SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Article References

BIGARELLA, Enda Dimitri V.  and  AZEVEDO, João Luiz F.. A study of convective flux schemes for aerospace flows. J. Braz. Soc. Mech. Sci. & Eng. [online]. 2012, vol.34, n.3, pp. 314-329. ISSN 1678-5878.  http://dx.doi.org/10.1590/S1678-58782012000300012.

    Allmaras, S., 2002, "Contamination of Laminar Boundary Layers by Artificial Dissipation in Navier-Stokes Solutions", Proceedings of the Conference on Numerical Methods in Fluid Dynamics, Reading, UK. [ Links ]

    Anderson, J.D., Jr., 1991, "Fundamentals of Aerodynamics", 2nd Edition, McGraw-Hill International Editions, New York, NY, USA, Chapter 15, p. 647. [ Links ]

    Azevedo, J.L.F., 1992, "On the Development of Unstructured Grid Finite Volume Solvers for High Speed Flows", Report NT-075-ASE-N/92, Instituto de Aeronáutica e Espaço, São José dos Campos, SP, Brazil. [ Links ]

    Azevedo, J.L.F., Figueira da Silva, L.F., and Strauss, D., 2010, "Order of Accuracy Study of Unstructured Grid Finite Volume Upwind Schemes", Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 32, No. 1, Jan.-Mar. 2010, pp. 78-93. [ Links ]

    Baker, T.J., 2005, "On the Relationship between Mesh Refinement and Solution Accuracy", AIAA Paper No. 2005-4875, Proceedings of the 17th AIAA Computational Fluid Dynamics Conference, Toronto, Ontario, Canada. [ Links ]

    Barth, T.J., and Jespersen, D.C., 1989, "The Design and Application of Upwind Schemes on Unstructured Meshes", AIAA Paper No. 89-0366, 27th AIAA Aerospace Sciences Meeting, Reno, NV, USA. [ Links ]

    Bigarella, E.D.V., 2002, "Three-Dimensional Turbulent Flow Simulations over Aerospace Configurations", Master Thesis, Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, Brazil, 175 p. [ Links ]

    Bigarella, E.D.V., and Azevedo, J.L.F., 2005, "A Study of Convective Flux Computation Schemes for Aerodynamic Flows", AIAA Paper No. 2005-0633, Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA. [ Links ]

    Bigarella, E.D.V., Basso, E., and Azevedo, J.L.F., 2004, "Centered and Upwind Multigrid Turbulent Flow Simulations with Applications to Launch Vehicles", AIAA Paper No. 2004-5384, Proceedings of the 22nd AIAA Applied Aerodynamics Conference and Exhibit, Providence, RI, USA. [ Links ]

    Bigarella, E.D.V., Moreira, F.C., and Azevedo, J.L.F., 2004, "On The Effect of Convective Flux Computation Schemes on Boundary Layer Flows", Proceedings of the 10th Brazilian Congress of Thermal Sciences -ENCIT 2004, Paper No. CIT04-0531, Rio de Janeiro, RJ, Brazil. [ Links ]

    Bruner, C.W.S., 1996, "Parallelization of the Euler Equations on Unstructured Grids", Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA. [ Links ]

    Deconinck, H., and Degrez, G., 1999, "Multidimensional Upwind Residual Distribution Schemes and Applications", 2nd International Symposium on Finite Volumes for Complex Applications, VKI Report 199941, Duisburg, Germany. [ Links ]

    Deconinck, H., Roe, P.L., and Struijs, R., 1993, "A Multidimensional Generalisation of Roe's Flux Difference Splitter for the Euler Equations", Computers & Fluids, Vol. 22, No. 2-3, pp. 215–222. [ Links ]

    Drikakis, D., 2003, "Advances in Turbulent Flow Computations Using High-Resolution Methods", Progress in Aerospace Sciences, Vol. 39, No. 6-7, pp. 405–424. [ Links ]

    Hirsch, C., 1991, "Numerical Computation of Internal and External Flows. 2. Computational Methods for Inviscid and Viscous Flows", Wiley, Chichester, UK, Chapter 21, pp. 493–589. [ Links ]

    Jameson, A., 1995a, "Analysis and Design of Numerical Schemes for Gas Dynamics 1. Artificial Diffusion, Upwind Biasing, Limiters and Their Effect on Accuracy and Multigrid Convergence", International Journal of Computational Fluid Dynamics, Vol. 4, pp. 171–218. [ Links ]

    Jameson, A., 1995b, "Analysis and Design of Numerical Schemes for Gas Dynamics 2. Artificial Diffusion and Discrete Shock Structure", International Journal of Computational Fluid Dynamics, Vol. 5, pp. 1–38. [ Links ]

    Jameson, A., Schmidt, W., and Turkel, E., 1981, "Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes", AIAA Paper No. 81-1259, 14th AIAA Fluid and Plasma Dynamics Conference, Palo Alto, CA, USA. [ Links ]

    Jawahar, P., and Kamath, H., 2000, "A High-Resolution Procedure for Euler and Navier-Stokes Computations on Unstructured Grids", Journal of Computational Physics, Vol. 164, No. 1, pp. 165–203. [ Links ]

    Mavriplis, D.J., 1988, "Multigrid Solution of the Two-Dimensional Euler Equations on Unstructured Triangular Meshes", AIAA Journal, Vol. 26, No. 7, pp. 824–831. [ Links ]

    Mavriplis, D.J., 1990, "Accurate Multigrid Solution of the Euler Equations on Unstructured and Adaptive Meshes", AIAA Journal, Vol. 28, No. 2, pp. 213–221. [ Links ]

    Mavriplis, D.J., 1997, "Unstructured Grid Techniques", Annual Review in Fluid Mechanics, Vol. 29, pp. 473–514. [ Links ]

    Nishimura, Y., 1992, "Wind Tunnel Investigations on a Full Span 2-D Airfoil Model in the IAR 1.5m Wind Tunnel", BCAC and IAR Collaborative Work Program, NRC Report LTR-HA-5X5/0205. [ Links ]

    Oliveira, G.L., 1999, "Analyse Numérique de l'Effet du Défilement des Sillages liés aux Interactions Rotor-Stator Turbomachines", Ph.D. Thesis, Ecole Centrale de Lyon, Laboratoire de Mécanique des Fluides et d'Acoustique, UMR 5509, Lyon, France. [ Links ]

    Peroomian, O., and Chakravarthy, S., 1997, "A 'Grid-Transparent' Methodology for CFD", AIAA Paper No. 97-0724, 35th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA. [ Links ]

    Roache, P.J., 1998, "Verification and Validation in Computational Science and Engineering", Hermosa Publishers, Albuquerque, NM, USA. [ Links ]

    Roe, P.L., 1981, "Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes", Journal of Computational Physics, Vol. 43, No. 2, pp. 357–372. [ Links ]

    Scalabrin, L.C., 2002, "Numerical Simulation of Three-Dimensional Flows over Aerospace Configurations", Master Thesis, Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, Brazil, 181 p. [ Links ]

    Sidilkover, D., 1994, "A Genuinely Multidimensional Upwind Scheme and Efficient Multigrid Solver for the Compressible Euler Equations", ICASE Report No. 94-84, NASA Langley Research Center, Hampton, VA, USA. [ Links ]

    Steger, J.L., and Warming, R.F., 1981, "Flux Vector Splitting of the Inviscid Gasdynamic Equations with Application to Finite Difference Methods", Journal of Computational Physics, Vol. 40, No. 2, pp. 263–293. [ Links ]

    Strauss, D., 2001, "An Unstructured Grid Approach to the Solution of Axisymmetric Launch Vehicle Flows", Master Thesis, Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, Brazil, 127 p. [ Links ]

    Swanson, R.C., and Radespiel, R., 1991, "Cell Centered and Cell Vertex Multigrid Schemes for the Navier-Stokes Equations", AIAA Journal, Vol. 29, No. 5, pp. 697–703. [ Links ]

    Swanson, R.C., Radespiel, R., and Turkel, E., 1998, "On Some Numerical Dissipation Schemes", Journal of Computational Physics, Vol. 147, No. 2, pp. 518–544. [ Links ]

    Turkel, E., and Vatsa, V.N., 1994, "Effect of Artificial Viscosity on Three-Dimensional Flow Solutions", AIAA Journal, Vol. 32, No. 1, pp. 39–45. [ Links ]

    van Leer, B., 1979, "Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov's Method", Journal of Computational Physics, Vol. 32, No. 1, pp. 101–136. [ Links ]

    Venkatakrishnan, V., 1995, "Convergence to Steady State Solutions of the Euler Equations on Unstructured Grids with Limiters", Journal of Computational Physics, Vol. 118, No. 1, pp. 120–130. [ Links ]

    Zingg, D.W., De Rango, S., Nemec, M., and Pulliam, T.H., 1999, " Comparison of Several Spatial Discretizations for the Navier-Stokes Equations", AIAA Paper No. 99-3260, Proceedings of the 14th AIAA Computational Fluid Dynamics Conference, Norfolk, VA, USA. [ Links ]