium-neon laser irradiation at fluences of 1, 2, and 4J/cm2 failed to accelerate wound healing as assessed by wound contrature rate and tensile strength. Lasers Surg Med. 1997;20:340-5. [ Links ]

    21. Dyson M, Yong S. Effects of laser therapy on wound contraction and cellularity in mice. Lasers Med Sci. 1986;1:126-30. [ Links ]

    22. Mester AF, Jaszsagi-Nag IE. The effect of laser radiation on wound healing and collagen synthesis. Studia Biophys. 1973; 35:227-30. [ Links ]

    23. Saperia D, Glassberg E, Lyons RF, Abergel RP, Baneux P, Castel JC, et al. Demonstration of elevated type I and type II procollagen mRNA levels in cutaneous wounds treated with helium-neonlaser: proposed mechanism for enhanced wound healing. Biochem Biophis Res Commun. 1989;138:1123-8. [ Links ]

    24. Lucas C, Gemert MJC, Haan RJ. Efficacy of low-level laser therapy in the management of stage III decubitus ulcers: a prospective, observer-blinded multicentre randomised clinical trial. Lasers Med Sci. 2003;18:72-7. [ Links ]

    25. Schindl A, Schindl M, Pernerstorfer-Schon H, Schindl L. Low-intensity laser therapy: a review. J Med Invest. 2000;48:312-26. [ Links ]

    26. Gomez-Villamandos RJ, Valenzuela JMS, Calatrava IR. HeNe laser therapy by fibroendoscopy in the mucosa of the equine upper airway. Lasers Surg Med. 1995;16:184-8. [ Links ]

    27. Byrnes KR, Barna L, Chenault VM, Waynant RW, Ilev IK, Longo L, et al. Photobiomodulation improves cutaneous wound healing in na animal model of type II diabetes. Photomed Laser Surg. 2004;22:281-90. [ Links ]

    28. Bisht D, Grupta SC, Misra V. Effects of low intensity laser radiation on healing of open skin wounds in rats. Indian J Med Res. 1994;100:43-6. [ Links ]