SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Article References

ROGERO, Marcelo Macedo  and  TIRAPEGUI, Julio. Aspectos atuais sobre aminoácidos de cadeia ramificada e exercício físico. Rev. Bras. Cienc. Farm. [online]. 2008, vol.44, n.4, pp. 563-575. ISSN 1516-9332.  http://dx.doi.org/10.1590/S1516-93322008000400004.

    ANTHONY, J.C.; ANTHONY, T.G.; KIMBALL, S.R.; JEFFERSON, L.S. Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. J. Nutr., v.131, n.3, p.856S-860S, 2001. [ Links ]

    ANTHONY, J.C.; LANG, C.H.; CROZIER, S.J.; ANTHONY, T.G.; MACLEAN, D.A.; KIMBALL, S.R.; JEFFERSON, L.S. Contribution of insulin to the translational control of protein synthesis in skeletal muscle by leucine. Am. J. Physiol. Endocrinol. Metab., v.282, n.5, p.E1092-E1101, 2002a. [ Links ]

    ANTHONY, J.C.; REITER, A.K.; ANTHONY, T.G.; CROZIER, S.J.; LANG, C.H.; MACLEAN, D.A. KIMBALL, S.R.; JEFFERSON, L.S. Orally administered leucine enhances protein synthesis in skeletal muscle of diabetic rats in the absence of increases in 4E-BP1 or S6K1 phosphorylation. Diabetes, v.51, n.4, p.928-936, 2002b. [ Links ]

    ANTHONY, J.C.; YOSHIZAWA, F.; ANTHONY, T.G.; VARY, T.C.; JEFFERSON, L.S.; KIMBALL, S.R. Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J. Nutr., v.130, n.10, p.2413-2419, 2000. [ Links ]

    BASSIT, R.A.; SAWADA, L.A.; BACURAU, R.F.; NAVARRO, F.; COSTA ROSA, L.F.The effect of BCAA supplementation upon the immune response of triathletes. Med. Sci. Sports Exerc., v.32, n.7, p.1214-1219, 2000. [ Links ]

    BLOMSTRAND, E. A role for branched-chain amino acids in reducing central fatigue. J. Nutr., v.136, n.2, p.544S-547S, 2006. [ Links ]

    BLOMSTRAND, E.; ELIASSON, J.; KARLSSON, H.K.; KOHNKE, R. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J. Nutr., v.136, p.269S-273S, 2006. [ Links ]

    BOLSTER, D.R.; JEFFERSON, L.S.; KIMBALL, S.R. Regulation of protein synthesis associated with skeletal muscle hypertrophy by insulin-, amino acid- and exercise-induced signalling. Proc. Nutr. Soc., v.63, n.2, p.351-356, 2004. [ Links ]

    BRODY, T. Nutritional biochemistry. 2. ed. San Diego: Academic Press, 1999, 658p. [ Links ]

    BROSNAN, J.T.; BROSNAN, M.E. Branched-chain amino acids: enzyme and substrate regulation. J. Nutr., v.136, p.207S-211S, 2006. [ Links ]

    CALDERS, P.; MATTHYS, D.; DERAVE, W. Effect of branched-chain amino acids (BCAA), glucose, and glucose plus BCAA on endurance performance in rats. Med. Sci. Sports Exerc., v.31, n.4, p.583-587, 1999. [ Links ]

    COOMBES, J.S.; MCNAUGHTON, L.R. Effects of branched-chain amino acid supplementation on serum creatine kinase and lactate dehydrogenase after prolonged exercise. J. Sports Med. Phys. Fitness, v.40, n.3, p.240-246, 2000. [ Links ]

    CROZIER, S.J.; KIMBALL, S.R.; EMMERT, S.W.; ANTHONY, J.C.; JEFFERSON, L.S. Oral leucine administration stimulates protein synthesis in rat skeletal muscle. J. Nutr., v.135, n.3, p.376-382, 2005. [ Links ]

    CYNOBER, L.; HARRIS, R.A. Symposium on branched-chain amino acids: conference summary. J. Nutr., v.136, p.333S-336S, 2006. [ Links ]

    DAVIS, J.M.; ALDERSON, N.L.; WELSH, R.S. Serotonin and central nervous system fatigue: nutritional considerations. Am. J .Clin. Nutr., v.72, p.573S-578S, 2000. [ Links ]

    DAVIS, J.M.; WELSH, R.S.; DE VOLVE, K.L.; ALDERSON, N.A. Effects of branched-chain amino acids and carbohydrate on fatigue during intermittent, high-intensity running. Int. J. Sports Med., v.20, n.5, p.309-314, 1999. [ Links ]

    DECOMBAZ, J.; REINHARDT, P.; ANANTHARAMAN, K.; VON GLUTZ, G.; POORTMANS, J.R. Biochemical changes in a 100 km run: free amino acids, urea, and creatinine. Eur. J. Appl. Physiol. Occup. Physiol., v.41, n.1, p.61-72, 1979. [ Links ]

    DELDICQUE, L.; THEISEN, D.; FRANCAUX, M. Regulation of mTOR by amino acids and resistance exercise in skeletal muscle. Eur. J. Appl. Physiol., v.94, n.1-2, p.1-10, 2005. [ Links ]

    FERNSTROM, J.D.; FERNSTROM, M.H. Exercise, serum free tryptophan, and central fatigue. J. Nutr., v.136, n.2, p.553S-559S, 2006. [ Links ]

    GARLICK, P.J.; GRANT, I. Amino acid infusion increases the sensitivity of muscle protein synthesis in vivo to insulin. Effect of branched-chain amino acids. Biochem. J., v.254, n.2, p.579-584, 1998. [ Links ]

    HARPER, A.E.; MILLER, R.H.; BLOCK, K.P. Branched-chain amino acid metabolism. Annu. Rev. Nutr., v.4, p.409-454, 1984. [ Links ]

    HARRIS, R.A.; JOSHI, M.; JEOUNG, N.H. Mechanisms responsible for regulation of branched-chain amino acid catabolism. Biochem. Biophys. Res. Commun., v.313, n.2, p.391-396, 2004. [ Links ]

    HARRIS, R.A.; JOSHI, M.; JEOUNG, N.H.; OBAYASHI, M. Overview of the molecular and biochemical basis of branched-chain amino acid catabolism. J. Nutr., v.135, p.1527S-1530S, 2005. [ Links ]

    HOUSTON, M.E. Gaining weight: the scientific basis of increasing skeletal muscle mass. Can. J. Appl. Physiol., v.24, n.4, p.305-316, 1999. [ Links ]

    HUTSON, S.M.; SWEATT, A.J.; LANOUE, K.F. Branched-chain amino acid metabolism: implications for establishing safe intakes. J. Nutr., v.135, p.1557S-1564S, 2005. [ Links ]

    KARLSSON, H.K.; NILSSON, P.A.; NILSSON, J.; CHIBALIN, A.V.; ZIERATH, J.R.; BLOMSTRAND, E. Branched-chain amino acids increase p70S6k phosphorylation in human skeletal muscle after resistance exercise. Am. J. Physiol. Endocrinol. Metab., v.287, n.1, p.E1-E7, 2004. [ Links ]

    KIMBALL, S.R.; JEFFERSON, L.S. New functions for amino acids: effects on gene transcription and translation. Am. J. Clin. Nutr., v.83, n.2, p.500S-507S, 2006a. [ Links ]

    KIMBALL, S.R.; JEFFERSON, L.S. Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J. Nutr., v.136, p.227S-231S, 2006b. [ Links ]

    KOOPMAN, R.; WAGENMAKERS, A.J.; MANDERS, R.J.; ZORENC, A.H.; SENDEN, J.M.; GORSELINK, M.; KEIZER, H.A.; VAN LOON, L.J. Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjects. Am. J. Physiol. Endocrinol. Metab., v.288, n.4, p.E645-E653, 2005. [ Links ]

    KRZYWKOWSKI, K.; PETERSEN, E.W.; OSTROWSKI, K.; AMSTER, H.L.; BOZA, J.; KRISTENSEN, J.H.; PEDERSEN, B.K. Effect of glutamine supplementation and protein supplementation on exercise-induced decreases in salivary IgA. J. Appl. Physiol., v.91, p.832-838, 2001a. [ Links ]

    KRZYWKOWSKI, K.; PETERSEN, E.W.; OSTROWSKI, K.; KRISTENSEN, J.H.; BOZA, J.; PEDERSEN, B.K. Effect of glutamine supplementation on exercise-induced changes in lymphocyte function. Am. J. Physiol. Cell Physiol., v.281, p.C1259-C1265, 2001b. [ Links ]

    LI, J.B.; JEFFERSON, L.S. Influence of amino acid availability on protein turnover in perfused skeletal muscle. Biochim. Biophys. Acta., v.544, n.2, p.351-359, 1978. [ Links ]

    MARCHINI, J.S.; MORIGUTI, J.C.; PADOVAN, G.J.; NONINO, C.B.; VIANNA, S.M.L.; OLIVEIRA, J.E.D. Métodos atuais de investigação do metabolismo protéico: Aspectos básicos e estudos experimentais e clínicos. Medicina, v.31, n.1, p.22-30, 1998. [ Links ]

    MCKENZIE, S.; PHILLIPS, S.M.; CARTER, S.L.; LOWTHER, S.; GIBALA, M.J.; TARNOPOLSKY, M.A. Endurance exercise training attenuates leucine oxidation and BCOAD activation during exercise in humans. Am. J. Physiol. Endocrinol. Metab., v.278, n.4, p.E580-E587, 2000. [ Links ]

    MERO, A. Leucine supplementation and intensive training. Sports Med., v.27, n.6, p.347-358, 1999. [ Links ]

    MILLER, S.L.; TIPTON, K.D.; CHINKES, D.L.; WOLF, S.E.; WOLFE, R.R. Independent and combined effects of amino acid and glucose after resistance exercise. Med. Sci. Sports Exerc., v.35, n.3, p.449-455, 2003. [ Links ]

    MITTLEMAN, K.D.; RICCI, M.R.; BAILEY, S.P. Branched-chain amino acids prolong exercise during heat stress in men and women. Med. Sci. Sports Exerc., v.30, n.1, p.83-91, 1998. [ Links ]

    NIELSEN, B.; SAVARD, G.; RICHTER, E.A.; HARGREAVES, M.; SALTIN, B. Muscle blood flow and muscle metabolism during exercise and heat stress. J. Appl. Physiol., v.69, n.3, p.1040-1046, 1990. [ Links ]

    NIEMAN, D.C.; PEDERSEN, B.K. Exercise and immune function. Recent developments. Sports Med., v.27, n.2, p.73-80, 1999. [ Links ]

    NORTON, L.E.; LAYMAN, D.K. Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J. Nutr., v.136, n.2, p.533S-537S, 2006. [ Links ]

    PARRY-BILLINGS, M.; BUDGETT, R.; KOUTEDAKIS, Y.; BLOMSTRAND, E.; BROOKS, S.; WILLIAMS, C.; CALDER, P.C.; PILLING, S.; BAIGRIE, R.; NEWSHOLME, E.A. Plasma amino acid concentration in the overtraining syndrome: possible effects on the immune system. Med. Sci. Sport. Exerc., v.24, n.12, p.1353-1358, 1992. [ Links ]

    RENNIE, M.J.; EDWARDS, R.H.T.; KRYWAWYCH, S.; DAVIES, C.T.; HALLIDAY, D.; WATERLOW, J.C.; MILLWARD, D.J. Effect of exercise on protein turnover in man. Clin. Sci., v.61, n.5, p.627-639, 1981. [ Links ]

    RENNIE, M.J.; TIPTON, K.D. Protein and amino acid metabolism during and after exercise and the effects of nutrition. Annu. Rev. Nutr., v.20, p.457-483, 2000. [ Links ]

    ROGERO, M.M.; TIRAPEGUI, J. Aspectos atuais sobre glutamina, atividade física e sistema imune. Rev. Bras. Cien. Farm., v.36, n.2, p.201-212, 2000. [ Links ]

    ROGERO, M.M.; TIRAPEGUI, J.; PEDROSA, R.G.; CASTRO, I.A.; PIRES, I.S. Effect of alanyl-glutamine supplementation on plasma and tissue glutamine concentrations in rats submitted to exhaustive exercise. Nutrition, v.22, n.5, p.564-571, 2006. [ Links ]

    SAVARD, G.K.; NEILSEN, B.; LASZCZYNSKA, I.; LARSEN, B.E.; SALTIN, B. Muscle blood flow is not reduced in humans during moderate exercise and heat stress. J. Appl. Physiol., v.64, n.2, p.649-657, 1988. [ Links ]

    SHAH, O.J.; ANTHONY, J.C.; KIMBALL, S.R.; JEFFERSON, L.S. 4E-BP1 and S6K1: translational integration sites for nutritional and hormonal information in muscle. Am. J. Physiol. Endocrinol. Metab., v.279, n.4, p.E715-E729, 2000. [ Links ]

    SHIMOMURA, Y.; FUJII, H.; SUZUKI, M.; MURAKAMI, T.; FUJITSUKA, N.; NAKAI, N. Branched-chain alpha-keto acid dehydrogenase complex in rat skeletal muscle: regulation of the activity and gene expression by nutrition and physical exercise. J. Nutr., v.125, n. p.1762S-1765S, 1995. [ Links ]

    SHIMOMURA, Y.; HARRIS, R.A. Metabolism and physiological function of branched-chain amino acids: discussion of session 1.J. Nutr., v.136, n. p.232S-233S, 2006. [ Links ]

    SHIMOMURA, Y.; HONDA, T.; SHIRAKI, M.; MURAKAMI, T.; SATO, J.; KOBAYASHI, H.; MAWATARI, K.; OBAYASHI, M.; HARRIS, R.A. Branched-chain amino acid catabolism in exercise and liver disease. J. Nutr., v.136, n. p.250S-253S, 2006b. [ Links ]

    SHIMOMURA, Y.; MURAKAMI, T.; NAKAI, N.; NAGASAKI, M.; HARRIS, R.A. Exercise promotes BCAAcatabolism: effects of BCAA supplementation on skeletal muscle during exercise. J. Nutr., v.134, n. p.1583S-1587S, 2004. [ Links ]

    SHIMOMURA, Y.; OBAYASHI, M.; MURAKAMI, T.; HARRIS, R.A. Regulation of branched-chain amino acid catabolism: nutritional and hormonal regulation of activity and expression of the branched-chain alpha-keto acid dehydrogenase kinase. Curr. Opin. Clin. Nutr. Metab. Care, v.4, n.5, p.419-423, 2001. [ Links ]

    SHIMOMURA, Y.; YAMAMOTO, Y.; BAJOTTO, G.; SATO, J.; MURAKAMI, T.; SHIMOMURA, N.; KOBAYASHI, H.; MAWATARI, K. Nutraceutical effects of branched-chain amino acids on skeletal muscle. J. Nutr., v.136, n.2, p.529S-532S, 2006a. [ Links ]

    SHIRAKI, M.; SHIMOMURA, Y.; MIWA, Y.; FUKUSHIMA, H.; MURAKAMI, T.; TAMURA, T.; MORIWAKI, H. Activation of hepatic branched-chain alpha-keto acid dehydrogenase complex by tumor necrosis factor-alpha in rats. Biochem. Biophys. Res. Commun., v.328, n.4, p.973-978, 2005. [ Links ]

    TARNOPOLSKY, M. Protein requirements for endurance athletes. Nutrition, v.20, n.7-8, p.662-668, 2004. [ Links ]

    TIPTON, K.D.; ELLIOTT, T.A.; CREE, M.G.; WOLF, S.E.; SANFORD, A.P.; WOLFE, R.R. Ingestion of casein and whey proteins result in muscle anabolism after resistance exercise. Med. Sci. Sports Exerc., v.36, n.12, p.2073-2081, 2004. [ Links ]

    TIPTON. K.D.; WOLFE, R.R. Protein and amino acids for athletes. J. Sports Sci., v.22, n.1, p.65-79, 2004. [ Links ]

    TOM, A.; NAIR, K.S. Assessment of branched-chain amino acid status and potential for biomarkers. J. Nutr., v.136, n. p.324S-330S, 2006. [ Links ]

    TORRES, N.; LOPEZ, G.; DE SANTIAGO, S.; HUTSON, S.M.; TOVAR, A.R. Dietary protein level regulates expression of the mitochondrial branched-chain aminotransferase in rats. J. Nutr., v.128, n.8, p.1368-1375, 1998. [ Links ]

    VAN HALL, G.; RAAYMAKERS, J.S.; SARIS, W.H.; WAGENMAKERS, AJ. Ingestion of branched-chain amino acids and tryptophan during sustained exercise in man: failure to affect performance. J. Physiol., v.486, n. p.789-794, 1995. [ Links ]

    WAGENMAKERS, A.J. Muscle amino acid metabolism at rest and during exercise: role in human physiology and metabolism. Exerc. Sport Sci. Rev., v.26, n. p.287-314, 1998. [ Links ]

    WATSON, P.; SHIRREFFS, S.M.; MAUGHAN, R.J. The effect of acute branched-chain amino acid supplementation on prolonged exercise capacity in a warm environment. Eur. J. Appl. Physiol., v.93, n.3, p.306-314, 2004. [ Links ]

    XU, M.; NAGASAKI, M.; OBAYASHI, M.; SATO, Y.; TAMURA, T.; SHIMOMURA, Y. Mechanism of activation of branched-chain alpha-keto acid dehydrogenase complex by exercise. Biochem. Biophys. Res. Commun, v.287, n.3, p.752-756, 2001. [ Links ]