SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Article References

CANDIDO, Christhina  and  DEAR, Richard de. From thermal boredom to thermal pleasure: a brief literature review. Ambient. constr. [online]. 2012, vol.12, n.1, pp. 81-90. ISSN 1678-8621.  http://dx.doi.org/10.1590/S1678-86212012000100006.

    ARENS, E. et al. Moving Air For Comfort. ASHRAE Journal, p. 18-29, 2009. [ Links ]

    AMERICAN SOCIETY OF HEATING, REFRIGERATING & AIR-CONDITIONING ENGINEERS. Standard 55: thermal environmental conditions for human occupancy. Atlanta: ASHRAE, 2010. [ Links ]

    AULICIEMS, A. Towards a Psycho-Physiological Model of Thermal Perception. International Journal of Biometeorology, v. 25, n. 2, p. 109122, 1981. [ Links ]

    BOERSTRA, A. Personal Control in Future Thermal Comfort Standards? In: ADAPTING TO CHANGE: NEW THINKING ON COMFORT, Windsor, UK, 2010. Proceedings... London: Network for Comfort and Energy Use in Buildings, 2010. [ Links ]

    BRAGER, G.; BAKER, L. Occupant Satisfaction in Mixed-Mode Buildings. Building Research & Information, v. 37, n. 4, p. 369-380, 2009. [ Links ]

    BRAGER, G.; DE DEAR, R. Climate, Comfort and Natural Ventilation: a new adaptive comfort standard for ASHRAE Standard 55. In: WINDSOR CONFERENCE 2001: MOVING THERMAL COMFORT STANDARDS INTO THE 21ST CENTURY, Windsor, UK. 2001. Proceedings... Windsor, UK, 2001. [ Links ]

    CABANAC, M. Physiological Role of Pleasure. Science, v.17, p. 1103-1007, 1971. [ Links ]

    CABANAC, M.; MASSONNET, B.; BELAICHE, >R. Preferred Skin Temperature as a Function of Internal and Mean Skin Temperature. Journal of Applied Physiology, v. 33, n. 6, 699-703, dez. 1972. [ Links ]

    CÂNDIDO, C. et al. Air Movement Acceptability Limits and Thermal Comfort in Brazil's Hot Humid Climate Zone. Building and Environment, v. 45, n. 1, p. 222-229, jan. 2010. [ Links ]

    CÂNDIDO, C. et al. Towards a Brazilian Standard For Naturally Ventilated Buildings: guidelines for thermal and air movement acceptability. Building Research and Information, v. 39, n. 2, p. 145153, 2011. [ Links ]

    DE DEAR, R. Thermal Comfort in Natural Ventilation: a neurophysiological hypothesis. In: 2010 WINDSOR CONFERENCE: ADAPTING TO CHANGE: NEW THINKING ON COMFORT, 6., Windsor, UK, 2010. Proceedings... Windsor, UK, 2010. [ Links ]

    DE DEAR, R. Revisiting an Old Hypothesis of Human Thermal Perception: Alliesthesia. Building Research and Information, v. 39, n. 2, p. 108117, 2011. [ Links ]

    DE DEAR, R.; BRAGER, G. S. Developing an Adaptive Model of Thermal Comfort and Preference. ASHRAE Trans, v. 104, part 1A, p. 145-167, 1998. [ Links ]

    EUROPEAN COMMITTEE FOR STANDARDIZATION. CR 1752: ventilation for buildings: design criteria for the indoor environment. Brussels, 2005. [ Links ]

    FANGER, P. O. Thermal Comfort: analysis and applications in Environmental Engineering. Copenhagen: Danish Technical Press, 1970. [ Links ]

    FANGER, P. O. et al. Air Turbulence and Sensation of Draught. Energy Build, v. 12, p. 2129, 1988. [ Links ]

    FOUNTAIN, M. E. Laboratory Studies of the Effect of Air Movement on Thermal Comfort: a comparison and discussion of methods. ASHRAE Trans, v. 97, n. 1, p. 863-873, 1991. [ Links ]

    FOUNTAIN, M. E. et al. Locally Controlled Air Movement Preferred in Hot Isothermal Environments. ASHRAE Trans, v. 100, n. 2, p. 937-952, 1994. [ Links ]

    GRIEFAHN, B.; KUNEMUND, C.; GEHRING, U. The Impact of Draught Related Air Velocity, Air Temperature and Workload. Applied Ergonomics, v. 32, n. 4, p. 407-417, 2001. [ Links ]

    HEDGE, A. et al. Work-Related Illness in Offices: a proposed model of the 'Sick Building Syndrome'. Environment International, v. 15, p. 143-158, 1989. [ Links ]

    HESCHONG, L. Thermal Delight in Architecture. Cambridge Mass: MIT Press, 1979. [ Links ]

    HUIZENGA, C. et al. Listening to the Occupants: a Web-Based Indoor Environmental Quality Survey. Indoor Air, v. 14, suppl. 8, p. 65-74, dez. 2004. [ Links ]

    HUMPHREYS, M. A. Outdoor Temperatures and Comfort Indoors. Building Research and Practice, v. 6, n. 2, p. 92-105, 1978. [ Links ]

    INTERNATIONAL ORGANISATION FOR STANDARDISATION. ISO 7730: moderate thermal environments, determination of the PMV and PPD indices and specification of the conditions for thermal comfort ISO. Geneva, Switzerland, 2006. [ Links ]

    KIM, J.; DE DEAR, R. Nonlinear Relationships Between Individual IEQ Factors and Overall Workspace Satisfaction. Building and Environment, v. 49, p. 33-40, mar. 2012. [ Links ]

    KHEDARI, J. et al. Thailand Ventilation Comfort Chart. Energy and Buildings, v. 32, p. 245-249, 2000. [ Links ]

    LEYTEN J. L.; KURVERS, S. R.; VAN DEN EIJNDE, J. Robustness of Office Buildings and the Environmental Gestalt. In: PROCEEDINGS OF HEALTHY BUILDINGS. 2009. v. 2, p. 130-133. [ Links ]

    MCINTYRE, D. A. Preferred Air Speed for Comfort in Warm Conditions. ASHRAE Trans, v. 84, n. 2, p. 263-277, 1978. [ Links ]

    MELIKOV, A. K.; ARAKELIAN, R. S.; HALKJAER, L. Spot Cooling, Part 1: human responses to cooling with air jets. ASHRAE Transactions, v. 100, n. 2, p. 476-99, 1994. [ Links ]

    NAKAMURA, M.; YODA, T.; CRAWSHAW, L. I. Regional Differences in Temperature Sensation and Thermal Comfort in Humans. Appl Physiol, v. 105, n. 6, p. 1897-1906, dez. 2008. [ Links ]

    NICOL, F. Adaptive Thermal Comfort Standards in the Hot-Humid Tropics. Energy and Buildings, v. 36, n. 7, p. 628-637, jul. 2004. [ Links ]

    OLESEN, B. W.; NIELSEN, R. Convective Spot Cooling of Hot Working Environment. In: INTERNATIONAL CONFERENCE OF REFRIGERATION, 16TH., Paris, 1983. Proceedings... Paris, 1983. p. 201-207. [ Links ]

    RAJA, L. A. et al. Thermal Comfort: use of controls in naturally ventilated buildings. Energy and Buildings, v. 33, n. 3, p. 235-244, 2001. [ Links ]

    ROAF, S.; CRICHTON, D.; NICOL, F. Adapting Buildings and Cities for Climate Change. 2nd ed. Oxford: Architectural Press, 2009. [ Links ]

    ROHLES,F. H.; WOODS, J. E.; NEVINS, R. G. The Effect of Air Movement and Temperature on the Thermal Sensations of Sedentary Man. ASHRAE Trans, v. 80, p. 101-119, 1974. [ Links ]

    SHASE-G 0001-1994. Technical Guideline for Energy Conservation in Architecture and Building Services, Japan. 1994. [ Links ]

    SCHEATZLE, D.; WU, H.; YELLOT, J. Extending the Summer Comfort Envelope With Ceiling Fans in Hot, Arid Climates. ASHRAE Trans, v. 95, n. 1, p. 269-280, 1989. [ Links ]

    TANABE, S. Thermal Comfort Requirements in Japan. Tokyo, 1988. PhD Thesis. Waseda University, Tokyo, 1988. [ Links ]

    TANABE, S.; KIMURA, K. Effects of Air Temperature, Humidity and Air Movement on Thermal Comfort Under Hot and Humid Conditions. ASHRAE Trans, v. 100, n. 2, 1994. [ Links ]

    THOMAS, L. et al. Air Conditioning, Comfort and Energy in India's Commertial Building Sector. In: ADAPTING TO CHANGE: NEW THINKING ON COMFORT, Windsor, UK, 2010. Proceedings... London: Network for Comfort and Energy Use in Buildings, 2010. [ Links ]

    TOFTUM, J. Air Movement-Good or Bad? Indoor Air, v. 14, suppl. 7, p. 40-45, 2004. [ Links ]

    TUOHY, P. et al. Twenty Century Standards for Thermal Comfort: fostering low carbon building design and operation. Architectural Science Review, v. 53, n. 1, p. 78-86, 2010. [ Links ]

    TURNER, S. What's New in ASHRAE's Standard on Comfort. ASHRAE Journal, n. 53, n. 6, p. 4248, jun. 2011. [ Links ]

    VAN DER LINDEN, A. C. et al. Adaptive Temperature Limits: a new guideline in The Netherlands, a new approach for the assessment of building performance with respect to thermal indoor climate. Energy and Building, v. 38, n. 1, p. 8-17, 2006. [ Links ]

    VAN HOOF, J.; HENSEN, J. L. Quantifying the Relevance of Adaptive Thermal Comfort Models in Moderate Thermal Climate Zones. Building and Environment, v. 42, n. 1, p. 156-170, 2007. [ Links ]

    VROON, P. A. Psychological Aspects of Illness-Causing Buildings. Utrecht, 1990. PhD Thesis,University of Utrecht, Utrecht, 1990. [ Links ]

    WANG, N.; CHANG, Y. C.; DAUBER, V. Carbon Print Studies for the Energy Conservation Regulations of the UK and China. Energy and Buildings, v. 42, n. 5, p. 695-698, 2010. [ Links ]

    ZHANG, H. Human Thermal Sensation and Comfort in Transient and Non-Uniform Thermal Environments. Berkeley, 2003. PhD thesis, University of California, Berkeley, 2003. [ Links ]

    ZHANG, H. et al. Air Movement Preferences Observed in Office Buildings. International Journal Biometeorology, v. 51, n. 5, p. 349-360, 2007a. [ Links ]

    ZHANG, G. et al. Thermal Comfort Investigation of Naturally Ventilated Classrooms in a Subtropical Region. Indoor and Built Environment, v. 16, n. 2, p. 148-158, 2007b. [ Links ]

    ZHANG, Z. X. Is It Fair to Treat China as a Christmas Tree to Hang Everybody's Complaints? Putting its own energy saving in perspective. Energy Economics, v. 32, suppl. 1, S47-S56, set. 2010. [ Links ]

    ZWEERS, T. et al. Health and Indoor Climate Complaints of 7043 Office Workers in 61 Buildings in the Netherlands. Indoor Air, v. 2, n. 3, p. 127-136, 1992. [ Links ]