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We present a complete description of the Penna bit-string model for biological ageing and how it has been
modified, along the last 10 years, to simulate and better understand many different evolutionary phenomena.
Particularly, we show how a phenotype was included into the model in order to study speciation and correlated
problems.

1 Introduction

According to Luca Peliti [1], models to explain the origins
of life and its evolution can be divided in three groups:
i) Models for microevolution - individuals belong to the
same species or to closed ones. Interaction among individ-
uals is generally introduced through some global competi-
tion mechanism; ii) Models for coevolution - two or more
species interact strongly in such a way that the survival of
one species depends on the survival of the other; iii) Models
for macroevolution - also called large-scale models for evo-
lution. They deal with all alive species at the same time, but
with no particular interacting mechanism between them.

One of the pioneer models for microevolution was pro-
posed by M. Eigen [2] as an attempt to explain the origins of
life in Earth. It describes the dynamics of biological macro-
molecules (that can replicate) under the influence of selec-
tion and mutation mechanisms. The macromolecules can
be represented by bit-strings of zeroes and ones, each one
with a given replication rate. Its main results are: without
competition there is segregation among the macromolecules
and those that present a replication rate higher than its death
rate increase exponentially, while the others disappear. If a
global competition mechanism is introduced (the total num-
ber of macromolecules is forced to stay constant) then se-
lection becomes active and only the macromolecule species
with the maximum replication rate or fitness, called the mas-
ter sequence, survives. When mutations are then included,
different quasi-species coevolve in a fitness landscape where
the initially best fitted master sequence occupies now one
of the possible maxima of this landscape, surrounded by
the other quasi-species. When the mutation rate surpasses
a given threshold, however, selection disappears and all se-
quences become equally probable. The main conclusion ob-
tained from this simple model is that without errors (muta-
tions) or with too much errors, there is no evolution. In the
first case there are no mutants and in the second case, there is
no adaptation. We direct the readers interested in this model

to [3] and references therein.
Concerning models for macroevolution, may be the most

popular one is the Bak-Sneppen model [4]. In this model
each species occupies a site on a linear chain (ring) and is
represented by its fitness, a number between zero and one.
At every iteration the worst fitted species and its two neigh-
bours disappear (or mutate) and are replaced by three new
ones, randomly chosen. Observe that there is no specific
interaction mechanism between the species: the most fit-
ted one may disappear just because one of its neighbours
happened to be a poorly-fitted species. In this context, the
fitness landscape is continuously evolving, as well as the
species, in order to stay always close to the peaks. This sys-
tem converges to a situation where all species have fitness
above a given value, except for those situated just on the bor-
der line and that may participate on occasional avalanches.
Those particularly interested in this model and its properties
can find a complete description and results in [5].

Instead of mentioning any model for coevolution, now
we are going to describe the Penna model for biological age-
ing [6]. It is an extremely versatile model of microevolution,
and coevolution will appear as a successful application of
this model to explain the maintenance of sexual reproduc-
tion.

2 The asexual version of the Penna
model

The reasons for ageing are controversial [7] (see also the
whole special issues ofLa Recherche: July/August 1999 and
Nature: November 9th, 2000). There may be exactly one
gene for longevity, or senescence comes from wear and tear
like for insect wings and athlete’s limbs, from programmed
cell death (apoptosis [8]), from metabolic oxygen radicals
destroying the DNA [9], or from mutation accumulation
[10]. The Penna model reviewed here use this last assump-
tion, which does not exclude all the other reasons. For exam-
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ple, the oxygen radicals may produce the mutations which
then accumulate in the genome transmitted from one gen-
eration to the next. The concept behind the mutation accu-
mulation theory is that a mutation endangering the life of
an individual below the reproductive age reduces the num-
ber of offspring much more than a mutation affecting it only
late in life, when it barely gets any descendents and has al-
ready accomplished its evolutionary mission of perpetuating
the species. In this way, a very important ingredient of such
a theory is the existence of a minimum reproduction age be-
low which there is no breeding.

In the asexual version of the Penna model individuals are
represented by a chronological genome that consists of a bit-
string of 32 bits (zeroes and ones). Whenever a bit 1 appears
at a given position (age) it means that the individual will start
to suffer the effects of a genetic disease from that age until
the end of its life. The age can be measured in years, days or
any other time interval, depending on the species. Here we
will arbitrarily call “year” our time unit, which means that
each individual can live at most for 32 years. Each individ-
ual may accumulateT − 1 diseases, whereT is known as
the threshold for bad mutations. Considering the bit-string
100101...11 as an example for a chronological genome, the
individual carrying it would die at age 4 forT = 2 and at
age 6 forT = 3 (reading the bit-string from the left to the
wright). There is also a dispute for food and space given by
the logistic Verhulst factorV = N(t)/Nmax, whereN(t) is
the current population size andNmax, known as the carry-
ing capacity, is the maximum number of individuals that the
environment can support. At every timestep, and for each
individual, a random number between zero and 1 is gener-
ated and compared withV : if it is smaller thanV the indi-
vidual dies, independently of its age or genome. This is the
global mechanism of competition, already mentioned in the
previous section.

If an individual succeeds in surviving until the minimum
reproduction ageR, it generatesb offspring every year until
death (unless a maximum reproduction age,Rmax, smaller
than 32, is included). The offspring genome is a copy of the
parent’s one, except form deleterious mutations introduced
at birth. Although the model allows good and bad mutations,
generally only the bad ones are considered. In this case, if a
bit 1 is randomly tossed in the parent’s genome, it remains 1
in the offspring genome; however, if a bit zero is randomly
tossed, it is set to 1 in the mutated offspring genome. In this
way, for the asexual reproduction the offspring is always as
good as or worse than the parent. Even so, a stable popu-
lation is obtained, provided the birth rateb is greater than a
minimum value, which was analytically obtained by Penna
and Moss de Oliveira [11]. In fact, the population is sus-
tained by those cases where no mutation occurs, when a bit
already set to 1 in the parent genome is chosen. These cases
are enough to avoid mutational meltdown, that is, popula-
tion extinction due to the accumulation of deleterious mu-
tations [13]. The reason why generally only harmful muta-
tions are considered is that they are 100 times more frequent
than the backward ones (reverse mutations deleting harmful
ones [14]).

Resuming, the parameters of the model are:

N(t = 0) - initial population;
Nmax - carrying capacity, generally taken as10×N(t = 0);
T - threshold for bad mutations;
R - minimum reproduction age;
m - mutation rate from the parent’s to the offspring genome.

3 Catastrophic senescence and pro-
gram for the asexual Penna model

The first big goal of the Penna model was the explanation of
why some species like the salmon reproduce only once, al-
ways at the same age, and die a few days later [12]. The
salmon, in particular, sometimes travels more than 1200
kilometers up river in order to reproduce, generally without
eating after reaching sweet waters. A natural question is if
it reproduces only once because it dies of starvation and ex-
haustion after such a travel, or if it dies because it reproduces
only once. Modifying only one line in the Penna model pro-
gram, substituting the instruction “if agea ≥ R, reproduce”
by “if age a = R, reproduce”, the answer was immediately
obtained: it dies because it stops to reproduce. Such a re-
sult is a direct consequence of the mutation accumulation
hypothesis in which the model is based: since mutations are
unavoidable, after many generations they accumulate at the
end part of the chronological genomes or, equivalently, at
advanced ages. Selection pressure acts strongly before the
reproduction period, trying to keep the genomes clean, to
ensure that individuals will survive to generate offspring.
When they loose this ability, they die, instead of remain-
ing inside the population and competing for food with the
youngsters. It is important to notice that such an instruction
is not included in the model: It happens as a consequence of
the mutation accumulation dynamics.
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Figure 1. Normalized survival rates as a function of age. Each
curve corresponds to a given period of reproduction: x from 6 to
12; squares from 10 to 12; diamonds from 6 to 32 and crosses from
10 to 32.
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The survival rate at agea is defined, for an already stable
population, by:

S(a) =
N(a + 1)

N(a)
,

whereN(a) is the number of individuals with agea. It gives
the probability that an individual with agea survives until
agea + 1. A stable population means that its number of in-
dividuals per age is already constant in time. Fig. 1 shows
the survival rates as a function of age obtained for popula-
tions with different reproductive periods, where a maximum
reproduction ageRmax was also introduced. From this fig-
ure we see that the survival rates obtained with the Penna
model starts to decay as soon as reproduction starts, as ob-
served in real populations, and that there are no more in-
dividuals alive older than the maximum reproduction age.

These curves were obtained in a few hours on a Pentium,
for several105 individuals, and have the following common
parameters:Nmax/N(0) = 10, T = 1, b = 1 andm = 1.

Below we present a C version of the asexual population
program; The Fortran program is listed in [15]. Observe
that the program contains, for each individual, an auxiliary
word called “data”, where its characteristics are stored. Par-
ticularly, it is not necessary to count, at every time step, the
current number of accumulated diseases of each individual.
The total number of mutations is counted only once, when
the individual is born, and is compared to the limitT ; the ge-
netic death age of that individual, according toT , is stored
in its data as “dage”, and defines when the individual will
die if the Verhulst factor does not kill it before.

#include <stdio.h>
#include <math.h>

/* file for results */ #define resfile "res1.dat"
/* initial random seed */ #define R0 899665
/* maximum pop for Verlhust factor */ #define Popmax 1000000
/* initial population */ #define Inipop 100000
/* array dimension for population */ #define Popdim 1000000
/* number of steps (years) */ #define Maxstep 60000
/* final averaged steps */ #define Medstep 10000
/* minimum reproduction age */ #define minage 8
/* maximum reproduction age */ #define maxage 32
/* threshold of bad mutations */ #define lim 3
/* mutation rate */ #define mut 1
/* birth rate (per individuum*year) */ #define birth 1
/* only bad mut (0) or also good (1) */ #define good 0

#define MAXUINT 4294967295U
#define rmaxint 4294967296.0
#define N6 63

unsigned age,nmut,dage,error,R,T,Verhu,Mstep,
number[33],Bit[32],Gen[Popdim],Data[Popdim];

long Pop,Lpop,Spop,Tl,Ts;
double x,ant[33],ymed[33],xmed[33];
void Init(),Evolve(),Result();

void Init() {
unsigned i;
unsigned long I,P;

error = 0; R = R0 | 1; Mstep = Maxstep - Medstep - 1;
Pop = Inipop;
Spop = Lpop = Pop;
Tl = Ts = 0;
Bit[0] = 1; for(i=1; i<32; i++) Bit[i] = Bit[i-1]<<1;
for(i=0; i<=32; i++) {

ant[i] = xmed[i] = ymed[i] = 0.0;
number[i] = 0;

}
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for(i=0; i<1000; i++) R += (R<<1) + (R<<16);

number[0] = Pop; /* clean genes at begining */
for(I=0; I<Pop; I++) {Gen[I] = 0; Data[I] = 32<<6;}

/* Data[I] stores data concerning individuum I:
age at bits 0...5
programmed death age at bits 6...11

*/

}

void Evolve() {
unsigned long I,P,Gene,Pa;
unsigned n,i,agei,r;
double Poprint;

Poprint = Pop*255.0;
for(T=0; T<Maxstep; T++) {

x = Pop; Verhu = (x/Popmax)*MAXUINT;
Poprint += Pop;
if(Pop<Spop) {Spop = Pop; Ts = T;}
if (Pop>Lpop) {Lpop = Pop; Tl = T;}
if((T&255L)==0) {

printf(" %10lu %10.1lf\n",T,Poprint/256.0);
Poprint = 0.0;
fflush(stdout);

}

I = 0;
Pa = Pop;
while(I<Pa) {

age = Data[I]&N6;
dage = (Data[I]>>6)&N6;
number[age]--; age++;
R += (R<<1) + (R<<16);
if((R<Verhu)||(age==dage)) { /* death */

Pop--;
if(Pop<=0) {error = 1; Result(); exit(1);}
Gen[I] = Gen[Pop]; Data[I] = Data[Pop];
if(Pop>=Pa) I++; else Pa--;

}
else { /* alive */

number[age]++;
Data[I] = age|(dage<<6);
r = (age>=minage)&&(age<=maxage);
if(r) { /* breed */

for(n=0; n<birth; n++) { /* birth */
Gene = Gen[I];
for(i=0; i<mut; i++) { /* mutations */

R += (R<<1) + (R<<16); P = Bit[R>>27];
#if good

Gene ˆ= P;
#else

Gene |= P;
#endif

}
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number[0]++; Gen[Pop] = Gene;
nmut = 0; for(i=1; i<32; i++) {

nmut += Gene&1;
if(nmut>=lim) break;
Gene >>= 1;

}
Data[Pop] = i<<6;
Pop++; if(Pop>=Popdim) {error = 2; Result(); exit(1);}

}
}
I++;

}
}
if(T>Mstep) { /* averages */

for(i=1; i<33; i++) xmed[i] += number[i]/(0.00001+ant[i-1]);
for(i=0; i<33; i++) {ymed[i] += number[i]; ant[i] = number[i];}

}
else if(T==Mstep) for(i=0; i<33; i++) ant[i] = number[i];

}
}

void Result() {
FILE *file;
unsigned i;
double f,r,pop;

file = fopen(resfile,"w");
fprintf(file,"Age Pop SR ");
fprintf(file,"\n ASEXUAL BIT STRING MODEL (file ");
fprintf(file,resfile); fprintf(file,")\n");
fprintf(file," R0 = %lu\n",R0);
fprintf(file," Popmax = %lu\n",Popmax);
fprintf(file," Inipop = %lu\n",Inipop);
fprintf(file," Popdim = %lu\n",Popdim);
fprintf(file," Maxstep = %lu\n",Maxstep);
fprintf(file," Medstep = %lu\n",Medstep);
fprintf(file," minage = %u\n",minage);
fprintf(file," maxage = %u\n",maxage);
fprintf(file," lim = %u\n",lim);
fprintf(file," mut = %u\n",mut);
fprintf(file," birth = %u\n\n",birth);
if(good) fprintf(file," bad and good mutations");
else fprintf(file," only bad mutations");
fprintf(file,"\n\n population maximum = %8ld at time %8ld\n"

,Lpop,Tl);
fprintf(file," minimum = %8ld at time %8ld\n\n"

,Spop,Ts);
if(error==0) {

pop = 0.0;
for(i=0; i<33; i++) pop += ymed[i]; pop /= Medstep;
fprintf(file," population = %10.1lf",pop);
r = xmed[1]/Medstep; if(minage==maxage) r *= minage;
fprintf(file," sr from age 0 to 1 = %8.4lf\n\n",r);
fprintf(file," age averaged population survival rate\n");
f = 1.0/ymed[0]; r = 1.0/xmed[1];
fprintf(file," 0 1 1");
for(i=1; i<33; i++) {
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pop = ymed[i]*f;
fprintf(file,"\n %2u %8.4lf %8.4lf"

,i,pop,xmed[i]*r);
}

}
else {

if(error==1) fprintf(file,"\n\n meltdown T = %lu\n",T);
if(error==2) fprintf(file,"\n\n overflow T = %lu\n",T);

}
fclose(file);

}

main() {

Init(); /* initializes data */
Evolve(); /* evolves the population maxsteps years */
Result();

}

The catastrophic senescence effect rises the question of
why women live even longer than men if they stop to re-
produce before, due to menopause. In order to understand
this phenomenon, it was necessary to introduce sex into the
model.

4 Sexual version of the Penna model

The sexual version of the Penna model was first introduced
by Bernardes [16, 17], followed by Stauffer et al. [18] who
adopted a slightly different strategy. We are going to de-
scribe and use the second one. Now individuals are diploids,
with their genomes represented by two bit-strings that are
read in parallel. One of the bit-strings contains the genetic
information inherited from the mother, and the other from
the father. In order to count the accumulated number of mu-
tations and compare it with the thresholdT , it is necessary
to distinguish between recessive and dominant mutations. A
mutation is counted if two bits set to 1 appear at the same
position in both bit-strings (inherited from both parents) or
if it appears in only one of the bit-strings but at a dominant
position (locus). The dominant positions are randomly cho-
sen at the beginning of the simulation and are the same for
all individuals.

The population is now divided into males and females.
After reaching the minimum reproduction ageR, a female
randomly chooses a male with age also equal to or greater
thanR to breed. To construct one offspring genome first the
two bit-strings of the mother are cut in a random position
(crossing), producing four bit-string pieces. Two comple-
mentary pieces are chosen to form the female gamete (re-
combination). Finally,mf deleterious mutations are ran-
domly introduced. The same process occurs with the male’s
genome, producing the male gamete withmm deleterious
mutations. These two resulting bit-strings form the offspring

genome. The sex of the baby is randomly chosen, with a
probability of 50% for each one. This whole strategy is
repeatedb times to produce theb offspring. The Verhulst
killing factor already mentioned works in the same way as
in the asexual reproduction case. Fig. 2a shows how one ga-
met is formed in a diploid sexual population. The program
for sexual populations is too long to be presented here, but
it can be requested by e-mail to the author.

Figure 3 compares some different survival rates as a
function of age. The common parameters are:R = 10,
T = 4, N(0) = 100, 000 (half for each sex in case of sexual
reproduction) andNmax = 10 × N(0); birth rateb = 2 in
asexual case andb = 4 for females in sexual case (giving
b = 2 per individual as in the asexual one). In the sexual
cases 6 randomly chosen positions were considered as the
dominant ones.
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0 0 1 1 1 1 0
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0 1 1 1

1 0 0 0

1 1 0 1

0101

1000

0 0 1 1 01 1 1 1 0 0 0

11 22 443 3

(a) diploids (b) triploids diploids with phenotype(c)

Figure 2. Schematic representation of gamete formation for a) a
diploid sexual population; b) for a triploid population; c) for a
diploid sexual population with a non-age structured phenotype. Ar-
rows indicate where mutations occurred. For diploids a second ga-
mete is generated using this same strategy; for triploids the process
is performed three times, generating one gamete per parent.

If we compare the two sexual cases presented in the fig-
ure (diamonds and crosses), we notice that life expectancy
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is shorter if menopause is considered, but there is no catas-
trophic senescence: menopause sets in at age 12 and the
total population survives until age 19. A crucial aspect of
the model as well as in Nature is thatsex is not transmitted
genetically; independent of the genome we take each child
as male with probability 1/2, and as female otherwise. So if
death is hidden in the offspring genes, then either both males
and females die soon, or both males and females die late. It
is important to note that with this version of the model males
and females present exactly the same survival rates, even if
the male mutation rate is larger than the female one, and so
neither Nature nor the model allows females to die sooner
from accumulated genetic mutations than the males. How-
ever, when both males and females reproduce from 10 to 32
(diamonds in Fig. 3), the whole population presents a larger
life expectancy. In this case, we return to the same question,
now slightly modified: Why does menopause exist?
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Figure 3. Normalized survival rates for sexual and asexual repro-
duction. Squares (m = 2) and x (m = 1) correspond to asexual
reproduction from age 10 to 12. Diamonds and + correspond to
sexual reproduction,mf = mm = 1 (one mutation from each
parent) and dominance = 6/32; diamonds for female reproduction
from age 10 to 12 (males from 10 to 32) and stars for reproduction
from age 10 to 32.

5 Self-organization of menopause

A possible explanation for menopause was already pointed
out in 1957 by Williams [19]. He suggested that due to a
reproduction risk that increases with advancing ages and a
long period of child dependence, it is more advantageous to
the females to cease reproduction in order to take care of the
already born young offspring. This idea was simulated [20]
by introducing into the Penna model the following restric-
tions: a) there is a risk due to reproduction which is pro-
portional to the number of current accumulated mutations
(which means proportional to age, since in the model bad
mutations accumulate at advancing ages); b) there is a pe-
riod of parental care: offspring whose mothers die withing
this period, are killed; c) the menopause age is no longer

imposed, but transmitted to the female offspring with muta-
tions. That is, all the females start with a maximum repro-
duction age (menopause age) equal to 32. When a daughter
is born, it inherits the mother’s menopause age with proba-
bility 25%, or the mother’s menopause age±1 with prob-
ability 75%. The minimum reproduction age is still im-
posed and the same for both sexes, and the male maximum
reproduction age is fixed at 32. With this strategy a self-
organized distribution of menopause ages was obtained, as
well as a period of post menopause survival. The distribu-
tion of menopause ages is shown in Fig. 4. It is important to
note in this figure that despite of the risk for later reproduc-
tion, there is no self-organization of the menopause ages if
there is no parental care. Both ingredients are necessary to
obtain such an effect.
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Figure 4. Percentage of females with a given menopause age as a
function of the menopause age. Circles: parental care for 5 years;
Diamonds: parental care for 4 years; Dotted line: no parental care.

6 Coevolution and the Red-Queen hy-
pothesis

Comparing again the curves of Fig. 3, we see that sexual
reproduction provides a higher longevity than the haploid
asexual one. The reason is that sexual reproduction con-
tains the fundamental ingredients of recombination and re-
cessive mutations. These two ingredients allow a generation
of offspring with better genomes than the parents, even if
only detrimental mutations are considered. However, the
asexual reproduction provides a number of offspring twice
larger than the sexual reproduction, where only females give
birth. In this way, if an asexual and a sexual population co-
evolve in the same environment, disputing for the same re-
sources (Verhulst factor), the asexual population dominates
and the sexual one disappears. To make the dispute between
the advantages of each kind of reproductive regime more
complicated, there is a kind of asexual reproduction, called
meiotic parthenogenesis, where individuals are diploids. In
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the Penna model language, each individual carries two bit-
strings that are read in parallel, as in the sexual case, and
there are also recessive and dominant positions. During re-
production, the bit-strings are cut in a random position, and
two complementary pieces are jointed, forming the equiva-
lent of a gamete in sexual reproduction (Fig. 2a). Then this
same “gamete” is copied, generating the second bit-string
of the baby, and random mutations are then introduced. It
has been shown [21] that this kind of reproduction produces
survival rates that are completely equivalent to those of the
sexual case, besides being much faster and requiring much
less effort.

A number of theories have been put forth to try to ex-
plain the evolution and maintenance of sexual reproduction.
In the center of this debate is the so-called “Red Queen”
hypothesis, that relies heavily on the concept of diversity.
In essence, it holds the action of genetically matching par-
asites as responsible for creating a rapidly changing envi-
ronment. In this unstable ecology only varieties that can
mutate their genomic pool, at least as fast as the adaptation
of the parasites proceed, can survive. The theory derives its
name from this endless race, quoting from the Red Queen of
Lewis Carol’s Alice in Wonderland: “It takes all the running
you can do, to keep in the same place.” In fact, observations
of competing varieties of a freshwater snail,Potamopyrgus
antipodarum, have shown that there is a strong correlation
between the prevalence of one reproduction regime and the
concentration in its habitat of the trematodeMicrophallus,
a parasite that renders the snail sterile by eating its gonads
[22, 23, 24]. Namely, the asexual variety is predominant
where the parasite appears in small concentrations, whereas
higher concentrations of the trematode forces the species to
prefer a sexual regime.

This correlation could be shown to exist in simulations
of a conveniently modified Penna model [25]. The parasites
are represented by a dynamically changing memory bank
of genomes of some fixed number of entries. Each entry
is modified if it comes into contact with the same genome
twice in a row; in this case, it memorizes this pattern and
stores it in the memory bank. At each time step, before the
reproduction cycle, each female of the population is probed
by a fixed numberE of randomly chosen entries of the par-
asite bank. If one of these entries is a perfect match for the
female’s genome, she is rended sterile and can no longer re-
produce. The number of parasite exposuresE is an indirect
measure of the parasite concentration in the habitat. For the
host population, the reproductive regime of the females is
no longer a fixed character, but can mutate with some small
probability. That is, the offspring generated by a meiotic
parthenogenetic female has a small probability to mutate to
a sexual reproduction regime, and vice-versa. The simula-
tions begin in the absence of the parasite infestation, and the
initial population is set to have a sexual reproductive regime.
As soon as the meiotic population appears, due to the muta-
tions in the reproductive regime, it overrides the sexual va-
riety: sex barely subsists due to infrequent back-mutations
from the asexual variety. At some time step, the parasite in-
festation is turned on. The resulting predominant variety is
going to depend solely on the intensity of this infestation,

as measured by the exposure parameterE. For small val-
ues ofE, the asexual variety has the upper hand. AsE is
increased, a first-order transition is seen to a configuration
dominated by the sexual population. Fig. 5 shows the frac-
tion of females in the population that reproduces sexually, as
a function of the exposure parameterE. The sudden jump
in this fraction signals the order of the transition.
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Figure 5. The fraction of females that reproduce sexually in the
population is plotted against the value of the exposure parameter
E. The correlation between the dominant pattern of reproduction
and the intensity of the infestation, as measured by this last param-
eter, is clearly seen.

It is easy to understand that the sexual reproduction gen-
erates a larger genetic diversity than the meiotic partheno-
genetic one, since the former involves two different indi-
viduals instead of only one. In fact, it was already pointed
by Stearns [26] that the meiotic parthenogenesis produces,
in general, individuals that are homozygotous in all posi-
tions. Because of this disadvantage, it is easier for the par-
asites to contact twice the same genomic pattern among the
asexual individuals than among the sexual ones. Of course
such a conclusion gives rise to another question: Why are
we diploids instead of triploids?

7 Diploids X Triploids

Since a diploid sexual population has the upper hand when
competing against an asexual one due to the diversity gen-
erated by the use of genetic material coming from two dif-
ferent parents, why does not Nature enhance this effect by
allowing the genome of the offspring to benefit from three
different templates? Is the fact that for triploids mutations
need to appear at the same position in the three homologous
cromossomes (bit-strings) to be counted (except for dom-
inant positions) enough to overcome the burden of using
three individuals to generate one offspring? Simulations of
a triploidal Penna population [27] have gathered arguments
against this possibility.

For this comparison to be made, the rules for survival
of the Penna model were changed according to the findings
of Ref. [28], in which a modified survival probability was
adopted, generating sexual populations with sizes compati-
bles with those of the asexual ones, even in the absence of
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parasites or any other external agent. This modification con-
sists in assuming that harmful mutation reduces the survival
probability. At each iteration, or “year,” each individual sur-
vives with probabilityexp(−mε) if it has a total ofm harm-
ful mutations (taking into account dominant positions) in it’s
whole genome (it is killed if a random number is tossed that
is smaller than the survival probability).ε is a parameter
of the simulation, fixed from the start. To summarize, an
individual may now die for any one of three reasons: i) ran-
domly, due to the Verhulst logistic factor; ii) if its actual
number of accumulated diseases reaches the limitT ; iii) if
its survival probability becomes too small.

In the triploid population, individuals have genomic ma-
terial in three different bit-strings that are read in parallel. It
is assumed that mating involves three individuals (two males
and one female or vice-versa). Homozygous positions are
those with three equal bits at homologous loci. Harmful mu-
tations are active only if there are three bits1 at that same
position, or at a heterozygous locus at which harmful muta-
tions are dominant. Only females generate offspring. Cross-
ing and recombination are performed by a random choice
of a locus at which the three strings are cut, generating six
pieces. Two complementary pieces of those are randomly
chosen to form one gamete. This process is performed for
each one of the three parents. Deleterious mutations are ran-
domly introduced in each gamete (see Fig. 2b). The baby is
a male or a female, with equal probability.

Figure 6 presents the time evolution of a diploid sexual
population and of two different triploid ones, showing that
the diploid sexual population is larger than any of the other
two.
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Figure 6. Time evolution of a diploid population (upper curve)
and two triploid populations: in the central curve, reproduction in-
volves one male and two females, while in the lower one it involves
one female and two males.

The genetic diversity is obtained computing the Ham-
ming distance, in this case defined by the number of dif-
ferent loci (bits) between the genomes, for all pairs of in-
dividuals. The probability distribution of these distances is
obtained by making a histogram of the fraction of pairs, out
of all possible pairs in the population, that present a given
Hamming distance, normalized by its maximum possible

value (64 for diploids and 96 for triploids). Fig. 7 shows
the resulting distributions for the diploid and triploid popu-
lations. It is clear that the diploid population presents both
a larger mean distance between pairs, indicated roughly by
the position of the peak of the distribution, and a larger vari-
ance, measured by the width at half the maximum height of
the curves. The results are essentially the same if a double
crossing of the triploid genome is performed during repro-
duction, and there is no benefit for the triploids to ensure
that the offspring have their genetic material gathered from
all three parents.
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Figure 7. Genetic diversity of a diplod population (full circles)
and of the two triploid populations mentioned in the captions of
the previous figure, which are, for this particular measure, indistin-
guishable.

The diploid population also presented a slightly better
survival rate, with comparable longevities [27]. These re-
sults show that genetical reproduction has to recombine ma-
terial in the correct amount, in order to balance the extra cost
of reproduction involved when multiple parents are needed
- more is not necessarily better!

8 Sympatric speciation with pheno-
typic selection

Speciation involves the division of a species on an adaptive
peak, so that each part moves onto a new adaptive peak with-
out either one going against the upward force of natural se-
lection. This process is readily envisioned if a species be-
comes subdivided by a physical barrier, whereby each part
experiences different mutations, population fluctuations and
selective forces, in what is called the allopatric model of
speciation. In contrast, conceiving the division of a single
population and radiation onto separate peaks without geo-
graphical isolation, in what is called sympatric speciation,
is intuitively more difficult. Through which mechanism can
a single population of interbreeding organisms be converted
into two reproductively isolated segments in the absence of
spatial barriers or hindrances to gene exchange? In this sec-
tion we describe the features that were added to the standard
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Penna model to represent phenotypic selection and specia-
tion.

The version with a single phenotypic trait [29] was mo-
tivated by field observations. The intention was to mimic
the seasonal effect of rainfall on the availability of seeds of
different sizes in the Galapagos islands and its impact on
the morphology of beak sizes in the population of ground
finches that feed on these seeds [30, 31, 32]. It has been ob-
served that depending on the amount of rain, the distribution
of seed sizes changes from a broad distribution centered at
middle sized seeds to a double-peaked distribution, of only
small or large seeds. The beak sizes of the ground finches
follow this same dynamics in a very impressive and fast (few
generations) process of adaptation.

The beak is represented by a single pair of non age-
structured bit-strings, added to the chronological genome of
each individual. The dynamics of reproduction and muta-
tions are the same for both the age-structured and the new
strings - for the latter, a mutation that changes a bit from
1 to 0 is also allowed (see fig.4c). The beak size is deter-
mined by counting, in this non-structured pair of bit-strings,
the number of recessive bit-positions (chosen as16) where
both bits are set to1, plus the number of dominant positions
with at least one of the two bits set. It will be a numberk
between0, meaning a very small beak, and32, for a very
large one. Its selective value is given by a fitness function
F (k), that indicates how much the individual is fitted to the
environment. For a given value of the beak sizek, F (k)
quantifies the availability of seeds for individuals with that
particular morphology.

This quantification was done through the Verhulst fac-
tor, which now becomes dependent on genetic material (the
beak size). It gives the probability of death by intra-specific
competition at each time step:

V (t) =
N(t, k)

(Nmax ∗ F (k))
,

whereN(t, k) is the number of individuals of beak sizek at
time stept.

The simulations were done with two different functional
forms for the functionF (k). At the beginning of the sim-
ulations,F (k) is a single-peaked function with a maximum
at k = 16, representing large availability of medium-sized
seeds:

F (k) = 1− 16− k

A
, k < 16

= 1− k − 16
A

, k ≥ 16 (1)

whereA is a constant that controls the intensity of the envi-
ronment pressure.

After 20 000 time steps, there is a sudden change in the
pattern of seed availability (simulating the variation in the
rainfall regime). The fitness function that expresses this new
pattern is, for instance,

F ′(k) = 1− A− 16 + k

A
, k < 16

= 1− A− k + 16
A

, k ≥ 16 (2)

This change force evolution to give rise to a polymor-
phism, shown in Fig. 8 (diamonds) as a resulting2-peaked
equilibrium distribution of beak sizes. This polymorphism is
reversible: if, in a subsequent time step, the pattern of avail-
ability of edible seeds reverts to its original configuration, so
does also the distribution of beak sizes.
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Figure 8. The distribution of phenotypes in the population is shown
for two different regimes of seed availability. The circles corre-
spond to the equilibrium population at time step12 000, in a situ-
ation in which seeds are available for a broad distribution of sizes,
peaked at beak sizek = 16; the corresponding fitness function
F (k), adequately rescaled to fit in the graph, is shown for a com-
parison. The two-peaked phenotype distribution corresponding to
the diamonds, is a snap-shot of the population at time step50 000,
that is, after F(k) has been double-peaked for30 000 time steps.
The population has already split into a (reversible) polymorphism,
with two different beak sizes. Since there is no reproductive iso-
lation, mating between birds feeding on different niches generate
offspring with medium-sized beaks, represented by the small bump
atk = 16).

In order to really have speciation, which implies in a non
reversible polymorphism, it was necessary to introduce sex-
ual selection into the reproductive strategy, to avoid mating
between small and large beaks. A single locus was intro-
duced into the genome that codes for this selectiveness, also
obeying the general rules of the Penna model for genetic
heritage and mutation. If it is set to0, the individual will not
be selective in mating (random mating), and it will be se-
lective (assortative mating) if this locus is set to1. The mu-
tation probability for this locus was set to0.001 in all sim-
ulations. Individuals that are selective will choose mating
partners with its same morphological characteristics, that is,
if an individual hask < (>)16 and is selective, it will only
mate with a partner that also hask < (>)16.

Assortative mating is essentially equivalent to speciation
in this context, and one of the purposes of these simulations
was to follow the rising of the fraction of the population that
becomes sexually selective. Starting with a non selective
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population, it was observed that the fraction of selective in-
dividuals increased to at most0.003 while F (k) was single-
peaked, and jumped to nearly1.0 after the establishment
of a double-peaked distribution of seeds. Two distinct pop-
ulations, each of which does not mate with a partner from
the other, is the final result: evolutionary dynamics made it
advantageous to develop assortative mating in this bi-modal
ecology, and as a consequence of reproductive isolation, one
single species has split into two.

Both a simpler and a more elaborated model (with two
phenotypic traits) using the Penna bit-string strategy to sim-
ulate sympatric speciation can be found in [33].

9 Conclusions

We have presented the Penna model for biological age-
ing and some of its most important results. Ageing is an
unavoidable process (experimentally confirmed by the au-
thor) and has been extensively studied by many different
scientists, since a very long time. Although the evolution-
ary theories for senescence have appeared around 1950,
Monte Carlo Simulations on this subject started only after
the publication of the Partridge-Barton analytical mathemat-
ical model [34] in 1993. The Penna model is now the most
widespread Monte Carlo technique to simulate and study the
different aspects of population dynamics, including ageing.
In this review we have focused attention on results concern-
ing the differences between reproductive regimes and the
advantages of sexual reproduction, as well as on the mod-
ifications introduced into the Penna model in order to study
sympatric speciation.

Acknowledgments: to P.M.C. de Oliveira, D. Stauf-
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Eur.Phys.J. B7, 501 (1999).

[21] A.T. Bernardes, J. Stat. Phys.86, 431 (1997).

[22] C.M. Lively, E.J. Lyons, A.D. Peters, and J. Jokela, Evolu-
tion 52, 1482 (1998).

[23] M.F. Dybdahl and C.M. Lively, Evolution521057 (1998).

[24] R.S. Howard and C.M. Lively, Nature (London)367, 554
(1994).
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