Acessibilidade / Reportar erro

Synthesis of calcium-phosphate and chitosan bioceramics for bone regeneration

Bioceramic composites were obtained from chitosan and hydroxyapatite pastes synthesized at physiological temperature according to two different syntheses approaches. Usual analytical techniques (X-ray diffraction analysis, Fourier transformed infrared spectroscopy, Thermo gravimetric analysis, Scanning electron microscopy, X-ray dispersive energy analysis and Porosimetry) were employed to characterize the resulting material. The aim of this investigation was to study the bioceramic properties of the pastes with non-decaying behavior from chitosan-hydroxyapatite composites. Chitosan, which also forms a water-insoluble gel in the presence of calcium ions, and has been reported to have pharmacologically beneficial effects on osteoconductivity, was added to the solid phase of the hydroxyapatite powder. The properties exhibited by the chitosan-hydroxyapatite composites were characteristic of bioceramics applied as bone substitutes. Hydroxyapatite contents ranging from 85 to 98% (w/w) resulted in suitable bioceramic composites for bone regeneration, since they showed a non-decaying behavior, good mechanical properties and suitable pore sizes.

bioceramic; chitosan; hydroxyapatite; composites; bone regeneration


Academia Brasileira de Ciências Rua Anfilófio de Carvalho, 29, 3º andar, 20030-060 Rio de Janeiro RJ Brasil, Tel: +55 21 3907-8100 - Rio de Janeiro - RJ - Brazil
E-mail: aabc@abc.org.br