SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Article References

MONTEIRO, Mariana Sato de Souza de Bustamante et al. Inorganic-organic hybrids based on poly (ε-Caprolactone) and silica oxide and characterization by relaxometry applying low-field NMR. Mat. Res. [online]. ahead of print, pp. 825-832.  Epub Sep 25, 2012. ISSN 1516-1439.  http://dx.doi.org/10.1590/S1516-14392012005000121.

    1. Ochi M, Takahashi R and Terauchi R. Phase structure and mechanical and adhesion properties of epoxy/silica hybrids. Polymer. 2001; 42:5151-5158. http://dx.doi.org/10.1016/S0032-3861(00)00935-6 [ Links ]

    2. Zou J, Shi W and Hong X. Characterization and properties of a novel organic–inorganic hybrid based on hyperbranched aliphatic polyester prepared via sol-gel process. Composites Part A: Applied Science and Manufacturing. 2005; 36:631-637. http://dx.doi.org/10.1016/j.compositesa.2004.08.001 [ Links ]

    3. Avella M, Bondioli F, Cannello V, Di Pace E, Errico ME, Ferrari AM et al. Poly(ε-caprolactone)-based nanocomposites: Influence of compatibilization on properties of poly(ε‑caprolactone)–silica nanocomposites. Composites Science and Technology. 2006; 66:886-894. http://dx.doi.org/10.1016/j.compscitech.2005.08.014 [ Links ]

    4. Avella M, Bondioli F, Cannello V, Cosco S, Errico ME, Ferrari AM et al. Properties/Structure Relationships in Innovative PCL-SiO2 Nanocomposites. Macromolecular Symposia. 2004; 218:201-210. [ Links ]

    5. Xu GC, Li AY, Zhang LD, Yu XY, Xie T and Wu GS. Nanomechanic Properties of Polymer-Based Nanocomposites with Nanosilica by Nanoindentation. Journal of Reinforced Plastics and Composites. 2004; 23(13)1365-1372. http://dx.doi.org/10.1177/0731684404037044 [ Links ]

    6. Zou H, Wi S and Shen J. Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications. Chemical Reviews. 2008; 108:3893-3957. PMid:18720998. http://dx.doi.org/10.1021/cr068035q [ Links ]

    7. Chrissafis K, Antoniadis G, Paraskevopoulus KM, Vassiliou A and Bikiaris DN. Comparative study of the effect of different nanoparticles on the mechanical properties and thermal degradation mechanism of in situ prepared poly(ε‑caprolactone) nanocomposites. Composites Science and Technology. 2007; 67:2165-2174. http://dx.doi.org/10.1016/j.compscitech.2006.10.027 [ Links ]

    8. Ayala GG, Pace ED, Laurienzo P, Pantalena D, Somma E and Nobila MR. Poly(ε-caprolactone) modified by functional groups: Preparation and chemical-physical investigation. European Polymer Journal. 2009; 45(11):3217-3229. http://dx.doi.org/10.1016/j.eurpolymj.2009.07.021 [ Links ]

    9. Ludueña LN, Alvarez VA and Vazquez A. Processing and microstructure of PCL/clay nanocomposites. Materials Science and Engineering: A. 2007; 460-461:121-129. http://dx.doi.org/10.1016/j.msea.2007.01.104 [ Links ]

    10. Tavares MIB, Nogueira RF, Gil RASS, Preto M, Silva EO, Silva MBR et al. Polypropylene-clay nanocomposite structure probed by H NMR relaxometry. Polymer Testing. 2007; 26:1100-1102. http://dx.doi.org/10.1016/j.polymertesting.2007.07.012 [ Links ]

    11. Sirelli L, Prado RMK, Tavares MIB, Nunes RCR and Dias ML. Molecular Dynamics of Poly(Ethylene Terephthalate)/Muscovite Mica Composite by Low-Field NMR. International Journal of Polymer Analysis and Characterization. 2008; 13:180-189. http://dx.doi.org/10.1080/10236660802070678 [ Links ]

    12. Freire E, Bianchi O, Forte MMC, Preto M, Monteiro EEC and Tavares MIB. Thermal and low-field NMR study on poly(vinylidene fluoride) and their physical mixtures with poly(methyl methacrylate). Polymer Engineering & Science. 2008; 48:1901-1909. http://dx.doi.org/10.1002/pen.21174 [ Links ]

    13. Rosa DS, Carvalho CL, Gaboardi F, Rezende ML, Tavares MIB, Petro MSM et al. Evaluation of enzymatic degradation based on the quantification of glucose in thermoplastic starch and its characterization by mechanical and morphological properties and NMR measurements. Polymer Testing. 2008; 27:827-834. http://dx.doi.org/10.1016/j.polymertesting.2008.06.008 [ Links ]

    14. Rodrigues TC, Tavares MIB, Preto M, Soares IL and Moreira ACF. Evaluation of Polyethylene/Organoclay Nanocomposites by Low-field Nuclear Relaxation. International Journal of Polymeric Materials. 2008; 57:1119-1123. http://dx.doi.org/10.1080/00914030802428716 [ Links ]

    15. Nogueira RF, Tavares MIB, San Gil RAS and da Silva NM. Solid state NMR investigation of polypropylene/Brazilian clay blending process. Polymer Testing. 2005; 24:358-362. http://dx.doi.org/10.1016/j.polymertesting.2004.10.005 [ Links ]

    16. da Silva NM and Tavares MIB. Aplicação de Técnicas Combinadas de NMR no Estado Sólido para Avaliação do Sistema EPDM/PPa. Polímeros. 1994; 4:40-42. [ Links ]

    17. Tang ZG, Black RA, Curran JM, Hunt JA, Rhodes NP and Williams DF. Surface properties and biocompatibility of solvent‑cast poly[ε-caprolactone] films. Biomaterials. 2004; 25:4741-4748. PMid:15120520. http://dx.doi.org/10.1016/j.biomaterials.2003.12.003 [ Links ]

    18. Di Y, Iannace S, Di Maio E and Nicolais L. Nanocomposites by melt intercalation based on polycaprolactone and organoclay. Journal of Polymer Science Part B: Polymer Physics. 2003; 41:670-678. http://dx.doi.org/10.1002/polb.10420 [ Links ]

    19. Nakamoto K. Theory and applications in inorganic chemistry: Infrared and Raman Spectra of inorganic and coordination compound. 5th ed. John Wiley; 1997. [ Links ]

    20. Nassar EJ, Messaddeq Y, Ribeiro SJL. Influência da catálise ácida e básica na preparação da sílica funcionalizada pelo método sol-gel. Química Nova. 2002; 25(1):27 http://dx.doi.org/10.1590/S0100-40422002000100006 [ Links ]

    21. Li R, Nie K, Shen X and Wang S. Biodegradable polyester hybrid nanocomposites containing titanium dioxide network and poly(ε-caprolactone): Synthesis and characterization. Materials Letters. 2007; 61:1368-1371. http://dx.doi.org/10.1016/j.matlet.2006.07.032 [ Links ]

    22. De Gaetano F, Ambrosio L, Raucci MG, Marotta A and Catauro M. Sol-gel processing of drug delivery materials and release kinetics. Journal of Materials Science: Materials in Medicine. 2005; 16:261-265. PMid:15744618. http://dx.doi.org/10.1007/s10856-005-6688-x [ Links ]

    23. Prado AGS, Faria EA and Padilha PM. Aplicação e modificação química da sílica gel obtida de areia. Química Nova. 2005; 28(3):544. http://dx.doi.org/10.1590/S0100‑40422005000300030 [ Links ]

    24. Li R, Nie K, Pang W and Zhu Q. Morphology and properties of organic–inorganic hybrid materials involving TiO2 and poly(ε‑caprolactone), a biodegradable aliphatic polyester. Journal of Biomedical Materials Research Part A. 2007; 83:114‑122. PMid:17385234. http://dx.doi.org/10.1002/jbm.a.31224 [ Links ]

    25. Fukushima K, Tabuani D, Abbate C, Arena M and Rizzarelli P. Preparation, characterization and biodegradation of biopolymer nanocomposites based on fumed silica. European Polymer Journal. 2011; 47:139-152. http://dx.doi.org/10.1016/j.eurpolymj.2010.10.027 [ Links ]

    26. Fukushima K, Tabuani D and Camino G. Nanocomposites of PLA and PCL based on montmorillonite and sepiolite. Materials Science and Engineering: C. 2009; 29:1433-1441. http://dx.doi.org/10.1016/j.msec.2008.11.005 [ Links ]

    27. Sivalingam G and Madras G. Thermal degradation of binary physical mixtures and copolymers of poly(ε-caprolactone), poly(d, l-lactide), poly(glycolide). Polymer Degradation and Stability. 2004; 84:393-398. http://dx.doi.org/10.1016/j.polymdegradstab.2003.12.008 [ Links ]

    28. Draye AC, Persenaire O, Brožek J, Roda J, Košek T and Dubois Ph. Thermogravimetric analysis of poly(ε-caprolactam) and poly[(ε-caprolactam)-co-(ε-caprolactone)] polymers. Polymer. 2001; 42:8325-8332. http://dx.doi.org/10.1016/S0032-3861(01)00352-4 [ Links ]

    29. Ray SS and Bousmina M. Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Progress in Materials Science. 2005; 50:962‑1079. http://dx.doi.org/10.1016/j.pmatsci.2005.05.002 [ Links ]

    30. Liao L, Zhang C, Gong S. Preparation of Poly(ε‑caprolactone)/Clay Nanocomposites by Microwave-Assisted In Situ Ring-Opening Polymerization. Macromolecular Rapid Communications. 2007; 28:1148-1154. http://dx.doi.org/10.1002/marc.200700063 [ Links ]

    31. Tavares MIB, Ferreira O, Preto MSM, Miguez E, Soares IL and Silva EP. Evaluation of Composites Miscibility by Low Field NMR. International Journal of Polymeric Materials. 2007; 56(4):1113-1118. http://dx.doi.org/10.1080/00914030701283063 [ Links ]

    32. Bruno M, Tavares MIB, Motta LM, Miguez E, Preto M and Fernandez AOR. Evaluation of PHB/Clay nanocomposite by spin-lattice relaxation time. Materials Research. 2008; 4:483. http://dx.doi.org/10.1590/S1516-14392008000400018 [ Links ]

    33. Preto M, Tavares MIB and Silva EP. Low-field NMR study of Nylon 6/silica composites. Polymer Testing. 2007; 26:501-504. http://dx.doi.org/10.1016/j.polymertesting.2007.01.009 [ Links ]

    34. Hayashi S and Omi H. Proton diffusion in the room-temperature phase of [(NH4)1-xRbx]3H(SO4)2 as studied by 1H spin-lattice relaxation in the rotating fram. Solid State Nuclear Magnetic Resonance. 2010; 37:69-74. PMid:20627482. http://dx.doi.org/10.1016/j.ssnmr.2010.05.002e [ Links ]

    35. Arantes TM, Leão KV, Tavares MIB, Ferreira AG, Longo E and Camargo ER. NMR study of styrene-butadiene rubber (SBR) and TiO2 nanocomposites. Polymer Test. 2009; 28:490-494. http://dx.doi.org/10.1016/j.polymertesting.2009.03.011 [ Links ]

    36. Kwak SY and Kim SY. Microphase structures of polymers containing structural heterogeneity as probed by n.m.r. spin‑lattice relaxation analysis. Polymer. 1998; 39(17):4099‑4105. http://dx.doi.org/10.1016/S0032-3861(97)10229-4 [ Links ]