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ABSTRACT 
The fire frequency in the Amazon increased rapidly after the 1990s due to deforestation and forest degradation, and it is 
expected to increase in response to climate change. We analyzed the fire occurrence and assessed seven fire hazard indices in 
the municipality of Canaã dos Carajás, in the eastern Amazon, for different land use and land cover (LULC) types. We used 
data from three weather stations located at different heights to compare the performance of the indices using skill scores and 
success percentages for each LULC. Overall most hotspots occurred in deforested areas and native forests, which were the 
main LULC types, while few were observed in rupestrian fields, urban areas, and mining areas. However, forests presented 
the lowest number of hotspots per unit area, especially inside protected areas, and all hotspots in forest areas were observed 
after a severe drought in 2015. The performance of the fire indices varied as a function of the LULC class and the weather 
station considered, which indicates the importance of choosing the most appropriate location of the station according to the 
purpose of the monitoring. The Keetch-Byram Drought Index showed the best performance for predicting fire occurrence 
for all LULC classes, and forests and deforested areas individually. Despite its simplicity, the Angstrom index stood out due 
to its good performance in the prediction of days with more than six hotspots.
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Avaliação dos índices climáticos de perigo de incêndio na Amazônia 
oriental: um estudo de caso para diferentes usos do solo
RESUMO 
A frequência dos incêndios na Amazônia aumentou rapidamente após a década de 1990 devido ao desmatamento e degradação 
florestal, e espera-se que continue aumentando em resposta às mudanças climáticas. Analisamos a ocorrência de incêndios e 
avaliamos sete índices de perigo de incêndio no município de Canaã dos Carajás, na Amazônia oriental, para diferentes tipos 
de uso e cobertura do solo. Usamos dados de três estações meteorológicas situadas em diferentes altitudes para comparar o 
desempenho dos índices usando skill scores e porcentagens de sucesso para cada uso do solo. Em geral, a maior parte dos focos 
de calor ocorreu em áreas desmatadas e florestas nativas, que têm as maiores áreas de cobertura no município, enquanto poucos 
focos foram observados nas áreas de campo rupestre, urbanas e de mineração. No entanto, as florestas apresentaram o menor 
número de focos de calor por unidade de área, especialmente dentro de áreas protegidas, e todos os focos em floresta foram 
observados após uma seca severa em 2015. O desempenho dos índices de incêndio variou em função do uso do solo e da estação 
meteorológica utilizada, mostrando a importância da escolha da localização apropriada da estação, conforme o objetivo do 
monitoramento. O Índice de Seca Keetch-Byram apresentou o melhor desempenho para predizer a ocorrência de incêndios 
considerando todos os usos do solo, e para as áreas de floresta e desmatadas separadamente. Apesar de sua simplicidade, o 
índice de Angstrom se destacou por seu desempenho na predição de dias com mais de seis focos de calor detectados.

PALAVRAS-CHAVE: proteção florestal, unidades de conservação, índice de incêndio, KBDI, índice de Angstrom
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INTRODUCTION
In recent decades, the expansion of the agricultural frontier 
has led to significant changes in land use and land cover 
(LULC) in the southern and eastern Amazon (Souza-Filho et 
al. 2016; Souza-Filho et al. 2019). While few fires occurred in 
this region before 1987, the fire frequency increased rapidly 
during the 1990s due to deforestation and forest degradation, 
representing an important emission of greenhouse gases 
(Marle et al. 2017; Pletsch et al. 2018). Fires are applied for 
land clearing and cattle pasture and agriculture maintenance 
in the Amazon (Nepstad et al. 2006). Furthermore, pastures 
and previously burned forest areas exhibit higher midday 
temperatures, lower relative humidity, and higher flammability 
than primary forest (Gerwing 2002; Uhl and Kauffman 1990), 
thereby changing the fire dynamics (Ray et al. 2005) and 
elevating the fire risk. Climate change in combination with 
ongoing deforestation will increase fire occurrence in 50% of 
protected areas in the Amazon through 2050 (Silvestrini et al. 
2011); thus, effective plans are required to ensure biodiversity, 
ecosystem structure, and public health (Schroeder et al. 2009).

The use of fire indices is important for identifying 
the fire risk in a region, performing fire control planning, 
identifying the best times for controlled burning, generating 
fire behavior forecasts, and providing danger alerts to society 
and firefighting teams (Holsten et al. 2013; Torres et al. 2017). 
These indices represent practical tools to protect forests, 
biodiversity, and local communities from fire risk (Chitale 
and Behera 2019; Gaigher et al. 2019). Most fire indices 

use meteorological variables that are routinely monitored 
by weather stations (such as air temperature, humidity, 
precipitation, and wind speed) to account for atmospheric 
conditions, vegetation dryness, and flammability (Chuvieco et 
al. 2010). However, fire indices based only on meteorological 
data do not consider human influences and differences in fuel 
loads and micrometeorological conditions between LULC 
classes, which may influence fire ignition and propagation 
(Taylor et al. 2006). Additionally, the closest weather station 
may not be representative of the entire area of interest. 

This study aimed to analyze the fire occurrence in a 
municipality (Canaã dos Carajás) in the eastern Brazilian 
Amazon and compare the performance of seven fire indices 
based on meteorological data to optimize fire hazard 
forecasting. We computed the fire indices using data from 
three weather stations situated at different altitudes and 
LULC classes and compared their performance in detecting 
days with fire events (hotspots detected by remote sensing) 
in each LULC class. 

MATERIAL AND METHODS
Study area
The study area was the municipality of Canaã dos Carajás 
(06º29’49”S, 49º52’42W), which is located in the mesoregion 
of southeastern Pará state, Brazil, in the Carajás Mineral 
Province (Figure 1). The eastern Amazon has the highest 
number of fires in the Amazon region (Miranda et al. 2006), 

Figure 1. Location of the municipality of Canaã dos Carajás in the eastern Brazilian Amazon region, and distribution of land use and land cover (LULC) classes in Canaã 
dos Carajás in 2013, and of total detected hotspots from 2013 to 2016. The location of the three weather stations used for fire hazard index calculations is also shown. 
This figure is in color in the electronic version.
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and the vast majority are associated with agricultural activities. 
Canaã dos Carajás presents LULC types that typically coexist 
in the region (protected areas with forest, cattle ranching, 
urban areas, and mining). The municipality has a total area of 
3,146 km² and emerged from a rural settlement established in 
the early 1980s. Approximately one third of the municipality’s 
area (1,142 km²) is within conservation units. There are two 
large mining operations in the municipality that began one 
in the early 2000s and the other in 2016. 

The climate in the region is classified as tropical monsoon 
(temperature of the coldest month about 18°C, rainfall of 
the driest month less than 60 mm, and annual rainfall above 
2500 mm) according to Köppen’s climate classification, in the 
transition between tropical areas with and without a dry season 
(Alvares et al. 2013). The west portion of the municipality 
presents high altitude with flattened tops and a set of ridges 
and peaks that can reach more than 800 m of altitude, 
while areas of lower and flattened terrain dominate the east. 
The remaining native vegetation is concentrated within the 
conservation units situated in the west of the municipality. 
The rainforest predominates but there are “islands” of natural 
rupestrian fields (ferruginous lateritic formations known as 
cangas) on the higher areas (Souza-Filho et al. 2019).

LULC classification
We used the LULC classification from Souza-Filho et al. 
(2016). The following classes were considered: forests 
(including primary and secondary forests), pasture and 
agricultural areas (both included in a single category 
called deforestation from now on), urban areas, rupestrian 
fields, mining areas, and water bodies. According to this 
classification, in 2013, the municipality had 1,632 km² of 
forests, 1,369 km² of deforested areas, 67 km² of rupestrian 
field, 16 km² of urban areas, 16 km² of mining, and 6 km² 
of water surface (Souza-Filho et al. 2016). These areas were 
assumed to be constant throughout the study period. 

Weather data
Data from three meteorological stations from a mining 
project were used to determine the meteorological fire indices. 
Information on the location, altitude, and land use in the 
vicinity of the stations is shown in Table 1. The following 
meteorological data were collected hourly from 2013 to 
2016: cumulative precipitation, air relative humidity, air 
temperature, and wind speed.

Fire hazard weather indices
Seven fire indices based on meteorological data were calculated 
daily and tested for accuracy based on forest fire occurrence: 
Angstrom index, Rodríguez and Moretti index (IRM), Monte 
Alegre Formula (FMA), Altered Monte Alegre Formula (FMA+), 
Keetch-Byram Drought Index (KBDI), Forest Fire Danger Index 
(FFDI), and Forest Fire Weather Index (FWI). These indices were 
already tested to forecast the fire danger in Brazil (Casavecchia 
et al. 2019; Ziccardi et al. 2020; Nogueira et al. 2017), and they 
require data that are usually available from weather stations. 
Additionally, the last three indices include estimates of soil 
moisture, which could improve fire danger forecast.

The Angstrom index (Angstrom 1942), developed in 
Sweden, is a noncumulative index that determines the fire 
hazard according to equation 1. Angstrom indices less than 
2.5 indicate elevated fire hazard risk.

B = 0.05 . RH - 0.1 . (T - 27)  (equation 1)

where RH = relative humidity (%) at 1 p.m. and T = air 
temperature (°C) at 1 p.m. 

The IRM (Rodríguez and Moretti 1988) was developed 
for the Andean-Patagonian region and uses air temperature, 
relative humidity, wind speed, and consecutive days without 
precipitation (precipitation less than 2 mm). The input 
variables are obtained from the daily observations made 
at 3 p.m. The computation is performed by summing the 
four values of the accumulators (Supplementary Material, 
Table S1) for consecutive days without precipitation. When 
precipitation occurs, the value considered in the accumulator 
for the number of days without rain is 0. The IRM is expressed 
on a scale of 0 to 100, and the hazard risk is classified as 
low (between 0 and 24), moderate (25-49), high (50-74) or 
extreme (75-100).

The FMA index (Soares 1972) is calculated according 
to equation 2. It emphasizes the probability of ignition, 
and was developed and validated for the region of Telêmaco 
Borba in Brazil (humid subtropical climate) and is adjusted 
as a function of the precipitation amount (Supplementary 
Material, Table S2). The fire hazard risk is classified as null 
(≤ 1.0), small (1.1 to 3.0), medium (3.1 to 8.0), high (8.1 to 
20), or very high (> 20).

   

 (equation 2)

where RH = relative humidity (%) and n = the number of days 
without rain greater than or equal to 13.0 mm. 

Table 1. Location (datum WGS 1984), altitude and predominant land use and 
land cover (LULC) types surrounding three weather stations in Canaã dos Carajás 
(Pará, Brazil) used for computation of different fire hazard indices.

Weather 
station

Altitude 
(m) Latitude Longitude Main LULC in a 5-km 

radius

Mine 740 -6.39711 -50.34871
74% forest, 25% rupestrian 

field
Waste Pile 314 -6.45055 -50.31263 70% forest, 28% deforested
Process Plant 220 -6.44676 -50.21271 57% deforested, 42% forest
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The FMA+ is a modification of the FMA by Nunes et 
al. (2006). It includes wind speed (equation 3) to assess the 
potential fire propagation. The fire hazard rating for FMA+ 
is classified as null (≤ 3.0), small (3.1 to 8.0), medium (8.1 
to 14), (high 14.1 to 24), or very high (> 24).

  (equation 3)

where RH = relative humidity (%), n = number of days 
without rain greater than or equal to 13.0 mm, and v = wind 
speed (m/s). 

Both FMA and FMA+ have been successfully tested to 
forecast the fire danger in other regions of Brazil (e.g., Alvares 
et al. 2014; Borges et al. 2011; White et al. 2015) and other 
countries (Rodriguez et al. 2012; Mbanze et al. 2017).   

The KBDI is a drought index originally developed to 
assess fire risk in the USA, particularly in Florida (Keetch 
and Byram 1968). The KBDI has become widely used in 
wildfire monitoring and prediction (Heim 2002). The index 
conceptually estimates the soil moisture deficit based on a 
simple daily soil water balance (equations 4, 5, and 6). The 
moisture deficiency is correlated with the fire potential: 0-200 
represents a low fire potential, 200-400 moderate, 400-600 
high, and 600-800 very high fire potential (Liu et al. 2013).

 (equation 4)

 
(equation 5)

  
 (equation 6)

where KBDI = moisture deficiency (mm), DF = drought 
factor (mm), Tm = daily maximum air temperature (°C), R0 
= average annual rainfall (mm), RF = rainfall factor (mm), 
R = daily rainfall (mm), and t indicate the calculation day. 

The FFDI (McArthur 1967) is widely used in Australia as 
a basis for issuing fire weather warnings, and it is calculated 
using the equations by Noble et al. (1980) (equation 7). 
The DF is partly based on the soil moisture deficit that was 
calculated using KBDI (Finkele et al. 2006). For eastern 
Australia, the index is classified as low (0-5), moderate (5-12), 

high (12-24), very high (24-50), severe (50-75), extreme (75-
100), and catastrophic (>100).

  
 (equation 7)

where T = temperature (˚C), v = wind speed (km.h-1), RH = 
relative humidity (%), and DF = Drought Factor, a component 
that represents fuel availability. 

The FWI (Van Wagner 1987) is based on the effects of 
weather parameters on forest floor fuel moisture conditions. 
It was primarily developed for the pine fuel type in Canada. 
It has been used in day-to-day operational fire management 
activities to measure general forest fire danger in Canada 
(Johnston et al. 2020) and was tested in other countries (e.g.: 
Varela et al. 2018; Masinda et al. 2021). The index consists of 
the moisture contents of forest fuel and components related to 
fire behavior indices representing the rate of spread, fuel weight 
consumed, and fire intensity. The calculation is performed 
using meteorological data, including temperature, relative 
humidity, rainfall of the previous 24 hours, and wind speed, 
described in detail by Dowdy et al. (2009). The Canadian 
Forest Service classified the risk as null (0-2), small (2-5), 
average (5-9), high (9-17), and very high (>17).

Fire events in the study area
To quantify the number of fire events in the study site, we used 
a hotspot (fire detection) detection database (geographical 
position, date, and time) provided by the Brazilian National 
Institute for Space Research (INPE) from 2013 to 2016 
(INPE 2017). The INPE database includes hotspots detected 
using nine satellites with optical sensors operating in the mid-
thermal range of 4 μm. Each polar-orbiting satellite produces 
at least two images per day, and the geostationary satellites 
generate four images per hour. Each type of sensor has its 
algorithm to identify the pixels (spatial resolution element) 
with “radiometric temperature” above pre-defined thresholds, 
which are considered hotspots (INPE 2017).

Errors in the detection of fire events by hotspots are 
associated with the fire event size versus the pixel area, cloud 
and smoke cover, understory fires in mature forest stands, 
short-term burning that occurred between the hours of the 
available images, among others (Piromal et al. 2008; Schroeder 
et al. 2008). 

We first analyzed the occurrence of fire events in the study 
area during the analysis period (2013-2016), defining the fire 
season (time of year when wildfires are most likely to ignite and 
spread) and comparing with the surrounding municipalities. 
We used the Visible Infrared Imaging Radiometer Suite 
(VIIRS) sensor onboard the Suomi National Polar-Orbiting 
Partnership (NPP-SUOMI) satellite as the reference for 
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comparison between years and between Canaã dos Carajás 
and surrounding municipalities (Parauapebas, Eldorados 
dos Carajás, Marabá, Curionópolis, and Água Azul do 
Norte), since this will be the reference satellite used by 
INPE when the AQUA satellite ceases to operate.

The fire season was determined as the months that 
concentrated most of the study area’s hotspots. Fire season 
months have lower precipitation, thus, the interference 
of cloud cover is lower, resulting in better fire detection 
by satellites. The separate analysis of the fire season is 
important because the firefighting structure is usually 
mobilized only in these months to reduce costs.

The entire database (hotspots detected using the nine 
satellites) was used to evaluate fire index performance during 
the fire season, as recommended by INPE when each fire 
detection is relevant. Although the total number of hotspots 
includes duplicate detections by more than one satellite, the 
combination of available satellites increased the chance of 
detecting a fire event (Pantoja and Brown 2007). 

Evaluation of fire index performance
The performance of the indices (and the influence of the 
weather station used to generate them) was calculated by 
comparing the daily values of the indices with the occurrence 
of a fire event, which corresponds to the presence of one or 
more hotspots detected by remote sensing. This analysis was 
performed considering the fire events in all land uses of the 
municipality together and separately.

To evaluate the performance of the fire indices during the 
fire season, we standardized the performance of the computed 
indices, as they use different numbers of default fire hazard 
classes. For each index, we obtained the value of the index 
(threshold) that separated days with or without fire danger 
that maximized the Heidke Skill Score (SS) (Heidke 1926) 
and the Success Percentage (SP) (equations 8 to 11). The SS 
measures the fractional improvement of the forecast relative 
to forecasts generated based on chance. The SP indicates the 
percentage of days with a correct prediction of occurrence or 
no occurrence of fire events. A higher SS value corresponds 
to a greater adherence between the predicted and observed 
phenomenon, i.e., greater correspondence between predicting 
a fire event on a day and observing one or more hotspots on 
the same day. Days with a fire hazard index value less than 
the threshold were considered as days with no fire hazard. 

 (equation 8)

 (equation 9)

  
 (equation 10) 

 
(equation 11)

 
(equation 12)

where G is the number of hits in the forecast; H is the expected 
number of hits; N is the total number of observations; a is 
the number of days with a correct prediction of fire event(s); 
d is the number of days with a correct prediction of no 
occurrence of fire events; b is the number of days with false 
alarms (prediction of fire events, but no fire events occurred); 
and c is the number of days with omission errors (fire events 
occurred, but they were not predicted). 

Additionally, we assessed the performance of the fire 
indices in predicting the occurrence of more than a determined 
number of hotspots (1 to 12) in one day. A greater number 
of hotspots per day decreases the chance of error in the 
detection and indicated more fire outbreaks or larger fires, 
as each hotspot represents the center of a pixel flagged as 
containing one or more fires. 

We also computed all the correlations between the 
number of daily hotspot detections and the raw values for 
each of the fire indices derived from each weather station 
during the fire season using general linearized models 
assuming a Poisson error distribution. The final models 
were validated by plotting the residual vs. fitted values 
and residual vs. predictor values and by analyzing the 
distribution of the residuals. Then, we ranked the twenty-
one models (seven different indices from each of three 
weather stations) of each LULC by decreasing the Akaike 
information criterion (AIC) using the model.sel function 
from the MuMIn package (Bartón 2020) within the R 
Environment. Models with the lowest AIC were considered 
the most parsimonious for explaining the fire frequency 
in Canaã dos Carajás. Additionally, we considered all 
models with a difference in AIC of less than two as equally 
parsimonious. For the best models, we computed the 
coefficient of determination.

RESULTS
Hotspots in Canaã dos Carajás
A total of 4,450 hotspots (including duplicates) were detected 
within the municipality by all satellites between 2013 and 
2016: 232 in 2013, 738 in 2014, 1,576 in 2015 and 1,904 
in 2016 (Figure 2). Using the reference satellite, Canaã 
dos Carajás presented a low value of hotspots per unit area 
from 2013 to 2015 in comparison with the surrounding 
municipalities (Supplementary Material, Figure S1). In 2016, 
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however, Canaã dos Carajás presented the highest value among 
the analyzed municipalities.

July to October accounted for 96% of all detected hotspots 
and only 14% of the total precipitation (Figure 2). Therefore, 
this period was considered as the fire season for the analysis 
of fire index performance.

Most of the hotspots (68.8%) occurred in areas classified 
as deforested, followed by forest areas (25.5%). Only a few 
hotspots were observed in other LULC classes: rupestrian field 
(2.8%), urban areas (2.0%), mining areas (0.6%), and water 
bodies (0.2%). The hotspots in pixels classified as water are 
probably due to the resolution of the classification map and 
the accuracy of the detection of the fire source. The percentage 
of hotspots that occurred in the two main land-cover types 
changed significantly over time. In 2013 and 2014, no 
hotspots were registered within forests, while in 2015 and 
2016, 32.8% of the hotspots occurred in forests. However, 
when considering the density hotspots in each land-cover 
type, deforested areas urban areas presented the highest values 
(0.750 hotspots km2

 year-1), and forests presented the lowest 
(0.175 hotspots km-2 year-1), while deforested areas presented 
0.550 hotspots km2

 year-1. 
From 2013 to 2016, only 27 hotspots were detected inside 

the limits of the Carajás National Forest (Figure 1), which 
equals 0.0125 hotspots km² year-1. In 2017, the Ferruginous 
Fields National Park was created within the municipality. 
A total of 805 hotspots (approximately 1.35 hotspots km²) 
were recorded inside the limits of the park between 2013 and 
2016, mostly in the western region, which is subject to strong 
deforestation on the hill slopes.

Fire index performance for all LULC classes
Which weather station was used influenced the performance 
of the indices. For example, KBDI performed best among the 
seven indices considering all LULC classes with data from 
the Waste Pile station, but performed worst with data from 
the Process Plant station (Figure 3; Table 1). Considering 
all hotspots during the fire season for all LULC classes, the 
SS varied from 0.208 (FMA index with data from the Mine 
station) to 0.370 (KBDI with data from the Waste Pile station, 
although KBDI was < 0.25 for the other two stations) (Table 
2). The Waste Pile weather station is located at an intermediate 
altitude and situated between forest and deforested areas 
(Figure 1; Table 1). The second highest SS values were obtained 
for the FFDI, FWI and Angstrom index with data from the 
Process Plant station (SS > 0.362). This station is located at 
the lowest altitude, and is surrounded mainly by deforested 
areas, where most of the hotspots occurred. 

The SP values varied less than the SS values. For the 21 
combinations of the three weather stations with the seven 
indices, the SP varied from 0.681 (FWI and Waste Pile) to 0.736 
(FWI and Process Plant) (Supplementary Material, Figure S2).

The fire season accounted for 82% of the days with more 
than one hotspot. The KBDI with data from the Waste Pile 
station provided the highest SS for 1 to 5 hotspots per day 
(Figure 4). The threshold for fire risk detection increased from 
703.63 to 743.80, above the default threshold (600) between 
the high and very high-risk classes and getting even closer to 
the maximum soil moisture deficit of 800. For 6 to 12 hotspots 
per day, which indicate a higher fire risk, the best performance 

Figure 2. Monthly distribution of hotspots detected by nine satellites in the municipality of Canaã dos Carajás (Pará, Brazil) from January 2013 to December 2016. 
A – Number of hotspots in forest and deforested areas; B – Number of hotspots in mining, rupestrian, urban and water areas; C – Percentage of days with at least one 
hotspot and monthly rainfall. This figure is in color in the electronic version.
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Figure 3. Skill scores of seven fire hazard indices for five land use and land cover (LULC) types in the municipality of Canaã dos Carajás (Pará, Brazil) computed with 
data from each of three meteorological weather stations. A – Waste Pile weather station; B – Mine weather station; C – Process Plant weather station. This figure is in 
color in the electronic version.

Figure 4. Threshold values for fire detection and skill scores of the KBDI (A) and Angstrom index (B) for the prediction of fire danger with at least one to 12 hotspots per 
day in Canaã dos Carajás (Pará, Brazil). The index values were obtained, respectively, with data from the Waste Pile and Process Plant weather stations. The percentage 
of days for each minimum number of hotspots per day during the fire seasons from 2013 to 2016 is also shown.
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was obtained using the Angstrom index and data from the 
Process Plant station, which showed an increase in SS and a 
decrease in the threshold as the minimum number of hotspots 
per day increased (Figure 4). For days with more than 12 
hotspots, which corresponded to 20% of the days during the 
fire season, the threshold for fire risk was 1.39 (lower than the 
default value of 2.5), and the SS of the prediction was 0.49. 

Fire index performance per LULC type
When the LULC types were analyzed separately, the 
performance between the indexes varied more than when all 
LULC types were analyzed together. The highest SS values 
were obtained using data from the Waste Pile station for 
forested, deforested, and urban areas, and from the Process 
Plant station for mining areas and rupestrian fields. However, 
a low number of hotspots in the latter LULC classes increased 
the uncertainty of the estimates.

The results for deforested areas (mainly pastures) were very 
similar to those for the joint LULC classes, as almost 70% of 
the hotspots occurred in deforested areas. For this LULC class, 
the highest SS was obtained with the KBDI index with data 
from the Waste Pile (SS = 0.365), with similar results (5% 
lower) for FFDI with data from the Process Plant station, and 
FWI with data from the Mine or Process Plant stations. For 
the forested areas, the best prediction was also obtained using 
the KBDI index and the Waste Pile station data (SS = 0.420), 
with a similar performance of the Angstrom index with the 
Process Plant station data (SS = 0.417). For the other LULC 
types (mining areas, rupestrian fields, and urban areas), the 
SS values were lower than 0.349. 

The SP for all weather stations and fire indices were very 
similar among the LULC classes with a low number of hotspots 
(mining area, urban area, and rupestrian field) (Supplementary 

Material, Figure S2). This is due to the high percentage of 
days without hotspots in these land uses, which resulted in a 
high ratio of nonfire hits by adopting a high index value as the 
threshold between days with or without fire hazard.

Akaike information criterion
Considering the results of the AIC, the Angstrom index 
performed best for the prediction of daily hotspot detection 
in the municipality for all LULC types except mining sites 
and urban areas, where the FFDI and IRM performed best 
(Supplementary Material, Table S3). In most cases, the Process 
Plant weather station data provided the best fit, although, for 
mining areas, the Waste Pile station provided the best fit. Only 
one model was selected in all cases. Determination coefficients 
varyied between 0.104 forurban areas and 0.437 for mining 
areas (Supplementary Material, Table S3).

DISCUSSION
Hotspots in Canaã dos Carajás
The number of hotspots per unit area was highest in urban 
areas, followed by pasture, probably due to the use of fire 
for pasture maintenance, which is common in the Amazon 
(Nepstad et al. 2006). The population increase associated 
with the installation of a large mining complex for iron 
exploration in the region, likely contributed to deforestation 
for urbanization purposes. 

In 2015 and 2016, the number of days with hotspots in all 
LULC classes increased relative to 2013 and 2014. Notably, 
in 2015-2016, approximately one-third of the hotspots were 
detected in areas classified as forest, while no hotspots in these 
areas were detected in 2013-2014. The number of hotspots in 
forests during the latter years may have been overestimated, as 
a LULC classification of the area for 2017 (Nunes et al., 2019) 
showed that 6% of the forest area was deforested and 6% of 
the deforested areas was reforested relative to 2013. In 2015, 
a severe drought caused by El Niño occurred in eastern Pará 
state, which caused an abnormally long dry season and low 
levels of soil water storage in 2016 (Cavalcante et al. 2019). 
This phenomenon may explain the high number of days with 
hotspots at the beginning of the 2016 dry season despite 
normal rainfall. However, in the neighboring municipalities 
the number of hotspots decreased in 2016, which indicates 
that factors other than climate may have contributed to the 
high number of hotspots in 2016 in Canaã dos Carajás.

The number of hotspots per unit area in forests outside 
the Carajás National Forest was 14 times higher than that 
inside the reserve. Fire occurrence in protected areas in the 
Amazon is four to nine times lower than outside protected 
areas (Nepstad et al. 2006), indicating that the conservation 
status inhibits fires. Although remote sensors are not able to 
detect understory fires (Nepstad et al. 1999), extensive areas 
of primary forest create a microclimate that strongly reduces 

Table 2. Two highest skill scores (SS) obtained for land use and land cover (LULC) 
types in Canaã dos Carajás municipality (Pará, Brazil) out of seven fire hazard indices 
tested with the data of each of three weather stations in 2013-2016. Order = first 
and second highest values. Weather stations: WP = Waste Pile; PP = Process Plant; 
M = Mine. Index: Angstrom = Angstrom index; IRM = Rodríguez and Moretti index; 
KBDI = Keetch-Byram Drought Index; FFDI = Forest Fire Danger Index.  

LULC Order Weather 
station Index Limit SS

All
1st WP KBDI 703.63 0.37
2nd PP FFDI 34.45 0.37

Forest
1st WP KBDI 739.03 0.42
2nd PP Angstrom 1.56 0.42

Deforested 
area

1st WP KBDI 703.63 0.36
2nd PP FFDI 34.45 0.36

Mining area
1st PP FFDI 138.89 0.35
2nd PP Angstrom 0.62 0.34

Rupestrian 
Field

1st PP Angstrom 0.75 0.32
2nd WP FFDI 142.13 0.31

Urban area
1st WP IRM 87.01 0.32
2nd WP Angstrom 1.26 0.31
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the probability of fire due to reduced temperature and higher 
relative humidity (Uhl and Kauffman 1990). Since the 
Ferruginous Fields National Park was only created in 2017, 
future monitoring should determine whether the protection 
of this area reduced the fire frequency, thereby contributing 
to better conservation of wildlife in the region.

We found that the period with the greatest fire occurrence 
in Canaã dos Carajás (July to October) does not begin 
immediately after the rainfall period. This agrees with Torres 
et al. (2017), who concluded that the period of higher fire 
occurrence begins two months after the end of the rainy period. 
During the dry season, because of the decrease in atmospheric 
humidity and soil moisture, potential evapotranspiration is 
supplied by soil water storage, progressively leading to drier 
fuels and more favorable atmospheric conditions for fire 
spread. Due to these changes, slash and burning activities also 
increase in these months. 

Fire hazard weather indices
Depending on the patterns of climatic variables, some fire 
danger indices may generate better predictions than others 
(White et al. 2015). Although the three weather stations used 
in this study are located near each other (maximum distance 
of 17 km), the differences in altitude (about 500 m overall 
range) and in the surrounding land use among stations cause 
differences in the meteorological variables, which in turn lead 
to a differential response of the tested fire indices regarding 
fire risk classification. Therefore, the choice of the best index 
to predict fire events is dependent on the weather data used, 
and once the index was chosen, a change in the weather data 
source used to calculate the fire index may compromise the 
accuracy of the fire occurrence prediction.

The Carajás Mineral Complex, which is partly located in 
Canaã dos Carajás, currently adopts the FMA+ index (Souza 
2018), usually indicated as the best index in southern Brazil 
(Borges et al. 2011; Torres et al. 2010). However, our results 
indicated that other indices perform better in that area and 
could be used to improve the fire risk prediction.

The KBDI index with data from the Waste Pile weather 
station had the best SS to predict fire occurrence in forested 
and deforested areas. The KBDI is widely used in wildfire 
prediction (Heim 2002), and it estimates the soil moisture 
deficit. Since the index was calculated using the original 
values of the parameters, the model can be adjusted to the 
local climate or the parameters can be calibrated (e.g., the 
limit of daily precipitation to determine rainy days and the 
soil water available for evapotranspiration) to increase the fire 
prediction accuracy as discussed by Taufik et al. (2015). The 
best threshold values for this index for 1 to 6 hotspots per day 
were above the default value used to classify a day as having 
a “very high” fire potential. That is, using the default value 
would reduce the performance of the index for predicting fire 
risk in the study area.

Following the KBDI, the higher SS values were obtained 
using the FFDI and FWI for deforested areas, and the 
Angstrom and FMA indices for forested areas. Therefore,  
the incorporation of soil and fuel moisture parameters 
improved the fire prediction accuracy in areas with pasture, 
since the indexes that incorporate this variable performed 
better, but not for forest areas. The good performance of the 
simple, noncumulative Angstrom index is noteworthy, as it 
produced SS values only slightly below (1-2%) the maximum 
SS values among all indices. It had the best performance in 
predicting days with more than six hotspots, although with a 
lower threshold value than the default value of the method, 
and was the best index based on the AIC. Other studies also 
observed good performance of the Angstrom index in the 
Amazon-Cerrado savanna transition zone (Casavecchia et 
al. 2019; França et al. 2014). As the Angstrom index is not 
cumulative, it may provide greater sensitivity to low rainfall 
values and better performance for days with no record of 
hotspots (Casavecchia et al. 2019).

CONCLUSIONS
Practically all hotspots in Canaã dos Carajás from 2013 to 
2016 concentrated in July to October. Among all LULC 
classes in the municipality, forested areas presented the 
lowest density of hotspots, with a particularly low occurrence 
within protected areas, indicating that the preservation of 
large forest areas in conservation units inhibited fires. The 
choice of the best index to predict fire events was dependent 
on the weather station used. Therefore, if there is a change 
in the source of weather data used in  the prediction of fire 
hazard, a new calibration of fire hazard index performance 
should be carried out. The performance of the seven tested 
fire hazard indices in predicting fire occurrence in the study 
area was not homogeneus among LULC classes. The KBDI 
index had the best overall average performance, as well as 
the best performance in forested and deforested areas, which 
account for the largest land cover area in Canaã dos Carajás. 
The user-friendly Angstrom index had the best performance 
in predicting days with more than six detected hotspots.
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Figure S2. Success percentage (SP) of seven fire hazard indices computed from meteorological data collected at three weather stations for five land use and land 
cover (LULC) classes in the municipality of Canaã dos Carajás (Pará, Brazil). Weather stations: A – Waste Pile; B – Mine; C – Proccess Plant.

Figure S1. Annual number of hotspots per km² detected using the reference satellite (Suomi National Polar-Orbiting Partnership) in six municipalities in eastern Pará 
state (Brazil) from 2013 to 2016. A – Total area of the municipality; B –  Nonprotected area of the municipality.
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Table S1. Daily accumulator for the fire hazard Rodriguez and Moretti Index (Rodríguez and Moretti 1988).

Acumulator 1 Acumulator 2 Acumulator 3 Acumulator 4

Temperature
at 15h (°C) Index Wind speed 

(km h-1) Index Relative 
humidity (%) Index Days without 

rain Index

< 10 2.5 < 3 1.5 > 80 2.5 1 3.5
10-1.9 5.0 3-5.9 3.0 79-75 5.0 2-4 7.0

12-13.9 7.5 6-8.9 4.5 74-70 7.5 5-7 10.5
14-15.9 10.5 9-11.9 6.0 69-65 10.5 8-10 14.0
16-17.9 12.5 12-14.9 7.5 64-60 12.5 11-13 14.5
18-19.9 15.5 15-17.9 9.0 59-55 15.0 14-16 21.0
20-21.9 17.5 18-20.9 10.5 54-50 17.5 17-19 24.5
22-23.9 20.0 21-23.9 12.5 49-45 20.0 20-22 28.0
24-25.9 22.5 24-26.9 13.5 44-40 22.5 23-25 31.5

> 26 25.0 > 27 15.0 < 39 25.0 > 26 35.0

Table S2. Modification of the Formula Monte Alegre (FMA) index as-function of 
daily precipitation (Soares 1972). H = relative humidity.

Daily 
precipitation 
(mm)

Modification

≤ 2.4 None

2.5-4.9 
Reduce 30% on the FMA index calculated the day before and 

add (100/H) for the day

5.0-9.9
Reduce 60% on the FMA index calculated the day before and 

add (100/H) for the day

10.0-12.9 
Reduce 80% on the FMA index calculated the day before and 

add (100/H) for the day

> 12.9 Stop calculation (FMA = 0) and restart sum the following day

Table S3. Best general linearized models describing the correlation between 
daily number of hot spots during the fire season (July-October) for each land use 
and land cover (LULC) type in Canaã dos Carajás (Pará, Brazil) from 2013 to 2016. 
The models ran on data for seven fire hazard indices from three weather stations. 
Angstrom = Angstrom index; FFDI = Forest Fire Danger Index; IRM = Rodríguez 
and Moretti index. Weather station: PP = Process Plant; WP = Waste Pile. AIC = 
Akaike information criterion.

LULC Weather station Index AIC R²

All PP Angstron 6760.7 0.379

Forest PP Angstron 2994.2 0.312

Deforested area PP Angstron 5078.6 0.305

Mining area PP FFDI 120.3 0.437

Rupestrian fields PP Angstron 580.1 0.233

Urban area WP IRM 420.4 0.104


