SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Article References

MURTHY, K. Sundara  and  RAJENDRAN, I.. Optimization of end milling parameters under minimum quantity lubrication using principal component analysis and grey relational analysis. J. Braz. Soc. Mech. Sci. & Eng. [online]. 2012, vol.34, n.3, pp. 253-261. ISSN 1678-5878.  http://dx.doi.org/10.1590/S1678-58782012000300005.

    Abburi, N.R., Dixit, U.S., 2007, "Multi-Objective Optimization of Multipass Turning Processes", Int. J. Adv. Manuf. Technol., Vol. 32, pp. 902-910. [ Links ]

    Agustin Gajate, Rodolfo E. Haber, José R. Alique, and Pastora I. Vega, 2009, "Transductive-Weighted Neuro-fuzzy Inference System for Tool Wear Prediction in a Turning Process", E. Corchado et al. (Eds.): HAIS, LNAI 5572, pp.113-120. [ Links ]

    Biswas, C.K., Chawla, B.S., Das, N.S., Srinivas, E.R.K.N.K., 2008, "Tool Wear reduction using Neuro- Fuzzy System", IE(I) Journal (PR), Vol. 89, pp. 42-46. [ Links ]

    Bouzid Sai, W., 2005, "An investigation of tool wear in high-speed turning of AISI 4340 steel", Int. J. Adv.. Manuf. Technol., Vol. 26, pp. 330-334. [ Links ]

    Caldeirani Filho, J. and Diniz, A.E., 2002, "Influence of Cutting Conditions on Tool Life, Tool Wear and Surface Finish in the Face Milling Process", J. Braz. Soc. Mech. Sci., Vol. 24, No. 1, pp. 10-14. [ Links ]

    Choudhury, S.K., Bartarya, G., 2003, "Role of temperature and surface finish in predicting tool wear using neural network and design of experiments", International Journal of Machine Tools and Manufacture, Vol. 43, No. 7, pp. 747-753. [ Links ]

    Chun-Pao Kuo, Sen-Chieh Su, Shao-Hsien Chen, 2010, "Tool life and surface integrity when milling inconel 718 with coated cemented carbide tools", Journal of the Chinese Institute of Engineers, Vol. 33, No. 6, pp. 915-922. [ Links ]

    David Kerr, James Pengilley, Robert Garwood, 2006, "Assessment and visualization of machine tool wear using computer vision", Int J Adv Manuf. Technol. Vol. 28, pp. 781-791. [ Links ]

    Debabrata Mandal, Surjya K. Pal and Partha Saha, 2007, "Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non dominating sorting genetic algorithm-II", Journal of Materials Processing Technology, Vol. 186, pp. 154-162. [ Links ]

    Dimla Snr., D.E., 2002, "The Correlation of Vibration Signal Features to Cutting Tool Wear in a Metal Turning Operation", Int. J. Adv. Manuf. Technol., Vol. 19, pp. 705-713. [ Links ]

    Erol Kilickap and Ali Inan, 2006, "A study on machinability of Al Si7 Mg2/SiCp metal matrix composite", International Journal of Machining and Machinability of Materials", Vol. 1, No. 4, pp. 463-475. [ Links ]

    Jacob C. Chen, Joseph C. Chen, 2005, "An artificial-neural-networks-based in-process tool wear prediction system in milling operations", Int. J. Adv. Manuf. Technol., Vol. 25, pp. 427-434. [ Links ]

    Jenn-Tsong Hornga, Nun-Ming Liua and Ko-Ta Chiang, 2008, "Investigating the machinability evaluation of Hadfield steel in the hard turning with Al2O3/TiC mixed ceramic tool based on the response surface methodology", Journal of Materials Processing Technology, Vol. 208, No.1-3, pp. 532-541. [ Links ]

    Joshi, S.S, Ramakrishnan, N., Nagarwalla, H.E. and Ramakrishnan, P., 1999, "Wear of Rotary Carbide Tools in Machining of Al/SiCp Composites", Wear, Vol. 230, pp. 124-132. [ Links ]

    Jurkovic, J., Korosec, M. and Kopac, J., 2005, "New approach in tool wear measuring technique using CCD vision system", International Journal of Machine Tools and Manufacture, Vol. 45, No. 9, pp. 1023-1030. [ Links ]

    Li, X., Dong, S. and Venuvinod, P.K., 2002, "Hybrid Learning for Tool Wear Monitoring", The International Journal of Advanced Manufacturing Technology, Vol. 16 No. 5, pp. 303-307. [ Links ]

    Lorentzon, J., Jarvstrat, N., 2009, "Modelling the influence of carbides on tool wear", Archives of Computational Materials Science and Surface Engineering, Vol. 1, No. 1, pp. 29-37. [ Links ]

    Mantana Srinang and Asa Prateepasen, 2008, "Coherence function model for tool wear monitoring", Songklanakarin J. Sci. Technol., Vol. 30, No. 1, pp. 93-99. [ Links ]

    Nagi Elmagrabi, Che Hassan, C.H., Jaharah, A.G. and Shuaeib, F.M., 2008, "High Speed Milling of Ti-6Al-4V Using Coated Carbide Tools", European Journal of Scientific Research, Vol. 22, No. 2, pp. 153-162. [ Links ]

    Nouari, M., Molinari, A., 2005, "Experimental verification of a diffusion tool wear model using a 42CrMo4 steel with an uncoated cemented tungsten carbide at various cutting speeds", Wear, Vol. 259, pp. 1151-1159. [ Links ]

    Palanisamy, P., Rajendran, I. and Shanmugasundaram, S., 2008, "Prediction of tool wear using regression and ANN models in end-milling operation", The International Journal of Advanced Manufacturing Technology, Vol. 37, pp. 29-41. [ Links ]

    Rajesh Y. Patil, 2010, "Cutting tool wear-mechanisms", Journal of Sci. Engng. & Tech. Mgt., Vol. 2, No. 1, pp. 38-42. [ Links ]

    Sardina, S.Q., Santana, M.R. and Brindis, E.A., 2006, "Genetic algorithm based multi-objective optimization of cutting parameters in turning processes", Engineering Applications of Artificial Intelligence, Vol. 19, pp. 127-133. [ Links ]

    Shajan Kuriakose and Shunmugam, M.S., 2005, "Multi-objective optimization of wire-electro discharge machining process by Non-Dominated Sorting Genetic Algorithm", Journal of Materials Processing Technology, Vol. 170, pp. 133-141. [ Links ]

    Silva, R.G., Reuben, R.L., Baker, K.J. and Wilcox, S.J., 1998, "Tool wear Monitoring of turning operations by neural network classification of a feature set generated from multiple sensors", Mechanical Systems and Signal Processing, Vol. 12, pp. 319-332. [ Links ]

    Sundara Murthy, K. and Rajendran, I., 2010, "A study on optimization of cutting parameters and prediction of surface roughness in end milling of aluminium under MQL machining", International Journal of Machining and Machinability of Materials, Vol. 7, No. 1/2, pp. 112-128. [ Links ]

    Susanto, V. and Chen, J.C., 2003, "Fuzzy Logic Based In-Process Tool-Wear Monitoring System in Face Milling Operations", Int. J. Adv. Manuf. Technol., Vol. 3, pp. 186-192. [ Links ]

    Tansel, I.N., Arkan, T.T., Bao, W.Y., Mahendrakar, N., Shisler, B., Smith, D., McCool, M., 2000, "Tool wear estimation in micro-machining: Part I: tool usage–cutting force relationship", International Journal of Machine Tools & Manufacture, Vol. 40, pp. 599-608. [ Links ]

    Thamizhmnaii, S., Bin Omar, B., Saparudin, S., Hasan, S., 2008, "Tool flank wear analyses on martensitic stainless steel by turning", Archives of Materials Science and Engineering, Vol. 32, No. 1, pp. 41-44. [ Links ]

    Tian-Syung Lan, 2009, "Taguchi optimization of multi-objective CNC machining using TOPSIS", Information Technology Journal, Vol. 8, No. 6, pp. 917-922. [ Links ]

    Tosun, N. and Ozler, L., 2004, "Optimisation for hot turning operations with multiple performance characteristics", Int. J. Adv. Manuf. Technol., Vol. 23, pp. 777-782. [ Links ]

    Tugrul O zel and Yigit Karpat, 2005, "Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks", International Journal of Machine Tools & Manufacture, Vol. 45, pp. 467-479. [ Links ]

    Wang, G., Wong, Y.S., Rahman, M. and Sun, J., 2006, "Multi-objective optimization of high-speed milling with parallel genetic simulated annealing", Int. J. Adv. Manuf. Technol., Vol. 31, pp. 209-218. [ Links ]

    Yang, S.H. and Natarajan, U., 2010, "Multi-objective optimization of cutting parameters in turning process using differential evolution and non- dominated sorting genetic algorithm-II approaches", Int. J. Adv. Manuf. Technol., Vol. 49, pp. 773-784. [ Links ]

    Yih-fong Tzen and Fu-chen Chen, 2007, "Multi-objective optimization of high-speed electrical discharge machining process using a Taguchi fuzzy-based approach", Materials and Design, Vol. 28, pp. 1159-1168. [ Links ]

    Yong Huang, Kevin Chou, Y. and Liang, S.Y., 2007, "CBN tool wear in hard turning: A survey on research progresses", Int. J. Adv. Manuf. Technol., Vol. 35, pp. 443-453. [ Links ]