SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Article References

PANVELOSKI-COSTA, Ana Carolina; PAPOTI, Marcelo; MOREIRA, Rafael Junges  and  SERAPHIM, Patricia Monteiro. Respostas lactacidêmicas de ratos ao treinamento intermitente de alta intensidade. Rev Bras Med Esporte [online]. 2012, vol.18, n.2, pp. 122-125. ISSN 1517-8692.  http://dx.doi.org/10.1590/S1517-86922012000200012.

    1. Yaspelkis BB, Kvasha IA, Figueroa TY. High-fat feeding increases insulin receptor and IRS-1 coimmunoprecipitation with SOCS3, IKKalpha/beta phosphorylation and decreases PI-3 kinase activity in muscle. Am J Physiol Regul Integr Comp Physiol 2009;296:1709-15. [ Links ]

    2. Araujo GG, Papoti M, Gobatto-Manchado FB, Mello MAR, Gobatto CA. Padronizao de um protocolo experimental de treinamento periodizado em natao utilizando ratos Wistar. Rev Bras Med Esporte 2010;19:51-6. [ Links ]

    3. Lima C, Alves LE, Iagher F, Machado AF, Bonatto SJ, Kuczera D, et al. Anaerobic exercise reduces tumor growth, cancer cachexia and increases macrophage and lymphocyte response in Walker 256 tumor-bearing rats. Eur J Appl Physiol 2008;104:957-64. [ Links ]

    4. Souza CF, Machado AF, Bonatto SJR, Grando FCC, Pessini C, Alves LE, et al. Neutrophil response of anaerobic jump trained diabetic rats. Eur J Appl Physiol 2008;104:1079-86. [ Links ]

    5. Tamaki T, Uchiyama S, Nakano S. A weight-lifting exercise model for inducing hypertrophy in the hindlimb muscles of rats. Med Sci Sports Exer 1992;24:881-6. [ Links ]

    6. Barana VG, Junior MLB, Costa Rosa, LFBP, Casarini DE, Krieger JE, Oliveira EM. Cardiovascular adaptations in rats submitted to a resistance-training model. Clin Exp Pharmacol Physiol 2005;32:249-54. [ Links ]

    7. Tonon CR, Mello MAR, Dias TF, Anaruma CA. Teor Protico da Dieta e Crescimento Muscular em Ratos Submetidos ao Treinamento Anaerbio. Motriz 2001;7:69-74. [ Links ]

    8. Faria TO, Targueta GP, Angeli JK, Almeida EAS, Stefanon I, Vassallo DV et al. Acute resistance exercise reduces blood pressure and vascular reactivity, and increases endothelium-dependent relaxation in spontaneously hypertensive rats. Eur J Appl Physiol 2010;110:359-66. [ Links ]

    9. Laursen PB, Rhodes EC, Langill RH, McKenzie DC, Taunton JE. Relationship of exercise test variables to cycling performance in an Ironman triathlon. Eur J Appl Physiol 2002;87:433-40. [ Links ]

    10. Bertuzzi RCM, Silva AEL, Pires FO, Kiss MAPD. Visual determination of the fast component of excessive oxygen uptake after exercise. Rev Bras Med Esporte 2010;16:139-43. [ Links ]

    11. Silva ARS, Santiago V, Papoti M, Gobatto CA. Psychological, biochemical and physiological responses of Brazilian soccer players during a training program. Science & Sports 2008;23:66-72. [ Links ]

    12. Handschin C, Spiegelman BM. The role of exercise and PGC-1 in inflammation and chronic disease. Nature 2008;454:463-9. [ Links ]

    13. Wells GD, Selvadurai H, Tein I. Bioenergetic provision of energy for muscular activity. Paediatr Respir Rev 2009;10:83-90. [ Links ]

    14. Da Costa Santos VB, Ruiz RJ, Vettorato ED, Nakamura FY, Juliani LC, Polito MD, et al. Effects of chronic caffeine intake and low-intensity exercise on skeletal muscle of Wistar rats. Exp Physiol 2011;96:1228-38. [ Links ]

    15. Gorostiaga EM, Navarro-Amzqueta I, Cusso R, Hellsten Y, Calbet JAL, Guerrero M, et al. Anaerobic Energy Expenditure and Mechanical Efficiency during Exhaustive Leg Press Exercise. PLoS One 2010;19:1-11. [ Links ]

    16. Fattor JA, Miller BF, Jacobs KA, Brooks GA. Catecholamine response is attenuated during moderate-intensity exercise in response to the "lactate clamp". Am J Physiol Endocrinol Metab 2005;288:143-7. [ Links ]

    17. Krzemiński K, Kruk B, Nazar K, Ziemba AW, Cybulski G, Niewiadomski W. Cardiovascular, metabolic and plasma catecholamine responses to passive and active exercises. J Physiol Pharmacol 2000;51:267-78. [ Links ]

    18. MacDougall JD, Ward GR, Sale DG, Sutton JR. Biochemical adaptation of human skeletal muscle to heavy resistance training and immobilization. J Appl Physiol 1977;43:700-3. [ Links ]

    19. Larsen RG, Callahan DM, Foulis SA, Kent-Braun JA. In vivo oxidative capacity varies with muscle and training status in young adults. J Appl Physiol 2009;107:873-9. [ Links ]

    20. Yoshida T. The rate of phosphocreatine hydrolysis and resynthesis in exercising muscle in humans using 31P-MRS. J Physiol Anthropol Appl Human Sci 2002;21:247-55. [ Links ]

    21. Paganini AT, Foley JM, Meyer RA. Linear dependence of muscle phosphocreatine kinetics on oxidative capacity. Am J Physiol 1997;272:501-10. [ Links ]

    22. Forbes SC, Paganini AT, Slade JM, Towse TF, Meyer RA. Phosphocreatine recovery kinetics following low- and high-intensity exercise in human triceps surae and rat posterior hindlimb muscles. Am J Physiol Regul Integr Comp Physiol 2009;296:161-70. [ Links ]

    23. Mogensen M, Bagger M, Pedersen PK, Fernstrom M, Sahlin K. Cycling efficiency in humans is related to low UCP3 content and to type I fibres but not to mitochondrial efficiency. J Physiol 2006;571:669-81. [ Links ]

    24. Gibala M. Molecular responses to high-intensity interval exercise. Appl Physiol Nutr Metab 2009;34:428-32. [ Links ]

    25. Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, MacDonald MJ, McGee SL, Gibala MJ. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 2008;586:151-60. [ Links ]