SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Article References

FERNANDES, Tiago et al. O treinamento físico aeróbio corrige a rarefação capilar e as alterações nas proporções dos tipos de fibra muscular esquelética em ratos espontaneamente hipertensos. Rev Bras Med Esporte [online]. 2012, vol.18, n.4, pp. 267-272. ISSN 1517-8692.  http://dx.doi.org/10.1590/S1517-86922012000400010.

    1. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003;42:1206-52. [ Links ]

    2. Pereira M, Lunet N, Azevedo A, Barros H. Differences in prevalence, awareness, treatment and control of hypertension between developing and developed countries. J Hypertens 2009;27:963-75. [ Links ]

    3. Lévy BI, Ambrosio G, Pries AR, Struijker-Boudier HAJ. Microcirculation in hypertension: a new target for treatment? Circulation 2001;104:735-40. [ Links ]

    4. Feihl F, Liaudet L, Waeber B, Lévy BI. Hypertension: A disease of the microcirculation? Hypertension 2006;48:1012-7. [ Links ]

    5. Greene AS, Tonellato PJ, Lui J, Lombard JH, Cowley AW Jr. Microvascular rarefaction and tissue vascular resistance in hypertension. Am J Physiol 1989;256:126-31. [ Links ]

    6. Antonios TF, Singer DR, Markandu ND, Mortimer PS, MacGregor GA. Rarefaction of skin capillaries in borderline essential hypertension suggests an early structural abnormality. Hypertension 1999;34:655-8. [ Links ]

    7. Juhlin-Dannfelt A, Frisk-Holmberg M, Karlsson J, Tesch P. Central and peripheral circulation in relation to muscle-fiber composition in normo-and hypertensive man. Clin Sci 1979;56:335-40. [ Links ]

    8. Ben Bachir-Lamrini L, Sempore B, Mayet MH, Favier RJ. Evidence of a slow-to-fast fiber type transition in skeletal muscle from spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 1990;258:352-7. [ Links ]

    9. Lewis DM, Levi AJ, Brooksby P, Jones JV. A faster twitch contraction of soleus in the spontaneously hypertensive rat is partly due to changed fiber type composition. Exp Physiol 1994;79:377-86. [ Links ]

    10. Bortolotto SK, Stephenson DG, Stephenson GMM. Fiber type populations and Ca2+ activation properties of single fibers in soleus muscles from SHR and WKY rats. Am J Physiol Cell Physiol 1999;276:628-37. [ Links ]

    11. Nagatomo F, Gu N, Fujino H, Takeda I, Tsuda K, Ishihara A. Skeletal muscle characteristics of rats with obesity, diabetes, hypertension, and hyperlilidemia. J Atheroscler Thromb 2009;16:576-85. [ Links ]

    12. Carlsen RC, Gray S. Decline of isometric force and fadigue resistance in skeletal muscle from spontaneously hypertensive rats. Exp Neurol 1987;95:249-64. [ Links ]

    13. Hagberg JM, Park JJ, Brown MD. The role of exercise training in the treatment of hypertension: an update. Sports Med 2000;30:193-206. [ Links ]

    14. Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a metaanalysis of randomized, controlled trials. Ann Intern Med 2002;136:493-503. [ Links ]

    15. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med 2002;346:793-801. [ Links ]

    16. Amaral SL, Zorn TM, Michelini LC. Exercise training normalizes wall-to-lumen ratio of the gracilis muscle arterioles and reduces pressure in spontaneously hypertensive rats. J Hypertens 2000;18:1563-72. [ Links ]

    17. Amaral SL, Silveira NP, Zorn TM, Michelini LC. Exercise training causes skeletal muscle venular growth and alters hemodynamic responses in spontaneously hypertensive rats. J Hypertens 2001;19:931-40. [ Links ]

    18. Melo RP, Jr Martinho E, Michelini LC. Training-induced, pressure-lowering effect in SHR wide effects on circulatory profile of exercised and nonexercised muscles. Hypertension 2003;42:851-7. [ Links ]

    19. Fernandes T, Hashimoto NY, Magalhães FC, Fernandes FB, Casarini DE, Carmona AK, et al. Aerobic exercise training-induced left ventricular hypertrophy involves regulatory MicroRNAs, decreased angiotensin-converting enzyme-angiotensin ii, and synergistic regulation of angiotensin-converting enzyme 2-angiotensin (1-7). Hypertension 2011;58:182-9. [ Links ]

    20. Brooks GA, White TP. Determination of metabolic and rate response of rats to treadmill exercise. Am J Physiol 1978;45:1009-14. [ Links ]

    21. Brooke MH, Kaiser KK. Muscle fiber types: how many and what kind? Arch Neurol 1970;23:369-79. [ Links ]

    22. Sillau AH, Banchero N. Visualization of capillaries in skeletal muscle by the ATPase reaction. Pflügers Arch 1977;369:269-71. [ Links ]

    23. Alp PR, Newsholme EA, Zammit VA. Activities of citrate synthase and NAD+-linked and NADP+-linked isocitrate dehydrogenase in muscle from vertebrates and invertebrates. Biochem J 1976;154:689-700. [ Links ]

    24. Wibom R, Hultman E, Johansson M, Matherei K, Constantin-Teodosiu D, Schantz PG. Adaptation of mitochondrial ATP production in human skeletal muscle to endurance training and detraining. J Appl Physiol 1992;73:2004-10. [ Links ]

    25. Hamer NK. Effect of walking on blood-pressure in systemic hypertension. Lancet 1967;2:114-8. [ Links ]

    26. Laterza MC, De Matos LD, Trombetta IC, Braga AM, Roveda F, Alves MJ, et al. Exercise training restores baroreflex sensitivity in never-treated hypertensive patients. Hypertension 2007;49:1298-306. [ Links ]

    27. Amaral SL, Papanek PE, Greene AS. Angiotensin II and VEGF are involved in angiogenesis induced by short-term exercise training. Am J Physiol Heart Circ Physiol 2001;281:H1163-9. [ Links ]

    28. Bacurau AVN, Jardim MA, Ferreira JCB, Bechara LRG, Bueno Júnior C, Alba-Loureiro TC, et al. Sympathetic hyperactivity differentially affects skeletal muscle mass in developing heart failure: role of exercise training. J Appl Physiol 2009;106:1631-40. [ Links ]

    29. Brown MD, Cotter MA, Hudlicka O, Vrbova G. The effects of different patterns of muscle activity on capillary density, mechanical properties and structure of slow a fast rabbit muscle. Pflügers Arch 1976;361:241-50. [ Links ]

    30. Hori A, Ishihara A, Kobayashi S, Ibata Y. Immunohistochemical classification of skeletal muscle fibers. Acta Histochem Cytochem 1998;31:375-84. [ Links ]

    31. Minami N, Li Y, Guo Q, Kawamura T, Mori N, Nagasaka M, et al. Effects of angiotensin-converting enzyme inhibitor and exercise training on exercise capacity and skeletal muscle. J Hypertens 2007;25:1241-8. [ Links ]

    32. Guo Q, Minami N, Mori N, Nagasaka M, Ito O, Kurosawa H, et al. Effects of antihypertensive drugs and exercise training on insulin sensitivity in spontaneously hypertensive rats. Hypertens Res 2008;31:525-33. [ Links ]