SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Article References

BUENO, Paulo Roberto  and  VARELA, José Arana. Electronic ceramics based on polycrystalline SnO2, TiO2 and (Sn xTi1-x)O2 solid solution. Mat. Res. [online]. 2006, vol.9, n.3, pp. 293-300. ISSN 1516-1439.  http://dx.doi.org/10.1590/S1516-14392006000300009.

    1. Jarzebski ZM, Marton JP. Physical properties of SnO2 materials. I - Preparation and defect structure. Journal of Electrochemical Society. 1976; 123(7):199C-205C. [ Links ]

    2. Jarzebski ZM, Marton JP. Physical properties of SnO2 materials. II - Electrical properties. Journal of Electrochemical Society. 1976; 123(9):299C-310C. [ Links ]

    3. Finklea HO. Semiconductor Electrodes. Amsterdam: Elsevier; 1988. [ Links ]

    4. Gopel W, Shierbaum KD. SnO2 sensor: current status and future prospects. Sensor and Actuators B. 1995; 26-27:1-12. [ Links ]

    5. Egashira M, Shimizu Y, Takao Y, Fukuyama Y. Hydrogen-sensitive breakdown voltage in the I-V characteristics of tin dioxide-based semiconductors. Sensors and Actuators B. 1996; 33(1-3):89-95. [ Links ]

    6. Egashira M, Shimizu Y, Takao Y, Sako S. Variations in I-V characteristics of oxide semiconductors induced by oxidizing gases. Sensors and Actuators B. 1996; 35-36:62-7. [ Links ]

    7. Chiang Y-M, Birnie III D, Kingery WD. Physical Ceramics. Principles for Ceramics Science and Engineering. New York: John Wiley & Sons, Inc.; 1997. [ Links ]

    8. Shimizu Y, Kanazawa E, Takao Y, Egashira M. Modification of H-2-sensitive breakdown voltages of SnO2 varistors with noble metals. Sensor and Actuators B. 1998; 52(1-2):38. [ Links ]

    9. Shimizu Y, Kanazawa E, Takao Y, Egashira M. Modification of H2-sensitive breakdown voltages of SnO2 varistors with noble metals. Sensors and Actuators B. 1998; 52:38-44. [ Links ]

    10. Shimizu Y, Kanazawa E, Takao Y, Egashira M. Zinc oxide varistor gas sensors: II, effect of chromium(III) oxide and yttrium oxide additives on the hydrogen-sensing properties. Journal of American Ceramic Society. 1998; 81(6):1633. [ Links ]

    11. Egashira M, Shimizu Y, Takao Y, Fukuyama Y. Sensor and Actuators B. 1996; 33:89. [ Links ]

    12. Lin F-C, Takao Y, Shimizu Y, Egashira M. Zinc oxide varistor gas sensor: I, Effect of Bi2O3 content on the H2-sensing properties. Journal of American Ceramic Society. 1995; 78(9):2301-6. [ Links ]

    13. Lin F, Takao Y, Shimizu Y, Egashira M. Hydrogen-Sensing mechanism of Zinc-oxide varistor gas sensosrs. Sensor and Actuators B. 1995; 25(1-3):843. [ Links ]

    14. Lin CF, Takao Y, Shimizu Y, Egashira M. Zinc-oxide varistor gas sensors 1. Effect of Bi2O3 content on the H2-sensing properties. Journal of American Ceramic Society. 1995; 78(9):2301. [ Links ]

    15. Cerri JA, Leite ER, Gouvea D, Longo E. Effect of cobalt(II) oxide and manganese(IV) oxide on sintering of tin(IV) oxide. Journal of American Ceramic Society. 1996; 79(3):799-804. [ Links ]

    16. Varela JA, Cerri JA, Leite ER, Longo E, Shamsuzzoha M, Bradt RC. Microstructural evolution during sintering of CoO doped SnO2 ceramics. Ceramics International. 1999; 25:(253-256). [ Links ]

    17. Paria MK, Maiti HS. Electrical-conductivity of polycrystalline tin dioxide and its solid-solution with ZnO. Journal of Material Science. 1983; 18(7):2101. [ Links ]

    18. Kimura T, Inada S, Yamaguch T. Microstructure development in SnO2 with and without additives. Journal of Materials Science. 1989; 24(1):220. [ Links ]

    19. Pianaro SA, Bueno PR, Longo E, Varela JA. A new SnO2-based varistor system. Journal of Materials Science Letters. 1995; 14(10):692-4. [ Links ]

    20. Antunes AC, Antunes SRM, Pianaro SA, Longo E, Leite ER, Varela JA. Effect of La2O3 doping on the microstructure and electrical properties of a SnO2-based varistor. Journal of Material Science: Materials in Electronics. 2001; 12(1):69-74. [ Links ]

    21. Antunes AC, Antunes SRM, Pianaro SA, Rocha MR, Longo E, Varela JA. Nonlinear electrical behaviour of the SnO2.CoO.Ta2O5 system. Journal of Materials Science Letters. 1998; 17:577-9. [ Links ]

    22. Bernik S, Daneu N. Characteristics of SnO2-doped ZnO-based varistor ceramics. Journal of European Ceramic Society. 2001; 21(10-11): 1879—-82. [ Links ]

    23. Bueno PR, Cassia-Santos MR, Leite ER, Longo E, Bisquert J, Garcia-Belmonte G, et al. Nature of the Schottky type barrier of highly dense SnO2 systems displaying nonohmic behaviour. Journal of Applied Physics. 2000; 88(11):6545-8. [ Links ]

    24. Bueno PR, Leite ER, Oliveira MM, Orlandi MO, Longo E. Role of oxygen at the grain boundary of metal oxide varistors: A potential barrier formation mechanism. Applied Physics Letters. 2001; 79(1):48-50. [ Links ]

    25. Bueno PR, Oliveira MM, Bacelar-Junior WK, Leite ER, Longo E, Garcia-Belmonte G, et al. Analysis of the admittance-frequency and capacitance-voltage of dense SnO2.CoO-based varistor ceramics. Journal of Applied Physics. 2002; 91(9):6007-14. [ Links ]

    26. Bueno PR, Oliveira MM, Cassia-Santos MR, Longo E, Tebcherani SM, Varela JA. Varistores à base de SnO2: estado da arte e perspectivas. Cerâmica. 2000; 46(299):124-9. [ Links ]

    27. Cassia-Santos MR. Effect of oxidizing and reducing atmospheres on the electrical properties of dense SnO2-based varistor. Journal of the European Ceramic Society. 2000. [ Links ]

    28. Castro MS, Aldao CM. Characterization of SnO2-varistors with different additives. Journal of the European Ceramic Society. 1998; 18(14):2233-9. [ Links ]

    29. Dhage SR, Ravi V, Date SK. Influence of lanthanum on the nonlinear I-V characteristics of SnO2: Co, Nb. Materials Letters. 2002; 57:727-9. [ Links ]

    30. Dibb A, Tebcherani SM, Lacerda Jr. W, Santos MRC, Cilense M, Varela JA, et al. Influence of simultaneous addition on MnO2 and CoO on properties of SnO2-based ceramics. Materials Letters. 2000; 46(1):39-43. [ Links ]

    31. Li C, Wang J, Su W, Chen H, Zhong W, Zhang P. Effect of Mn+2 on the electrical nonlinearity of (Ni, Nb)-doped SnO2 varistor. Ceramic International. 2001; 27:655-9. [ Links ]

    32. Li CP, Wang JF, Su WB, Chen HC, Wang WX, Zang GZ, et al. Influence of La2O3, Pr2O3 and CeO2 on the nonlinear properties of SnO2 multicomponent varistor. Ceramics International. 2002; 28:521-6. [ Links ]

    33. Li CP, Wang JF, Su WB, Chen HC, Wang WX, Zang GZ, et al. Nonlinear electrical properties of SnO2.Li2O.Ta2O5 varistors. Ceramics International. 2002; 28:521-6. [ Links ]

    34. Oliveira MM, Bueno PR, Cassia-Santos MR, Longo E, Varela JA. Sensitivity of SnO2 non-ohmic behavior to the sintering process and to the addition of La2O3. Journal of European Ceramic Society. 2001; 21:1179-85. [ Links ]

    35. Oliveira MM, Bueno PR, Longo E, Varela JA. Influence of La2O3, Pr2O3 and CeO2 on the nonlinear properties of SnO2 multicomponent varistor. Material Chemistry and Physics. 2002; 74:150-3. [ Links ]

    36. Oliveira MM, Soares Jr PC, Bueno PR, Leite ER, Longo E, Varela JA. Grain-boundary segregation and precipitates in La2O3 and Pr2O3 doped SnO2.CoO-based varistors. Journal of the European Ceramic Society. 2003; 23:1875-80. [ Links ]

    37. Pianaro SA, Bueno PR, Longo E, Varela JA. Microstructure and electric properties of a SnO2 based varistor. Ceramic International. 1999; 25:1-6. [ Links ]

    38. Pianaro SA, Bueno PR, Olivi P, Longo E, Varela JA. Electrical properties of the SnO2-based varistor. Journal of Materials Science: Materials in Electronics. 1998; 9:158-65. [ Links ]

    39. Wang JF, Wang YJ, Su WB, Chen HC, Wang WX. Novel (Zn, Nb)-doped SnO2 varistors. Materials Science and Engineering B. 2002; 96:8-13. [ Links ]

    40. Wang YJ, Wang JF, Li CP, Chen HC, Su WB, Zhong WL, et al. Improved varistor nonlinearity via sintering and acceptor impurity doping. Eur Phys J AP. 2000; 11:155-8. [ Links ]

    41. Yongjun W, Jinfeng W, Hongcun C, Weilie Z, Peilin Z, Huomin D, et al. Electrical properties of SnO2-ZnO-Nb2O5 varistor system. Journal Physical D: Applied Physics. 2000; 33:96-9. [ Links ]

    42. Edelman F, Hahn H, Seifried S, Alof C, Hoche H, Balogh A, et al. Structural evolution of SnO2-TiO2 nanocrystalline films for gas sensors. Materials Science and Engineering B. 2000; 69-70:386-91. [ Links ]

    43. Bueno PR, Camargo E, Longo E, Leite E, Pianaro SA, Varela JA. Effect of Cr2O3 in the varistor behaviour of TiO2. Journal of Materials Science Letters. 1996; 15:2048-50. [ Links ]

    44. Leite ER, Nascimento AM, Bueno PR, Longo E, Varela JA. The influence of sintering process and atmosphere on the non-ohmic properties of SnO2-based varistor. Journal of Material Science: Materials in Electronics. 1999; 10:321-7. [ Links ]

    45. Bueno PR, Orlandi MO, Simões LGP, Leite ER, Longo E, Cerri J. Non-ohmic behavior of SnO2-MnO Polycrystalline Ceramics. Part I - Correlations between microstructural morphology and non-ohmic features. Journal of Applied Physics; 2004. [ Links ]

    46. Orlandi MO, Bueno PR, Bomio MRD, Longo E, Leite ER. Non-ohmic behavior of SnO2-MnO Polycrystalline Ceramics. Part II - Analysis of Admittance and Dielectric Spectroscopy. Journal of Applied Physics; 2004. [ Links ]

    47. Themlin JM, Sporken R, Darville J, Caudano R, Gilles JM. Resonant-photoemission study of SnO2: cationic origin of the defect band-gap states. Physical Review B. 1990; 42(18). [ Links ]

    48. Pianaro SA, Pereira EC, Bulhoes LOS, Longo E, Varela JA. Effect of Cr2O3 on the electrical properties of multicomponent ZnO varistors at the pre-breakdown region. Journal of Materials Science. 1995; 30:133-41. [ Links ]

    49. Clarke DR. Varistor ceramics. Journal of American Ceramic Society. 1999; 82(3):485-502. [ Links ]

    50. Yan MF, Rhodes WW. Preparation and properties of TiO2 varistors. Applied Physics Letters. 1982; 40(6):536-7. [ Links ]

    51. Pennewiss J, Hoffmann B. Varistor made from TiO2 - practicability and limits. Matterials Letters. 1990; 9(5,6):219-26. [ Links ]

    52. Bueno PR, Leite ER, Bulhões LOS, Longo E, Santos COP. Sintering and mass transport features of (Sn,Ti)O2 polycrystalline ceramics. Journal of the European Ceramic Society. 2003; 23(6):887-97. [ Links ]

    53. Bueno PR, Santos MRdC, Simões LGP, Gomes JW, Longo E, Varela JA. A low voltage varistor based on (Sn,Ti)O2 ceramics. Journal of the American Ceramic Society. 2002; 85:282-4. [ Links ]

    54. Schultz AH, Stubican V. S. Modulated structures in TiO2-SnO2. 1968; 929-37. [ Links ]

    55. Park M, Mitchell TE, Heuer AH. Subsolidus equilibria in the TiO2-SnO2 system. Journal of the American Ceramic Society. 1975; 58:43-7. [ Links ]

    56. Yuan TC, Virkar AV. Kinetics of the spinoidal decomposition in the TiO2-SnO2 system: the effect of aliovalent dopants. Journal of the American Ceramic Society. 1988; 71:12-21. [ Links ]

    57. Nambu S, Sato A, Sagala DA. Computer simulation of kinetics of spinoidal decomposition in the tetragonal TiO2-SnO2 system. Journal of the American Ceramic Society. 1992; 75:1906-13. [ Links ]

    58. Flevaris NK. Spinoidal decomposition in tetragonal systems: SnO2-TiO2. Journal of the American Ceramic Society. 1987; 70:301-4. [ Links ]

    59. Gupta PK, Cooper AR. On phase separation in the TiO2-SnO2 system. 1969: 611-7. [ Links ]

    60. Cahn JW. Acta Metallurgica. 2001; 9:795-801. [ Links ]

    61. Rundman KB, Hilliard JE. Early stages of spinodal decomposition in an aluminum-zins alloy. Acta Metallurgica. 1967; 15:1025-33. [ Links ]

    62. Woodilla JE, Acverbach BL. Modulated structures in Au-Ni alloyds. Acta Metallurgica. 1968; 16:255-63. [ Links ]

    63. Wu N-L, Wang S-Y, Rusakova IA. Inhibition of crystallite growth in the sol-gel synthesis of nanocrystalline metal oxide. Science. 1999; 285:1375-7. [ Links ]

    64. Radecka M, Zakrzewska K, Rekas M. SnO2-TiO2 solid solutions for gas sensors. Sensors and Actuators B. 1998; 47:194-204. [ Links ]

    65. Radecka M, Pasierb P, Zakrzewska K, Rekas M. Transport properties of (Sn,Ti)O2 polycrystalline ceramics and thin films. Solid State Ionics. 1999; 119:43-8. [ Links ]