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ABSTRACT
Basal area (BA) is a good predictor of timber stand volume and forest growth. This study developed 
predictive models using field and airborne LiDAR (Light Detection and Ranging) data for estimation 
of basal area in Pinus taeda plantation in south Brazil. In the field, BA was collected from conventional 
forest inventory plots. Multiple linear regression models for predicting BA from LiDAR-derived metrics 
were developed and evaluated for predictive power and parsimony. The best model to predict BA from a 
family of six models was selected based on corrected Akaike Information Criterion (AICc) and assessed 
by the adjusted coefficient of determination (adj. R²) and root mean square error (RMSE). The best model 
revealed an adj. R²=0.93 and RMSE=7.74%. Leave one out cross-validation of the best regression model 
was also computed, and revealed an adj. R² and RMSE of 0.92 and 8.31%, respectively. This study showed 
that LiDAR-derived metrics can be used to predict BA in Pinus taeda plantations in south Brazil with 
high precision. We conclude that there is good potential to monitor growth in this type of plantations using 
airborne LiDAR. We hope that the promising results for BA modeling presented herein will stimulate to 
operate this technology in Brazil.  
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INTRODUCTION

In Brazil, pine plantations cover 1.59 million 
hectares, and are the most important long fiber 
source for pulp and paper production—accounting 
for approximately 20.54% of the country’s total 
reforested area (Ibá 2015). Most of the pine 

plantations are concentrated in south Brazil, with 
34.1 and 42.4% of the total reforested area located in 
Paraná and Santa Catarina states (Ibá 2015). Pinus 
taeda L., whose common name is loblolly pine, is 
extremely valuable since it is the most planted tree 
species in the region (Kohler et al. 2014). 

Forest inventory in loblolly pine is typically 
conducted annually to monitor forest growth in 
Brazil—allowing managers to identify problematic 
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conditions during initial growth stages, and 
determine optimal harvest time. Inventories 
measure tree diameter and basal area. Basal 
area describes the state of the stand and it aids 
directly the thinning decisions (Reukema 1975, 
Emmingham and Green 2003). Diameter and basal 
area distributions are therefore used in many forest 
management planning packages for predicting stand 
volume and growth (Gobakken and Næsset 2004). 
The most accurate method of estimating basal area 
in loblolly pine plantations is to physically sample it 
in the field. However, field measurements of forest 
attributes over large areas are limited by budgets 
and time, making them impractical (Hummel et al. 
2011, Silva et al. 2014).

 Light Detection and Ranging (LiDAR), is a 
powerful and well-suited technology for mapping 
many forest attributes, including basal area. LiDAR 
is very useful for providing high resolution, three-
dimensional information of vertical and horizontal 
forest structures and the underlying topography 
(Silva et al. 2016a). In forestry, key LiDAR 
applications include high accuracy retrieval of 
tree density, stem volume, above ground carbon, 
leaf area index and basal area (e.g. Næsset and 
Bjerknes 2001, Andersen et al. 2005, Hudak et al. 
2006, Silva et al. 2014). LiDAR has been widely 
used to quantify and map forest attributes in conifer 
and deciduous forests types (e.g., Næsset 1997, 
Næsset and Bjerknes 2001, Popescu et al. 2003, 
Popescu 2007). However, in Brazil LiDAR has 
not been widely used to predict forest attributes 
in pine plantations as it has been used to predict 
and map forest attributes in Eucalyptus plantations 
(e.g., Silva et al. 2014, 2016a, 2017, Carvalho et 
al. 2015). 

In many countries, LiDAR has already moved 
from the research arena to operational reality in the 
area of forest resource inventory. In Brazil, the use 
of LiDAR for predicting forest inventory is still 
really new and therefore requires more research 
to test and validate this technology in Brazilians 

pine forest plantations. Thus far only Zandoná 
et al. (2008) and Müller et al. (2014) have used 
airborne LiDAR data for forest inventory purposes 
in loblolly pine plantations in south Brazil. 

This study was designed to test the accuracy 
of LiDAR-based approach to quantify BA in P. 
taeda plantation, in southern Brazil. The specific 
aims were to: i) determine which LiDAR-derived 
metrics are most useful to predict BA; ii) derive, 
test and select the best model for predicting BA; 
and iii) apply the best model across the landscape 
to map the spatial distribution of BA at the stand-
level. 

MATERIALS AND METHODS

STUDY AREA DESCRIPTION 

The study area consisted of four P. taeda plantations 
located within the Telêmaco Borba municipality 
in the state of Paraná, Southern Region of Brazil 
(Fig. 1). The climate of the region is characterized 
as warm and temperate (Cfa) (Köppen and Geiger 
1928), with mean annual precipitation of 1378 
mm and the mean annual temperature of 18.4º C. 
The regions topography is complex, ranging from 
618 m to 905 m. The plantations are managed by 
Klabin Celulose S/A, a pulp company, and all the 
trees were planted evenly along a 2.5 x 2.5 m or 3.0 
x 2.0 m grid configuration, resulting in a mean tree 
density of 1,600 and 1,667 trees per ha, respectively. 

FIELD DATA COLLECTION 

A total of 50 rectangular plots of approximately 
500 - 620 m2 each were established in stands 
ranging in ages from three to nine years old. All 
plots were georeferenced with a geodetic GPS with 
differential correction capability (Trimble Pro-XR). 
For each GPS location, we recorded data for a time 
period ranging from 5–10 min, which allowed us 
to reduce the horizontal error to the level of 10 cm. 
In each plot, all individual trees were measured for 
diameter at breast height (DBH) at 1.30 m, and the 



An Acad Bras Cienc (2017) 89 (3)

 MODELING AND MAPPING BASAL AREA OF Pinus taeda L. FROM LiDAR 1897

total basal area (BA; m2 ha-1) was then calculated for 
each sample plot using the following the equation: 

BAn (m
2 ha-1)

2
i

 

ð*DBH
40000 *10000 
PA

=
∑

 (1)

Where: BAn is basal area in m2 ha-1 for the plot n; 
DBH is the diameter at breast height (1.30 m) in cm 
for tree i; PA is plot area in m2. Summary statistics 
of BA per stand ages are presented in Table I.

LIDAR DATA ACQUISITION AND PROCESSING

LiDAR data were obtained using a Harrier 68i 
sensor mounted on a CESSNA 206 aircraft. Table 
II describes the characteristics and precision of the 
LiDAR data. LiDAR data processing consisted 
of several steps that ingested the LiDAR point 
cloud data and provided two major outputs: the 
digital terrain model (DTM), and the LiDAR-

derived canopy structure metrics. All of the 
LiDAR processing was performed using the US 
Forest Service FUSION/LDV 3.42 software toolkit 
(McGaughey 2015).

Initially the Catalog tool in FUSION/LDV was 
used to generate a descriptive report of the LiDAR 
data set. A filtering algorithm, based on Kraus and 
Pfeifer (1998) and available in the Groundfilter 
tool, was applied to differentiate between ground 
and vegetation points. DTMs were generated using 
the classified ground points with a spatial resolution 
of one meter using GridSurfaceCreate. Afterwards, 
the ClipData function was applied to normalize 
heights and to assure that the z coordinate for each 
point corresponded to the height above ground and 
not the orthometric elevation of the single point. 
The PolyClipdata function was then used to subset 
the LiDAR points within each of the 50 in situ-

Figure 1 - Location of study area in shouth Brazil. The black points indicate the location of the Pinus taeda stands.
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measured sample plots, and the CloudMetrics 
tool was applied to compute the LiDAR-derived 
metrics using all the available returns of the point 
cloud. Finally, the GridMetrics function was used 
to generate the same LiDAR metrics as computed 
with CloudMetrics, but now within grid cells of 
25 m spatial resolution across the landscape. The 
list of the LiDAR metrics computed in this are 
presented in the Table III. 

MODELING DEVELOPMENT AND ASSESSMENT 

Pearson’s correlation (r) was used to identify highly 
correlated predictor variables (r>0.9); redundant 
predictors were subsequently excluded to help 
guard against overfitting the predictive model. 
We determined the best LiDAR metrics using the 
regsubsets function in the Leaps package in R (R 
Development Core Team 2015), which selects the 
best subset of predictor variables using the Mallows 
Cp statistic (Mallows 1973). We then used the Lm 
linear model function in R to define the prospective 

linear regression models. To measure the quality 
of each model, the corrected Akaike information 
criterion (AICc) (Akaike 1973, 1974) was 
calculated and ranked accordingly by minimum 
AIC. Model ranking was done using AICc since we 
had small sample size (n/p < 40, where n is number 
of samples and p is number of parameters of the 
model) (Hurvich and Tsai 1989). Residuals from all 
prospective models were analyzed graphically and 
tested for normality using the Shapiro-Wilk test 
(Shapiro and Wilk 1965) and for heteroscedasticity 
using the Breusch-Pagan test (Breusch and Pagan 
1979).

BA was positively skewed, causing poor model 
fits at the tails of a distribution because ordinary 
least squares (OLS) regression assumes a normal 
distribution in the response variable. Therefore, 
natural logarithm (ln) transforms were applied to 
the response variable before modeling. The final 
BA prediction on the natural scale was obtained by 
multiplying the output prediction by the correction 
factor of exp (0.5 x MSE), were MSE is the mean 
square error of the residuals. The precision of the 
model predictions were then evaluated in terms of 
Person’s correlation (r; eq.2), adjusted coefficient of 
determination (adj.R²; eq.3 and 4), and Root Mean 
Square Error (RMSE; eq.5 and 6), both absolute 
(m2 ha-1) and relative (%):
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TABLE I
Characteristics of the study plots. Basal Area (BA) values are based on in-situ measured sample plots (n=50).

Stand Age
(I)

P. taeda BA (m2 ha-1) 

Plot (n)
min max mean sd

3 ≥ I < 5 11.50 22.00 18.11 2.92 19

5 ≥ I < 7 17.80 39.80 29.04 5.44 17

7 ≥ I < 9 26.40 40.50 32.93 4.29 14

TABLE II
LiDAR flight characteristics.

Parameter Value
Scan angle (°) off nadir 30º

Footprint (m) 0.33m
Flight speed (km/h) 234 km/h
Horizontal accuracy 10cm
Elevation accuracy 15cm
Operating altitude 666 m

Scan frequency 300 kHz
Pulse density 4 pulses/m²
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Where n is the number of plots,  is the observed 
value for plot i, and  is the predicted value for plot i, 
and  are the mean of the observed and predicted BA 
values, p is the number of independent variables. 
Statistical equivalence tests were employed 
(Robinson 2015) to assess whether the predicted 
BA is statistically similar (i.e., equivalent) to 
the field-based, observed BA. We defined an 
acceptable accuracy as a relative RMSE below 
15%. Based on the AICc values, the best model was 
selected and evaluated by means of a leave-one-
out cross-validation – LOOCV strategy. We used 
the yaImpute package in R (Crookston and Finley 
2008) to apply the best model across the landscape 
to map the spatial distribution of BA of P. taeda at 
the stand level. An overview of the methodology is 
outlined in Fig. 2.

RESULTS

According to Pearson’s correlation (r), 24 (80%) of 
the LiDAR-derived metrics were highly correlated 
(r>0.9). The remaining six metrics not highly 
correlated were HSD, HCV, HSKE, HKUR, H99TH 
and COV. Even though the number of metrics was 
greatly reduced, these metrics still represented the 
canopy height (e.g., H99TH), cover (COV) and 

TABLE III
LiDAR-derived metrics considered as candidate variables 

for Basal Area (BA) modeling (McGaughey 2015).

Variable Description

HMAX Height Maximum

HMEAN Height Mean

HMAD Height median absolute deviation

HVAR Height variance

HSD Height standard deviation

HSKE Height skewness 

HKURT Height kurtosis 

HCV Height coefficient of variation 

HMODE Height mode

H01TH Height 1th percentile 

H05TH Height 5th percentile 

H10TH Height 10th percentile 

H15TH Height 15th percentile 

H20TH Height 20th percentile 

H25TH Height 25th percentile 

H30TH Height 30th percentile 

H35TH Height 35th percentile 

H40TH Height 40th percentile

H45TH Height 45th percentile 

H50TH Height 50th percentile 

H55TH Height 55th percentile 

H60TH Height 60th percentile 

H65TH Height 65th percentile

H70TH Height 70th percentile 

H75TH Height 75th percentile 

H80TH Height 80th percentile 

H90TH Height 90th percentile

H95TH Height 95th percentile 

H99TH Height 99th percentile 

COV Canopy Cover (Percentage of first return 
above 1.30m)
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variation (HCV). Table IV summarizes the Pearson 
statistics.

The best metrics ranked according to the 
regsubset for predicting BA were H99TH, HCV, 
COV, HSKE, HKUR. Table V shows the competing 
models and diagnostic statistics for predicting 
plot-level BA from LiDAR-derived metrics. Six 
best subset models were developed, and for these 
models the adj.R² ranged from 0.84 to 0.97. The 
AICc ranged from -108.67 to -67.30, absolute 
RMSE ranged from 1.96 to 3.04 m2 ha-1, and 
relative RMSE ranged from 7.54 to 11.71%. 

We observed that the inclusion of more 
than three metrics did not improve the model fit 
significantly. Therefore, the best model according 

to the lower AICc values was the model that 
included H99TH, HCV and COV metrics as 
predictors of BA. This model produced adj.R2 
and RMSE (%) of 0.93 and 7.74%, respectively. 
The leave-one-out cross validation showed a high 
model’s stability with adj.R2 and RMSE (%) of 
0.92 and 8.31%, respectively. Equivalence plots 
of observed versus predicted BA via best model 
and leave-one-out cross validation also indicated 
that predicted and observed BA were statistically 
equivalents (Fig. 3). Moreover, the model residuals 
exhibited both normality and homogeneity of 
variances (p > 0.05) when evaluated by Shapiro-
Wilk and Breusch-Pagan tests, respectively. The 
W and Chisquare statistics for Shapiro-Wilk and 

Figure 2 - LiDAR flight characteristics.
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Breusch-Pagan tests were 0.98 (p =0.45) and 0.08 
(p =0.78), respectively.

The MSE (0.005) for best BA model was 
substituted in the correction factor equation and 
the predicited BA was multiplied by the computed 
correction factor of 1.002 to converted the 
predicions from natural-logarithm-transformed 
scale to natural scale. Thus , the predicted BA of P. 
taeda for the 50 sample plots in this study ranged 
from 13.43 to 39.13 m2 ha-1 (Fig. 4). Moreover, the 
selected best model was applied across the extent 
of the study area to map the BA at the landscape 
level. Fig. 5 shows the spatial distribution of the 
predicted BA for three stands with ages ranging 
from 4 to 8 years old. Predicted BA (m2 ha-1) on 
natural scale per hectare for stands A, B and C 

were approximately 17.59 (± 2.37); 24.87 (± 3.59); 
28.48 (± 5.68) m2 ha-1, respectively. 

DISCUSSION

LiDAR is an important forest inventory data 
source when combined with appropriately designed 
sample plots in the field and with appropriate 
modeling tools (Hudak et al. 2006), and even 
though LiDAR data have been used widely for 
forest inventory (Næsset 1997, Maltamo et al. 
2004, Hudak et al. 2006, 2014, Silva et al. 2016b), 
this is the first time that airborne LiDAR has been 
applied to predict and map basal area at plot- and 
landscape-levels pine plantations of south Brazil. 

LiDAR is increasingly being used as a means 
for obtaining forest structural measurements over 

TABLE IV
Pearson’s correlation matrix among LiDAR metrics selected.

r HSD HCV HSKE HKUR H99TH COV

HSD 1.00

HCV -0.33 1.00

HSKE -0.61 0.86 1.00

HKUR 0.31 -0.83 -0.88 1.00

H99TH 0.79 -0.80 -0.90 0.76 1.00
COV 0.31 -0.74 -0.67 0.52 0.57 1.00

TABLE V
LiDAR-derived models for predicting BA (natural-logarithm transformed) in P. taeda plantations. Pearson’s correlation 
(r), Adjusted coefficients of determination (adj.R²), root mean square error (RMSE) and corrected Akaike information 

criterion (AICc). Bold values represent the best model.

Model LiDAR derived metrics r Adj.R²
RMSE

AIC
m2 ha-1 %

1 2.04 + 0.12* H99TH 0.84 0.92 3.04 11.71 -67.30

2 2.97 + 0.08* H99TH - 2.21 HCV 0.96 0.92 2.12 8.18 -97.13

3 -0.27 + 0.08*H99TH - 1.39*HCV + 0.03*COV 0.97 0.93 2.01 7.74 -108.67

4 -0.01 + 0.08*H99TH - 1.60*HCV + 0.03*COV - 0.01*HSKE 0.97 0.93 2.01 7.73 -106.82

5 -0.87 + 0.09*H99TH - 1.52*HCV + 0.03*COV + 0.16*HSKE - 
0.02* HKUR 0.97 0.93 1.96 7.57 -107.57

6 -0.72 + 0.08*H99TH - 1.83*HCV + 0.03*COV + 0.18*HSKE - 
0.03*HKUR + 0.08*HSD 0.97 0.93 1.96 7.54 -106.92
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Figure 4 - Observed versus predicted BA (natural scale) from the best model and LOOCV 
across plantation ages for the sample plots (n=50).

Figure 3 - a) Observed versus predicted BA (natural scale) from the adjusted model; b) Observed versus predicted BA from 
LOOCV; (n=50). The grey polygon represents the ± 25% region of equivalence for the intercept, and the black vertical bar 
represents a 95% of confidence interval for the intercept. The predicted BA from model and LOOCV are equivalents to the field-
based BA for the intercept if the black vertical bar is completely within the grey polygon. If the grey polygon is lower than the 
black vertical bar, the predicted BA is biased low; and if it is higher than the black vertical bar, the predicted BA is biased high. 
The grey dashed line represents the ± 25% region of equivalence for the slope, and if the solid black line is contained completely 
within the grey dashed line, the pairwise measurements are equal. A bar that is wider than the region outlined by the grey dashed 
lines indicates highly variable predictions. The white dots are the pairwise measurements, and the solid black line is a best-fit linear 
model for the pairwise measurements. The black dashed line represented the relationship 1:1.
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large areas, and many LiDAR metrics can be 
used as candidates for predicting forest structure 
attributes (Hyyppa et al. 2008, Wulder et al. 2008, 
Van Leeuwen and Nieuwenhuis 2012, Treiz et al. 
2012, Silva et al. 2014). In the P. taeda plantation 
environment due the homogeneity of canopy 
structure, we observed that most of LiDAR-derived 
metrics have been identified as highly correlated. 

In this study, due the high homogeneity of this 
type of plantation, H99TH, HCV and COV provided 
accurate predictions of BA. These metrics most 
efficiently described the canopy structure of the 
forest, by capturing the majority of canopy structure 
variation. Although we selected just three variables 
to assess BA, the most important and number of 
metrics to include in the LiDAR-derived model 
will also depend on forest type and the variability 
of the response variable. For instance, Holmgren 
(2004) also included other LiDAR-derived metrics, 
such as H99TH and COV, in a BA predicting model 
for a mixed forest in south-western Sweden. On the 
other hand, Hudak et al. (2006) used both LiDAR 
and image-derived metrics to predict BA in mixed 
forests located in north-central Idaho, USA.

Although the cost of LiDAR data acquisition 
was not a central objective in this study, it is 
nonetheless an important factor to consider. 
The acquisition cost of LiDAR data is still high, 
especially in Brazil where the there are few 
vendors. However, LiDAR offers opportunities for 
rapidly estimating forest attributes, such as BA, 
over extensive areas with high accuracy (Hummel 
et al. 2011), and greatly reduces the amount of time 
and effort required for field-based measurements. 
In this study, we predicted and mapped BA at 
the landscape level at a spatial resolution of 25 
m and with RMSE at plot-level lower than the 
15% established in the materials and methods. 
In the Figure 5, we presented some of the basal 
area maps generated from the best LiDAR-derived 
model. The spatial distribution and variability of 
BA at stand level was not evaluated in this study, 

however, differences in BA at stand level may 
be related to topography, age and management 
practices of forest stands. Moreover, differences in 
BA may also depend on other factors such as i) type 
and intensity of land use before the establishment 
of a forest stand, ii) amount of soil compaction and 
reduction of soils fertility (Parker et al. 2007), iii) 
genetic variability (Emhart et al. 2006); iv) plant 
stress due high stand density (Sharma 2013), which 
could be described as competition index (Rivas et 
al. 2005, Uzoh and Oliver 2008) and v) site index.

CONCLUSIONS

This study presented a simplified framework for 
predicting and mapping BA of P. taeda plantations 

Figure 5 - Predicted BA (natural scale) at landscape level. 
a) stand with ages ranging between 3 - 5 years; b) stand with 
ages ranging between 5 - 7 years; c) stand with age ranging 
between 7 - 9 years; 1) Density plot of the predicted BA ; and 
2) predicted BA map at landscape level with 25 m of spatial 
resolution.
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using airborne LiDAR data. The most useful 
LiDAR metrics for assessing BA were H99TH, 
HCV and COV. The best model showed high 
accuracy for predicting BA with overall RMSE less 
than 10%. High spatial resolution maps of BA were 
created from the LiDAR data once a robust model 
was developed. We conclude that this LiDAR-
based approach is capable of providing suitably 
accuracy estimates of BA at plot and stand-levels 
for operational use in inventories of south pine 
plantations in southern Brazil. We hope that the 
promising results for forest inventory modeling 
presented herein will stimulate to operational use 
of this technology in Brazil.  
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