SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Article References

BARBOSA, João Paulo Rodrigues Alves Delfino et al. Plant physiological ecology and the global changes. Ciênc. agrotec. [online]. 2012, vol.36, n.3, pp. 253-269. ISSN 1413-7054.  http://dx.doi.org/10.1590/S1413-70542012000300001.

    AVISSAR, R. Preface to special issue on the large-scale biosphere-a tmosphere experiment in Amazonia (LBA). Journal of Geophysical Research, Washington, v. 107, n. D20, p. 1-2, Oct. 2002. [ Links ]

    BALDÍ, G.; GUERSCHMAN, J. P.; PARUELO, J. M. Characterizing fragmentation in temperate South America grasslands. Agriculture, Ecosystems and Environment, Amsterdam, v. 116, n. 3-4, p. 197-208, Sept. 2006. [ Links ]

    BEERLING, D. J.; OSBORNE, C. P. The origin of the savanna biome. Global Change Biology, Oxford, v. 12, n. 11, p. 2023-2031, Nov. 2006. [ Links ]

    BERRY, J.A.; BEERLING, D.J.; FRANKS, P.J. Stomata: key players in the earth system, past and present. Current Opinion in Plant Biology, Amsterdam, v. 13, n. 3, p. 233-240, Jun. 2010. [ Links ]

    BONAN, G.B. Forests and climate change: forcings, feedbacks, and climate benefits of forests. Science, Washington, v. 320, n. 5882, p. 1444-1449, Jun 2008. [ Links ]

    BOND, W. J.; WOODWARD, F. I.; MIDGLEY, G. F. The global distribution of ecosystems in a world without fire. New Phytologist, Oxford, v.165, n. 2, p. 525-538, Feb. 2005. [ Links ]

    BOWMAN, D.M.J.S. et al. Fire in the Earth system. Science, New York, v. 324, n. 5926, p. 481-484, Apr. 2009. [ Links ]

    CARPENTER, S. et al. From metaphor to measurement: resilience of what to what? Ecosystems, Berlin, v. 4, n. 8, p. 765-781, Dec. 2001. [ Links ]

    CASTRILLO, M. Sucrose metabolism in bean plants under water deficit. Journal of Experimental Botany, Oxford, v. 43, n. 12, p. 1557 - 1561, Dec. 1992. [ Links ]

    CERNUSAK, L. A. et al. Stem and leaf gas exchange and their responses to fire in a north Australian tropical savanna. Plant, Cell and Environment, Washington, v. 29, n. 4, p. 632-646, Apr. 2006. [ Links ]

    CHAMBERS, J. Q.et al. Regional ecosystem structure and function: ecological insights from remote sensing of tropical forests. Trends in Ecology and Evolution, Amsterdam, v. 22, n. 9, p. 415-423, Sept. 2007. [ Links ]

    CHARTZOULAKIS, K.; PSARRAS, G. Global change effects on crop photosynthesis and production in Mediterranean: the case of Crete, Greece. Agriculture, Ecosystems and Environment, Amsterdam, v. 106, n. 2-3, p.147-157, Apr. 2005. [ Links ]

    CHAVES, M. M. et al. How plants cope with stress in field. Photosynthesis and growth. Annals of Botany, Oxford, v.89, n. 7, p. 907 - 916, June 2002. [ Links ]

    CHEN, W.; CHEN, J.M.; CIHLAR, J. An integrated terrestrial ecosystem carbon-budget model based on changes in disturbance, climate, and atmospheric chemistry. Ecological Modelling, London, v. 135, n. 2-3, p. 55-79, Dec. 2000. [ Links ]

    COATES, J.C.; MOODY, L.A.; SAIDI, Y. Plants and the earth system - past events and future challenges. New Phytologist, Oxford, v. 189, n. 2, p. 370-373, Jan. 2011. [ Links ]

    COSTA, M.H.; YANAGI, S.N.M. Effects of Amazon deforestation on the regional climate - Historical perspective, current and future research. Revista Brasileira de Meteorologia, Rio de Janeiro, v. 21, n. 3a, p. 200-211, Dec. 2006. [ Links ]

    COSTA, M.H; FOLEY, J.A Combined effects of deforestation and doubled atmospheric CO2 Concentrations on the climate of Amazonia. Journal of Climate, Boston, v.13, n.1, p.18-34, Jan. 2000. [ Links ]

    COSTANZA, R. et al. The value of the world's ecosystem services and natural capital. Nature,  London, v. 387, n. 6630, p. 253-260, May 1997. [ Links ]

    COX, P.M. et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model.Nature, London, v. 408, p. 184-187, Nov. 2000. [ Links ]

    CRAMER, W. et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, Oxford, v. 7, n. 4, p. 357-373, Apr. 2001. [ Links ]

    CRUTZEN P.J. Geology of mankind. Nature, London, v.415, n. 23, Jan. 2002. 23p. [ Links ]

    CRUTZEN P.J.; STEFFEN W. How long have we been in the Anthropocene era? Climatic Change, Berlin, v. 61, n. 3, p. 251-257, Dec. 2003. [ Links ]

    DAVIDSON, E.; ARTAXO, P. Globally significant changes in biological processes of the Amazon Basin: results of the Large-scale Biosphere-Atmosphere Experiment. Global Change Biology, Oxford, v.10, n. 5, p. 519-529, May 2004. [ Links ]

    DI BELLA, C. M. et al. Continental fire density patterns in South America. Global Ecology and Biogeography, Washington, v. 15, n. 2, p. 192-199, Mar. 2006. [ Links ]

    DÍAZ, S.et al. Plant functional traits, ecosystem structure and land-use history along a climate gradient in central-western Argentina. Journal of Vegetation Science, Uppsala, v.10, n. 5, p. 651-660, Oct. 1999. [ Links ]

    DICKINSON, R. E. et al. Biosphere-Atmosphere transfer scheme (BATS) for the NCAR community climate model. NCAR Technical note TN-275+STR. Boulder: National Center for Atmospheric Research, 1984. 69p. [ Links ]

    DICKINSON, R et al. Biosphere -Atmosphere Transfer Scheme (BATS) for the NCAR community climate model. NCAR Technical note TN-275-STR. Boulder: National Center for Atmospheric Research, 1986. 69p. [ Links ]

    EDELMAN, G.M; GALLY, J.A. Degeneracy and complexity in biological systems. Proceedings of the National Academy of Sciences of the United States of America, Stanford, v. 98, n. 4, p. 13763-68, Nov. 2001. [ Links ]

    ENQUIST, B.J. et al. Scaling metabolism from organisms to ecosystems. Nature, London, v. 423, n. 6940, p. 639-642, June 2003. [ Links ]

    FEARNSIDE, P. M.; FERRAZ, J. A Conservation gap analysis of Brazil's Amazonian vegetation. Conservation Biology, Washington, v.9, n. 5, p.1134-1147, Oct. 1995. [ Links ]

    FOLEY, J. A. et al. Green surprise? How terrestrial ecosystems could affect earth's climate. Frontiers in Ecology and the Environment, Washington, v. 1, n. 1, p. 38-44, Feb. 2003. [ Links ]

    FOLEY, J.A. et al. An integrated biosphere model of land surface processes, terrestrial carbon balance and vegetation dynamics. Global Biogeochemical Cycles, Washington, v. 10, n. 4, p.603-628, Dec.1996. [ Links ]

    FRIEND, A.D. Terrestrial plant production and climate change. Journal of Experimental Botany, Oxford, v. 61, n. 5, p.1293-1309, Mar. 2010. [ Links ]

    GALLOPÍN, G. C. Linkages between vulnerability, resilience, and adaptive capacity. Global Environmental Change, Amsterdam, v. 16, n.3, p. 293-303, Aug. 2006. [ Links ]

    GARRIGUES, S.; ALLARD, D.; BARET, F. Modeling temporal changes in surface spatial heterogeneity over an agricultural site. Remote Sensing of Environment, New York, v. 112, p. 588-602, Feb. 2008. [ Links ]

    GONZALES, J. R.; DEL BARRIO, G.; DUGUY, B. Assessing functional landscape connectivity for disturbance propagation on regional scales - A cost-surface model approach applied to surface fire spread. Ecological Modelling, London, v. 211, n. 1-2, p. 121-141, Feb. 2008. [ Links ]

    GRACE, J. et al. Can we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence? Global Change Biology, Oxford, v. 13, n. 7, p. 1484-1497, July 2007. [ Links ]

    GRACE, J. et al. Productivity and carbon fluxes of tropical savannas. Journal of Biogeography, Oxford, v. 33, n. 3, p.387-400, Mar. 2006. [ Links ]

    HARGIS, C. D.; BISSONETTE, J. A.; DAVID, J. L. The behavior of landscape metrics commonly used in the study of habitat fragmentation. Landscape Ecology, Dordrecht, v. 13, n. 3, p. 167-186, June 1998. [ Links ]

    HARPOLE, W. S.; POTTS, D. L.; SUDING, K. N. Ecosystem responses to water and nitrogen amendment in a California grassland. Global Change Biology, Oxford, v. 13, n. 11, p. 2341-2348, Nov. 2007. [ Links ]

    HOFFMANN, W. A.; ORTHEN, B.; NASCIMENTO, P. K. V. Comparative fire ecology of tropical savanna and forest trees. Functional Ecology, Oxford, v. 17, n. 6, p. 720-726, Dec. 2003. [ Links ]

    HULME, P. E. Adapting to climate change: is there scope for ecological management in the face of a global threat? Journal of Applied Ecology, Cambridge, v. 42, n. 5, p. 784 - 794, Oct. 2005. [ Links ]

    HURTT, G. C. et al. Terrestrial models and global change: challenges for the future. Global Change Biology, Oxford, v. 4, n.5, p. 581 - 590, June 1998. [ Links ]

    HUTLEY, L. B.; O'GRADY, A. P.; EAMUS, D. Monsoonal influences on evapotranspiration of savanna vegetation of northern Australia. Oecologia, New York, v. 126, n. 3, p. 434-443, Feb. 2001. [ Links ]

    ICHII, K. et al. Constraining rooting depths in tropical rainforests using satellite data and ecosystem modeling for accurate simulation of gross primary production seasonality. Global Change Biology, Oxford, v. 13, n. 1, p. 67-77, Jan. 2007. [ Links ]

    JACKSON, L.E. et al. Case study on potential agricultural responses to climate change in a California landscape. Climatic Change, Berlin, v. 109 supplement 1, p. 407-427, Dec. 2011. [ Links ]

    JARVIS, P. G. Scaling processes and problems. Plant, Cell and Environment, Oxford, v. 18, n. 10, p. 1079-1089, Oct. 1995. [ Links ]

    KEITH, D.A.et al. Plant functional types can predict decade-scale changes in fire-prone vegetation. Journal of Ecology, Oxford, v. 95, n.6, p. 1324-1337, Nov. 2007. [ Links ]

    KICKLIGHTER, D. W. et al. A firt-order analysis of the potential role of CO2 fertilization to affect the global carbon budget: a comparizon of four terrestrial biosphere models. Tellus, Copenhagen, v. 51, n. 2, p. 343-366, Apr. 1999. [ Links ]

    KIRSCHBAUM, M.U.F. CEN, W, a forest growth model with linked carbon, energy, nutrient and water cycles. Ecological Modelling, London, v. 118, n. 1, p. 1-94, June 1999. [ Links ]

    KOSUGI, Y. et al. Impact of leaf physiology on gas exchange in a Japanese evergreen broad-leaved forest. Agricultural and Forest Meteorology, Amsterdam, v. 139, n. 3-4, p. 182-199, Oct. 2006. [ Links ]

    LANGNER, A.; MIETTINEN, J.; SIEGERT, F. Land cover change 2002-2005 in Borneo and the role of fire derived from MODIS imagery. Global Change Biology, Oxford, v. 13, n. 11, p. 2329-2340, Nov. 2007. [ Links ]

    LAVOREL, S.; McINTYRE, S.; GRIGULIS, K. Plant response to disturbance in a Mediterranean grassland: How many functional groups? Journal of Vegetation Science, Uppsala, v. 10, n. 5, p. 661-672, Oct. 1999. [ Links ]

    LAWLOR, D. W.; CORNIC, G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment, Oxford, v. 25, n. 2, p. 275-294, Feb. 2002. [ Links ]

    LI, C. Estimation of fire frequency and fire cycle: a computational perspective. Ecological Modelling, London, v. 154, n. 1-2, p. 103-120, Aug. 2002. [ Links ]

    LI, P.; BOHNERT, H. J.; GRENE, R. All about FACE - plants in a high-[CO2] world. Trends in Plant Science, London, v. 12, n. 3, p.87-89, Mar. 2007. [ Links ]

    LIN, B. B. Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture. Agricultural and Forest Meteorology, Amsterdam, v. 144, n. 1-2, p. 85-94, May 2007. [ Links ]

    LIU, J. et al. Net primary productivity mapped for Canada at 1 km resolution. Global Ecology and Biogeography, Oxford, v. 11, n. 2, p. 115-129, Mar. 2002. [ Links ]

    MALHI, Y. The productivity, metabolism and carbon cycle of tropical forest vegetation. Journal of Ecology, Oxford, v. 100, n. 1, p. 65-75, Jan. 2012. [ Links ]

    MARTINS, G.A. et al. Stomatal density distribution patterns in leaves of the Jatobá (Hymenaea courbaril L.). Tress Structure and Function, Berlin, v. 26, n. 2, p. 571-579, Apr. 2012. [ Links ]

    MEDRANO, H. et al. Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Annals of Botany, London, v. 89, p. 895-905, June 2002. Special. [ Links ]

    MENGE, D.N. L.; FIELD, C.B. Simulated global changes alter phosphorus demand in annual grassland. Global Change Biology, Oxford, v. 13, n. 12, p. 2582-2591, Dec. 2007. [ Links ]

    METZGER, M. J. et al. The vulnerability of ecosystem services to land use change. Agriculture, Ecosystems and Environment, Amsterdam, v. 114, n. 1, p. 69-85, May 2006. [ Links ]

    MILNE, B.T. Heterogeneity as a multi-scale characteristic of landscapes. In: KOLOSA, J.; PICKETT, S.T.A. (Eds.). Ecological heterogeneity. New York: Springer-Verlag,p. 69-84, 1989. [ Links ]

    MILNE, B.T. Measuring the fractal dimension of landscapes. Applied Mathematics and Computation, Washington, v. 27, n. 1, p. 67-79, July, 1988. [ Links ]

    MISTRY, J. Assessing fire potential in a Brazilian savanna nature reserve. Biotropica, St. Louis, v. 37, n. 3, p. 439-451, Sept. 2005. [ Links ]

    MOUILLOT, F.; FIELD, C. B. Fire history and the global carbon budget: a 1x1 fire history reconstruction for the 20th century. Global Change Biology, Oxford, v. 11, n. 3, p. 398-420, Mar. 2005. [ Links ]

    MOUILLOT, F.; RAMBAL, S.; JOFFRE, R.; Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem. Global Change Biology, Oxford, v. 8, n. 5, p. 423- 437, May 2002. [ Links ]

    NIINEMETS, U. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, Washington, v. 82, n. 2, p. 453-469, Feb. 2001. [ Links ]

    NIYOGI, D.; XUE, Y. Soil moisture regulates the biological response of elevated atmospheric CO2 concentrations in a coupled atmosphere-biosphere model. Global and Planetary Change, Amsterdam, v. 54, n. 1-2, p. 94-108, Nov. 2006. [ Links ]

    PACHA, M.J.; PETIT S. The effect of landscape structure and habitat quality on the occurrence of Geranium sylvaticum in fragmented hay meadows. Agriculture, Ecosystems and Environment, Amsterdam, v. 123, n. 1-3, p.81-87, Jan. 2008. [ Links ]

    PARTON, W.J. et al. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Science Society of America Journal, Madison, v.51, n. 5, p.1173-1179, May, 1987. [ Links ]

    PEÑUELAS, J. et al. Photochemical reflectance index and leaf photosynthetic radiation-use-efficiency assessment in Mediterranean trees. International Journal of Remote Sensing, London, v. 18, n. 13, p. 2863-2868, Sept. 1997. [ Links ]

    PIELKE JR, R. A. et al. A new paradigm for assessing the role of agriculture in the climate system and in climate change. Agricultural and Forest Meteorology, Amsterdam, v. 142, n. 2-4, p. 234-254, Feb. 2007. [ Links ]

    PINHEIRO, C.; CHAVES, M.M. Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany, Oxford, v. 62, n. 3, p. 869-882, Nov. 2011. [ Links ]

    POTTER, C. S. et al. Regional application of an ecosystem production model for studies of biogeochemistry in Brazilian Amazonia. Global Change Biology, Oxford, v. 4, n. 3, p. 315-333, Mar. 1998. [ Links ]

    POOLMAN, M.G; FELL, D.A. Modelling photosynthesis and its control. Journal of Experimental Botany, Oxford, v. 51, n. 343 supplement 1, p. 319 - 328, Feb. 2000. [ Links ]

    POTTS, D. L. et al. Antecedent moisture and seasonal precipitation influence the response of canopy-scale carbon and water exchange to rainfall pulses in a semi-arid grassland. New Phytologist, Oxford, v. 170, n. 4, p. 849-860, 2006. [ Links ]

    PRADO, C. H. B. A. et al. Seasonal leaf gas exchange and water potential in a woody cerrado species community. Brazilian Journal of Plant Physiology, Londrina, v. 16, n. 1, p. 7-16, Jan.-Apr. 2004. [ Links ]

    PRENTICE, I. C. et al. Special Paper: A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography, Oxford, v. 19, n. 2, p.117-134, Mar. 1992. [ Links ]

    RAICH, J. W. et al. Potential net primary productivity in South America: application of a global model. Ecological Applications, Ithaca, v. 1, n. 4, p.399 - 429, Nov. 1991. [ Links ]

    RAMBAL, S.et al. The growth respiration component in eddy CO2 flux from a Quercus ilex mediterranean forest. Global Change Biology, Oxford, v. 10, n. 9, p. 1460 - 1469, Sept. 2004. [ Links ]

    RAMBAL, S.et al. Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy. Global Change Biology, Oxford, v. 9, n. 12, p. 1813 - 1824, Dec. 2003. [ Links ]

    RAUPACH, M. R.; CANADELL, J. G. Carbo\n and the Anthropocene. Current Opinion in Environmental Sustainability, Oxford, v. 2, n. 4, p. 210-218, Oct. 2010. [ Links ]

    REICH, P. B.; TURNER, D. P.;BOLSTAD, A. P. An approach to spatially distributed modeling of net primary production (NPP) at the landscape scale and its in validation of EOS NPP products. Remote Sensing of Environment, New York, v. 70, n. 1, p. 69-81, Oct. 1999. [ Links ]

    REICH, P.B.; OLEKSYN, J.; WRIGHT, I.J. Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia, New York, v. 160, n. 2, p. 207-212, May 2009. [ Links ]

    REICH, P.B. et al. Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proceedings of the of The Royal Society B: Biological Sciences, London, v. 277, n. 1683, p. 877-883, Mar. 2010. [ Links ]

    ROCKSTRÖM, J. et al. A safe operating space for humanity. Nature, London, v. 461, p. 472-475, Sept. 2009. [ Links ]

    ROSENZWEIG, C. et al. Water resources for agriculture in a changing climate: international case studies. Global Environmental Change, Oxford, v. 14, n. 4, p. 345-360, Dec. 2004. [ Links ]

    RUNNING, S.W; GOWER, S.T. Forest -BGC, a general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets. Tree Physiology, Oxford, v. 9, n. 1-2, p.147-160, Jul.-Sep. 1991. [ Links ]

    SANTOS, A. J. B.et al. Effects of fire on surface carbon, energy and water vapour fluxes over campo sujo savanna in central Brazil. Functional Ecology, Oxford, v. 17, n. 6, p. 711-719, Dec. 2003. [ Links ]

    SANTOS, S. N. M.; COSTA, M. H. A simple tropical ecosystem model of carbon, water and energy fluxes. Ecological Modelling, London, v. 176, p. 291-312, Sept. 2004. [ Links ]

    SAUNDERS, D. A.; HOBBS, R. J.; MARGULES, C. R. Biological consequences of ecosystem fragmentation: a review. Conservation Biology, Cambridge, v. 5, n. 1, p. 18-32, Mar. 1991. [ Links ]

    SAXE, H. et al. Tree and forest functioning in response to global warming. New Phytologist, Oxford, v. 149, n. 3, p. 369-400, Mar. 2001. [ Links ]

    SELLERS, P. J. et al. A simple biosphere model (SiB) for use with general circulation models. Journal of the Atmospheric Sciences, Boston, v. 43, n. 6, p.505-531, Mar. 1986. [ Links ]

    SIMIONI, G. et al. Leaf gas exchange characteristics and water- and nitrogen-use efficiencies of dominant grass and tree species in a West African savanna. Plant Ecology, Dordrecht, v. 173, n. 2, p. 233 - 246, Aug. 2004. [ Links ]

    SIMS D. A.; GAMON, J. A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, New York, v. 81, n. 2-3, p. 337- 354, Aug. 2002. [ Links ]

    SIMS, D. A. et al. Parallel adjustments in vegetation greenness and ecosystem CO2 exchange in response to drought in a Southern California chaparral ecosystem. Remote Sensing of the Environment, New York, v. 103, n. 3, p. 289-303, Aug. 2006. [ Links ]

    SMITH, B.; WANDEL, J. Adaptation, adaptive capacity and vulnerability. Global Environmental Change, Oxford, v. 16, n. 2, p. 282-292, May 2006. [ Links ]

    SOUTHWORTH, J.; MUNROE, D.; NAGENDRA, H. Land cover change and landscape fragmentation-comparing the utility of continuous and discrete analyses for a western Honduras region. Agriculture, Ecosystems and Environment, Amsterdam, v. 101, n. 2-3, p. 185-205, Feb. 2004. [ Links ]

    SOUZA, G.M.; BUCKERIDGE, M.S. Sistemas complexos: novas formas de ver a Botânica. Revista Brasileira de Botânica, São Paulo, v. 27, n. 3, p. 407-419, jul.-set. 2004. [ Links ]

    SOUZA, G.M.; MANZATTO, A.G. Hierarquia auto-organizada em sistemas biológicos. In: D'OTTAVIANO, I.M.L.; GONZALES, M.E.Q. (Eds.). Auto organização: estudos interdisciplinares. Campinas: CLE/UNICAMP, p. 153-173, 2000. [ Links ]

    SOUZA, G.M.; PINCUS, S.M.; MONTEIRO, J.A.F. The complexity stability hypothesis in plant gas exchange under water deûcit. Brazilian Journal of Plant Physiology, Campos dos Goytacazes, v.17, n. 4, p. 363-373, Oct.-Dec. 2005a. [ Links ]

    SOUZA, G.M. et al. Using network connectance and autonomy analyses to uncover patterns of photosynthetic responses in tropical woody species. Ecological Complexity, Amsterdam, v. 6, n. 1, p. 15-26, Mar. 2009. [ Links ]

    SOUZA,G.M. et al. Network connectance and autonomy analyses of the photosynthetic apparatus in tropical tree species from different successional groups under contrasting irradiance conditions. Revista Brasileira de Botânica, São Paulo, v. 28, n.1, p. 47-59, Jan.-Mar 2005b. [ Links ]

    SUTTLE, K. B.; THOMSEN, M. A.; POWER, M. E. Species interactions reverse grassland responses to changing climate. Science, Washington, v. 315, n. 5872, p. 640-642, Feb. 2007. [ Links ]

    THIELEN, D. R. et al. Assessment of land use changes on woody cover and landscape fragmentation in the Orinoco savannas using fractal distributions. Ecological Indicators, Amsterdam, v. 8, n. 3, p. 224-238, May 2008. [ Links ]

    THONICKE, K. et al. The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model. Global Ecology & Biogeography, Oxford, v. 10, n. 6, p. 661-677, Nov. 2001. [ Links ]

    TJOELKER, M. G.; ZHOU, X. The many faces of climate warming. New Phytologist, Cambridge, v. 176, n. 4, p. 739-742, Dec. 2007. [ Links ]

    TRUMBORE, S. Carbon respired by terrestrial ecosystems - recent progress and challenges. Global Change Biology,  Oxford, v. 12, n. 2, p. 141-153, Feb. 2006. [ Links ]

    TURNER, B. L. et al. Illustrating the coupled human-environment system for vulnerability analysis: Three case studies. Proceedings of the national Academy of Science of the United States of America, Washington, v. 100, n. 14, p. 8080-8085, July 2003. [ Links ]

    TURNER, M.G. Landscape Ecology: the effects of patterns and process. Annual Review of Ecology and Systematics, Palo Alto, v. 20, p. 171-197, Nov. 1989. [ Links ]

    UNITED NATIONS ENVIRONMENT PROGRAMME - UNEP. UNEP Year Book: New Science and Developments in our Changing Environment. Nairobi, 2009. [ Links ]

    UNITED NATIONS ENVIRONMENT PROGRAMME - UNEP. GEO-3: Global Environmental Outlook Report 3. London, 2002. [ Links ]

    WALTHER, G. R.; POST, E.; CONVEY, P. Ecological responses to recent climate change. Nature, London, v. 416, n. 6879, p. 389-395, Mar. 2002. [ Links ]

    WATSON, R. T. et al. (Ed.). Land use, Land use change and Forestry: a special report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge: Cambridge University, 2000. [ Links ]

    WINSLOW, J.C.; HUNT JR., E.R.; PIPER, S.C. The influence of seasonal water availability on global C3 versus C4 grassland biomass and its implications for climate change research. Ecological Modelling, London, v. 163, n. 1-2, p. 153-173, May 2003. [ Links ]

    WRIGHT, I. J. et al. Assessing the generality of global leaf trait relationships. New Phytologist, Cambridge, v. 166, n. 2, p. 485-496, May 2005a. [ Links ]

    WRIGHT, I. J. et al. Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, Oxford, v. 14, n. 5, p. 411-421, Sept. 2005b. [ Links ]

    WRIGHT, S J. et al. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology, Ithaca, v. 92, n. 8, p. 1616-1625, Aug. 2011. [ Links ]

    XIAO, X. M. et al. Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data. Ecological Applications, Washington, v.15, n. 3, p. 954-969, June 2005. [ Links ]