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Abstract: This work is focused on characterizing and understanding the aboveground 
biomass of Caatinga in a semiarid region in northeastern Brazil. The quantification of 
Caatinga biomass is limited by the small number of field plots, which are inadequate for 
addressing the biome’s extreme heterogeneity. Satellite-derived biomass products can 
address spatial and temporal changes but they have not been validated for seasonally 
dry tropical forests. Here we combine a compilation of published field phytosociological 
observations with a new 30m spatial resolution satellite biomass product. Both data were 
significantly correlated, satellite estimates consistently captured the wide variability of 
the biomass across the different physiognomies (2-272 Mg/ha). Based on the satellite 
product we show that in year 2000 about 50 percent of the region had very low biomass 
(<2 Mg/ha) and that the majority of the biomass (86%) is concentrated in only 27% of the 
area.  Our work confirm other estimates of biomass 39 Mg/ha (9-61 Mg/ha) and carbon 
0.79 PgC. The satellite products together with ground based estimates has the potential 
to improve forest management in Caatinga and other seasonally dry tropical forests 
through improved approximation of spatial variability, how they relate to climate, and 
support numerical modeling experiments in semiarid regions.

Key words: above ground biomass, Caatinga, physiognomy, remote sensing, seasonally 
dry tropical forest, semiarid.

INTRODUCTION

It is estimated that seasonally dry tropical forests 
largest continuous area is found in the semiarid 
region in northeastern Brazil called Caatinga 
(Miles et al. 2006). The Caatinga environment 
has for centuries been subject to cycles of land 
conversion, abandonment, and regrowth. But 
the net effect of these changes and the actual 
contribution of the SDTF to the global C cycle are 
still uncertain (Poorter et al. 2016). 

A clearer understanding of the spatial 
distribution of Caatinga vegetation and its 
properties, particularly biomass, is essential for 
strategic development planning, preservation 

of the biome functions, human services, and 
biodiversity (Miles et al. 2006). The number of 
scientific research publications on Caatinga 
biomass has been usually based on localized 
field plots, and limited by scarce financial 
resources. The region is characterized by highly 
heterogeneous vegetation and land use, and 
as a result extrapolation from the small-scale 
sparse field data alone does not accurately 
characterize the landscape. Therefore, a 
larger scale monitoring tool with high spatial 
resolution, such as satellite biomass product, is 
essential for achieving better biomass estimates 
(Adams 1999). Here we analyze a high resolution 
map and quantify the biomass of the Caatinga 
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dry tropical forest based on ground based 
observations and satellite biomass estimates 
(Zarin et al. 2016).

A review of the fragmented characteristic of 
the Caatinga Biome Vegetation
The Brazilian semiarid region is dominated by 
a particular seasonally dry tropical forest called 
the Caatinga Biome. In this work for simplification 
we refer to the entire geographic region located 
predominantly in the northeast region of Brazil 
as the Caatinga region (IBGE 2004). Within the 
Caatinga geographic region the vegetation 
physiognomy is highly variable, and has been 
classified by different authors as different 
expressions of the Caatinga biome (Andrade-
Lima 1981, Silva et al. 1993, RADAMBRASIL 1983).

While the predominant vegetation is 
xerophilous thorn woodlands (a combination 
of shrubs and small trees) with a seasonal 
herbaceous layer, other forms occur, including 
mosaics of semi-deciduous and evergreen 
forests in moister higher altitude sites 
(classified as Atlantic Forest Biome) and cactus 
scrublands and rocky soil in dryer regions. The 
large heterogeneity of the region have been 
characterized in literature as due to varying 
degrees of edapho-climatic properties within 
the geographic region, including orographic 
effects, geomorphology, degree of dissection 
of the landscape, slope, wind exposure, as well 
as soil depth and soil physical and chemical 
composition (Sampaio 1995, Andrade-Lima 1981, 
Araujo et al. 2005).

Added to the edaphic and climatic spatial 
variability, most of the Caatinga has already 
been either completely converted from its native 
vegetation or modified (Casteleti et al. 2000) by 
deforestation, selective logging, degradation, 
and reforestation. Together these effects result 
in a very fragmented vegetation landscape in 

different physiognomies, stages of regeneration, 
and different land use practices.

The importance of the biome and the threats 
due to human activities
The Caatinga has high vegetation biodiversity that 
is well adapted to the severity of the semiarid 
climate. There are approximately 1,700 species 
of trees and shrubs with more than 300 of them 
being endemic (Moro et al. 2014, Pagano et al. 2013). 
The Caatinga vegetation is a resource for human 
needs including wood for fire, construction, and 
charcoal, fruits, fibers, latex, carnauba based 
waxes, medicines, apiculture, diverse fodder for 
cattle, and ornamental plants (Sampaio 1995, 
Giulietti et al. 2003, Sampaio et al. 2006).

The biome is also threatened by local and 
non-local human activities. Less than 2 % of 
the region is protected from exploitation and 
those protected areas are generally small in 
size (Casteleti et al. 2000, Pagano et al. 2013, 
Leal et al. 2005).  Human activities, such as 
deforestation, timbering, agriculture, and cattle 
ranching have changed the Caatinga landscape 
and contributed to erosion, aggradation of 
rivers, desertification of large areas, disruption 
of the hydrological cycle, reduced water quality, 
increased carbon loss, and threatened the 
biodiversity (Sampaio 1995, Sampaio et al. 2005). 
For the period 2002-2008 it is estimated that 
the average deforestation rates was 0.33% per 
year (IBAMA 2010). The region is also vulnerable 
to a changing climate (Guerreiro et al. 2013, 
Marengo et al. 2016, Marengo et al. 2018). Near 
term (e.g. 2040) temperature and precipitation 
changes are predicted to be 0.5-1 oC and -10 
to -20% respectively and up to 3.5-4.5 oC and 
-40% to -50% respectively by 2100 (PBMC 2014). 
Although the response of Caatinga vegetation 
to climatic change is not well understood the 
increased water stress may lead to significant 
desertification of larger areas of the region 
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(Oyama & Nobre 2003, Salimon & Anderson 
2018, Silva de Miranda et al. 2018). 

The biomass estimate in the region
Efforts have been made to quantify the total 
above ground biomass of the entire Caatinga 
in the early 1990s (Sampaio 1995) to early 2000s 
(Sampaio & Costa 2011), and individual site 
locations from ground based estimates (Costa 
et al. 2014, Albuquerque et al. 2015, Pereira Jr et 
al. 2016, Amorim et al. 2005, Cabral et al. 2013). 
In the last two decades, there have been more 
than 100 publications that explore the floristic 
and phytosociology in different Caatinga 
physiognomies, but they do not explore the 
biomass content (Moro et al. 2014, Araujo et 
al. 2005). A spatially explicit map of the biome 
biomass has not been created. This is due to 2 
main factors: the extremely fragmented Caatinga 
landscape and the lack of record of historical 
land use practices and regeneration capacity, 
that makes very difficult the extrapolation based 
on field data points.  

In this study we explore the spatial 
distribution of above ground biomass across the 
Caatinga. We perform an extensive compilation 
of vegetation floristic and phytosociology 
inventories of woody vegetation based on 
scientific publications about Caatinga. We use 
this dataset to estimate above ground biomass 
and compare to a high spatial resolution (30 m) 
satellite remote sensing estimates of biomass 
(Zarin et al. 2016). We do a comprehensive analysis 
of the spatial variability of the biomass in the 
region its relation to different physiognomies 
and the climatic impact in modulating it. 

MATERIALS AND METHODS 

The focus of this work is the Caatinga 
geographic region located in the semiarid 

northeastern Brazil (Figure 1). Geomorphology 
is predominantly plains, with the presence of 
plateaus and mountains up to one thousand 
meters (Figure S1a). The change in elevation 
shapes the spatial patterns of temperature 
(Figure S1d). Annual precipitation is distributed 
irregularly and unpredictably (Sampaio 1995). 
Precipitation amount is also variable in 
space it varies from 300 mm/yr up to 2000 
mm/yr (Figure S1b). The soils have complex 
characteristics and are heterogeneous in space, 
with deep and sandy soils in western regions 
to shallow crystalline soils dominating much of 
the remaining areas (Figure S1e, f). The region is 
dominated (70%) by 4 soil orders out of a total of 
15 orders (Latosols, 22%; Lithosols, 20%; Argisols, 
15%; Luvisols, 13%) (Menezes et al. 2012). Most 

Figure 1. Caatinga potential vegetation map showing 
the distribution of the different physiognomies 
classifications (adapted from Rocha (2004)). Insert 
shows the location of the Caatinga region (dark grey) 
in northeastern Brazil (light grey) located in South 
America. 
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of the rivers are intermittent (Sampaio 1995). 
Detailed maps of the Caatinga biome properties 
published in governments reports are presented 
in the supplementary material for convenience 
(Appendix S1, Figure S1a-h) these are: altitude, 
precipitation, dry season length, temperature, 
soil class and soil texture.

The Caatinga potential physiognomies vary 
from bare-rocky-ground, thorn wood shrubs/
arboreal to evergreen broadleaf tropical forests. 
The definition of the Caatinga physiognomies 
and their geographic occurrence across the 
region has been addressed by some authors 
(RADAMBRASIL 1983, Andrade-Lima 1981, Silva 
et al. 1993), and revisited by others (Prado 2003, 
Sampaio & Rodal 2000, Velloso et al. 2002, 
Moro et al. 2014, Giulietti et al. 2003). Satellite 
high resolution images have been used to help 
map them (Rocha 2004, Eva et al. 2002). The 
authors in reviewed literature however still find 
difficulty in defining limits within the transitions 
between physiognomies as well as due to the 
high heterogeneity within them. In this work we 
use as a reference a classification of potential 
vegetation physiognomies based on the Rocha 
(2004) (Figure 1). A brief description review of 
the main physiognomies can be found in the 
supplementary material (Appendix S1).

Field data bibliographic review and biomass 
estimation
We assembled phytosociological data 
inventories within the Caatinga region from 
69 papers and literature reviews that provided 
basic information for estimating in this work the 
biomass at 104 specific locations (Table SI).  

The year of publication of the papers ranges 
from 1995 up to 2015 and not all of them present 
the actual year that the inventory was carried 
on. The field inventory design reported were 
very similar between the majority of them. 
The majority are based on the inventory of all 

individuals with stem diameter at ground level 
(DGL) higher than 3 cm or at breast height (DBH) 
higher than 5 cm and are higher than 1 m.  The 
number and size of the plots varied between 
reports ranging from 0.1 up to 3 ha, depending 
on their representativeness as estimated in 
each study. Most of the studies describes the 
physiognomies of the vegetation. A description 
of each site of measurement including reference, 
location, physiognomy, plant structural means 
and the biomass estimates, are available and 
presented in Table SI.

Considering the limitations imposed by 
the variation of available information between 
publications we chose in these analyses to 
make the simplest estimate of the above 
ground biomass, in other to be inclusive rather 
than exclusive of as many sites as possible. We 
estimated above ground biomass by applying 
an allometric equation to the compiled ground-
based data. We analyzed the use of two different 
allometric equations, one is the Caatinga-
specific allometric equation developed Sampaio 
& Silva (2005), and the other one a global dry 
forest allometric equation developed by Chave 
et al. (2005), that is used in the satellite biomass 
retrieval. We present the results of the Caatinga-
specific allometric equation (Sampaio & Silva 
2005), because it was defined based on local 
forest and is the one mostly used by the scientific 
community of the Caatinga. The comparison 
between the two allometric equation options 
is discussed in the supplementary material 
(Appendix S1, Figure S2).

The Sampaio allometric equation chosen 
requires only the diameter of the trees as input 
at ground level or breast level

AGB [Mg/ha] = ( 0.0644 * DGL[cm] 2.3948 * N 
[Trees/ha]) / 1000

AGB [Mg/ha] = ( 0.1730 * DBH[cm] 2.2950 * N 
[Trees/ha]) / 1000
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Where:	AGB: total above ground biomass [Mg/ha]
	 DGL: mean diameter at ground level [cm]
	 DBH: mean diameter at breast height [cm]
	 N: number of trees in one hectare

Of the 104 published sites reviewed from 
literature biomass was estimated based on the 
allometric equations and total of 70 data points 
met the criteria for comparison to satellite 
data. The criteria took into consideration 
uncertainties in field-plot locations and year 
of measurement reported in the papers. They 
were classified for quality assurance, based on 
satellite images (Google Earth Professional) 
and on the geographical coordinates.  All the 
data were flagged with the corresponding 
classification: #1 located over an urban area; 
#2 deforested area; #7 defined based on paper 
map or description; #8 location represents an 
average of region defined by more than one 
site; #9 defined in an area of preservation, #10 
geographic coordinates given by the paper. All 
data from sites that had classification 2 or less, 
or did not present explicit coordinate locations 
were removed from the analyses but remain in 
Table SI for reference. 

Satellite Biomass Map
This work uses a wall-to-wall 30 m resolution 
map of aboveground woody biomass density 
across the tropics, available at climate.
globalforestwatch.org (Zarin et al. 2016). The AGB 
retrieval follows the methodology presented in 
Baccini et al. (2012) but it replaced the MODIS 
data with Landsat 7 ETM+ satellite products, 
and is briefly described here. 30-m Landsat 
data were chosen because these data balance 
spatial detail with acceptable uncertainty. The 
Landsat datasets included reflectance in the red 
band, near-infrared band, and two shortwave-
infrared bands (corresponding to bands 3, 4, 5, 
and 7), the Normalized Difference Vegetation 

Index (NDVI), the Normalized Difference Infrared 
Index (NDII), and percent of tree canopy cover 
from the Hansen et al. (2013) Global Forest 
Change dataset. The methodology uses the 
statistical relationship derived between ground-
based measurements of forest biomass density 
(diameter at breast height; DBH) of all live trees 
having a DBH >5 cm) and collocated Geoscience 
Laser Altimeter System (GLAS) LiDAR waveform 
metrics as described by Baccini et al. (2012). 
It uses allometric equations from Chave et al. 
(2005) to estimate the biomass density of more 
than 40,000 GLAS footprints throughout the 
tropics. GLAS-derived estimates of biomass 
density were correlated to continuous, gridded 
variables as Landsat imagery and products, 
elevation and biophysical variables (Baccini 
et al. 2004) to generate a pan-tropical map of  
aboveground live woody biomass density at 
30 m resolution for circa the year 2000 (Zarin 
et al. 2016). A more detailed description of the 
methodology used to create this data product is 
in Zarin et al. (2016).

The satellite biomass product was 
compared to field data estimates by three 
different methods. The first one was a direct 
comparison of the site to the corresponding 
satellite pixel estimate (referred to as Satpix). 
The second method was a comparison of field 
data to the average of the satellite data in an 
area of a 500m radius around the site location 
(referred to as Sat500). For this comparison the 
non-vegetated area (or very low vegetated area 
< 2 Mg/ha) was filtered from the analyses to 
avoid any underestimation in the average (since 
the goal is to compare vegetated areas between 
ground and satellite estimates) (Figure S3). In 
the third method the masked satellite product 
(biomass >=2 Mg/ha) was averaged based on 
physiognomy type (Figure 1), to quantify how the 
biomass is distributed within physiognomies 
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and how well the satellite compares to field 
data within the different physiognomies.

RESULTS 

The field data plots available in the literature 
are not evenly distributed across the biome, 
being concentrated mostly in the northeast of 
the region (Figure 2). The above ground biomass 
estimated based on the field data and satellite 
shows a strong variability across the region 
(Figure 2 and 3), the Discussion section explores 
the reason for that. Field-based estimates of 
biomass vary greatly (5-118 Mg/ha) as do the 
satellite (0-272 Mg/ha) (Table I, Figure 2 and 
3). The full description of each field site, and 
estimates of AGB data and corresponding 
satellite data is presented in Table SI.

Median biomass for the 70 sites used in this 
study is 43 (interquartile 25-61) Mg/ha. Previous 
biomass estimates (also based on ground 
measurements of individual sites) for the region 
was about 40 Mg/ha (Sampaio & Costa 2011), 
which is comparable to results from the Forest 

Resource Assessment (FRA 2015) of 48 Mg/ha. 
The satellite based estimate from those regions 
of the Caatinga domain with biomass >= 2 Mg/
ha and within a 500m buffer around each site 
(Sat500) is 48 (interquartile 32 - 76) Mg/ha. 

The total AGB C estimate for Caatinga 
region based on satellite retrieval is 0.796 PgC 
(considering a C content as a factor of 0.45, 
(Pereira Jr et al. 2016, Souza et al. 2013), which 
is comparable to Sampaio & Costa (2011) who 
extrapolated a total carbon of 0.720 PgC for a 
vegetated area of about 400,000 km2. Results 
from the FRA (2015) published by the United 
Nations Food and Agriculture Organization (FAO) 
estimate a total above ground C of 1.003 PgC for 
forested areas and other wooded lands (465,901 
km2) in the year 2000. The major differences 
within these works despite of the different 
methodologies are the vegetated region 
considered, taking that into consideration and 
the extrapolation methods of the references 
they are pretty comparable to the satellite 
estimate. 

Table I. Descriptive statistics of field and satellite data across the Caatinga, and literature references. Total carbon 
estimates were computed considering a ratio of C to biomass of 0.45 for Caatinga vegetation (Souza et al. 2013, 
Pereira Jr et al. 2016). The median and the inter quartile range (IQR, with the lower and the upper quartile) are 
shown.

Sites #
Median (IQR)b 

Biomass
[Mg/ha]

Min
[Mg/ha]

Max
[Mg/ha]

Area
[km2]

Area
[%]

Total C
[PgC]

Field based Estimate
this work

70 43   (25 - 61) 5 118 - - -

Sat500 70 48   (32 - 76) 2 201 - - -

Satellite Total Area 
(>2 Mg/ha) - 39   (9 - 61) 2 272 407,474 49.5% 0.790

Sampaio et al., 2011 - 40 10 160 400,000 - 0.720

FRA 2015 a - 48 - - 465,901 - 1.003
aData from the Forest Resource Assessment (FRA 2015) for Caatinga biome, based on the forested areas and other wooded 
lands in year 2000 (carbon estimated considering the 0.45 factor). bIQR refers to the interquartile of the distribution where the 
numbers in parenthesis correspond respectively to 25% quartile, and 75% quartile.
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Quantitative Comparison between Field data 
and Satellite data
An individual pixel (Satpix) to ground-site 
comparison of satellite and field data is 
inaccurate due to the lack of precise information 
on the field coordinates and shape of the area 
sampled, compared to specific satellite pixel 
area (Figure S4). To avoid the uncertainty in the 
pixel-site comparison (Figure S4) and assuming 
that the area of the field plot is representative 
of the average vegetation of that region we 
compare the calculated field data to the mean 
of the satellite estimate within a circle of 500 m 

radius around each reported field site location 
masked with a threshold for non-vegetated 
areas (in this study we considered a threshold 
of 2Mg/ha, and this will be called as Sat500) 
(Figure 4). 

The two data sets are significantly correlated 
(70 points, correlation 0.54 with p-value 
<0.05, considering spearman non-parametric 
correlation). As both variables are independent 
and have uncertainties we opted to use in this 
case the reduced major axis regression, that 
minimize the distance between both variables 
to the adjustment, rather than the ordinary least 
square regression (intercept = -5.82 , slope = 1.27) 
(Legendre & Legendre 2012). The differences 
between the estimates, show a normal 
distribution close to zero, and have no trend 

Figure 2. Estimated ground site above ground biomass 
(AGB) from phytosociological data from literature 
review across the Caatinga region (circles colored by 
AGB), light gray lines represent geomorphic limits. The 
insert boxes (from A to J) are for reference to specific 
regions highlighted in the supplementary material 
(Appendix S1). The full description of each field 
site and references, and estimates of AGB data and 
corresponding satellite data is presented in Table SI.

Figure 3. 30 m spatial resolution satellite estimated 
above ground biomass (Zarin et al. 2016). The insert 
boxes (from A to J) are for reference to specific regions 
highlighted in the discussion section.
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relative to the mean of AGB, however there is a 
difference in the median with satellite estimates 
being 6.8 Mg/ha greater, which is an increase of 
about 15 percent of the mean (Figure 4b). 

Biomass spatial variability and physiognomies
The satellite based biomass estimate provides 
a first detailed approximation to the spatial 
distribution of biomass in this understudied 
region. A qualitative discussion of the Caatinga 
physiognomies and biomass map (Appendix S1).

The estimated biomass from Field and 
respective Sat500 was grouped based on the 
description of physiognomy observed in each 
plot (Figure 5, open and gray boxes respectively). 
The results quanify the mean biomass in each 
physiognomy, with the respective variability 
ranging from thorn woodlands (40 Mg/ha) to 
mountain evergreen forests (80 Mg/ha). The 
satellite and field estimates of the average 
abovground biomass in each of the different 
physiognomies of the region are highly correlated 
(r=0.9, statistic correlation significance of 0.015) 

Figure 4. (a) Scatter plot 
comparison between above 
ground biomass (AGB) from 
field (estimated biomass 
based on allometric 
equation) and satellite 
estimate (Sat500, averaged 
biomass in a radius of 
500 m around the site 
location). The uncertainty 
bars represent the satellite 
propagated uncertainties in 
y axis (satellite product pixel 
uncertainty and standard 
deviation of biomass in 
the area of studies around 
each site), and an assumed 
minimum uncertainty in the 
field data of 20 percent in x 
axis. The black continuous 
line represents the reduced 
major axis regression (RMA), 
the dashed lines represent 
the upper and lower limit 
of the 95% CI, and the gray 
continuous line represents 
the 1:1 regression. The 
figure also presents the 
boxplot statistics of field 
and satellite data sets; (b) 
Difference between satellite 
and field biomass estimate, 
with the corresponding 
propagated uncertainties of 
satellite and field data (field 
uncertainty 50%).
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and close to 1:1 line (Figure S5), which suggests 
that the satellite product is properly identifying 
the differences in biomass in the different 
vegtation types.

The average of the satellite biomass 
estimates within the areas delimited by each 
physiognomy (Figure 1) (Figure 5, red dots) also 
present a consistent trend of biomass through 
the vegetation physiognomies. In general, for 
most of the physiognomies the average field data 
and corresponding satellite data are close to the 
average of the entire region defined in the potential 
vegetation map (illustrated by the proximity of the 
red dots to the mean of the bars). The Carrasco 
physiognomy is an exception, with the satellite 
estimates being higher than the field estimates in 
this transitional physiognomy between Caatinga 
and Cerrado. This Carrasco physiognomy region 
is in fact characterized by high heterogenity and 
covers a very broad region and the field data 
network is sparse. Thus it is likely that more 
field data inventories would be necessary to be 
definitevely representative of AGB. The average of 
the physiognomies biomass (Figure 5, red dots) is 
represented spatialy in Figure S7.

Biomass and climate
Expanding the analyses to the entire region, the 
distribution of the estimates of satellite biomass 
as a function of the precipitation amount 
(Figure 6) and dry season length (Figure S6) can 
be quantified.  It shows a consistent trend of 
higher fraction (70-90%) of denser vegetation 
(from 40 to > 80 Mg/ha) in more humid regions 
(precipitation > 1000 mm/yr and dry season 
length less than 2 months) and higher fraction 
(70-90%) of lower biomass (from 0 to 40 Mg/ha) 
in dryer regions (precipitation < 600 mm/yr and 
dry season length less over 8 months) (Figure 6 
and Figure S6). 

Biomass and corresponding areas
According to the satellite product, in the year 
2000 about 50% of the region presented biomass 
of <2Mg/ha and accounted for about 1% of the 
total Caatinga biomass (Figure 7). About 23% of 
the area had biomass of between 2 and 40 Mg/
ha, which represents 14% of the total Caatinga 
biomass. About 20% of the Caatinga area had 
estimated AGB of 4080  Mg/ha, representing 
about 55% of the total biomass. The biomass of 
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Figure 5. Average AGB grouped by 
the physiognomy classification 
map (Figure 1). The white boxes 
represent the average of field 
data AGB located within each of 
the physiognomy; the gray boxes 
represent the average satellites 
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the wettest regions covers only about 7% of the 
Caatinga but with about 80-130 Mg/ha accounts 
for 31% of the total biomass of the Caatinga 
(Figure 7).

DISCUSSION AND CONCLUSIONS

The results show high biomass variability within 
each physiognomy (Figure 5), the complexity of 
the Caatinga biomass can be summarized by 
three factors (Figure 8). The first factor is the 
synergy between climate and (i.e. precipitation 
amount – topography effect and its distribution 
in time – dry season length) and edaphic 
properties. Climate define the macro-variability 
in Caatinga biomass associated with the different 
physiognomies (from bare ground, herbaceous, 
deciduous thorn woodlands, dry deciduous/
semi-deciduous forest through mountain humid 
forests). Within the macro level there is a meso-
variability associated with the current land use 
of the region (from preserved area, abandoned 
area, pasture, selective logging). Finally within 

the meso-variability there is the third level 
(micro-variability) that is the actual stand age of 
regeneration of the area (that varies from 0 to the 
total time from when the land was abandoned 
for regrowth). In this work we could address the 
first factor in the level of physiognomies and 
the relation of the biomass distribution to some 
climatic variables. The other two levels (land 
use and regeneration) because of the lack of 
information not only in the field data base but 
also from a wider extent of the Caatinga region, 
were not addressed here. However, the impact of 
the second and the third levels on the Caatinga 
biomass could in future work be assessed 
through time-series biomass data from field 
and or from satellite (Zarin et al. 2016). Stand 
age could also be estimated based on a detailed 
study of the floristic and phytosociological data 
base (presence of pioneers, early, mid or late 
successional species).  

The difference between field and satellite 
estimates of AGB could be associated with a 
combination of factors.  Precise comparison 
requires precise knowledge of the location 
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and shape area of the field plot but that 
is usually not available. Another factor is 
related to the heterogeneity of the region. In 
very heterogeneous regions the comparison 
of coarse resolution satellite with field data 
is compromised by the size of the satellite 
footprint and the representativeness of the size 
of field data plot. There is thus a compromise 
in increasing the satellite footprint to be more 

representative and trying not to include too 
much heterogeneity (in the small scale) in the 
statistics. The different allometric equations 
used in the field (Sampaio & Silva 2005) and 
satellite retrieval (Chave et al. 2005) may also 
explain part of the discrepancy in the mean. 
The comparison between them (Figure S2), show 
that the Chave et al. (2005) equation used in the 
satellite retrieval with a wood density of 0.55 
g/cm3 overestimate the AGB in comparison to 
the use of local alometric equation  (Sampaio & 
Silva 2005).  

Both methodologies present uncertainties 
associated with the use of a single allometric 
equation for all AGB estimates in this 
heterogeneous region. As pointed out by Chave 
et al. (2005), more forest-specific allometric 
equations are required for deriving more accurate 
estimates of biomass. For the Caatinga Sampaio 
et al. (2010) pointed out that information on the 
stand age (young, successional, or old-growth 
forest) may also play an important role in the 
development of an appropriate allometric 
equation. An accurate physiognomy map and 
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description of the vegetation (e.g. specific wood 
density and height probability density functions) 
could greatly improve the allometric equations 
and biomass estimates for satellite retrievals 
and field-based estimates. A regionally-planned 
long term field observation network providing 
a consistent monitoring of strategic vegetation 
physiognomies and stand ages would greatly 
improve satellite validation and calibration. 

Despite the uncertainties within the 
different methodologies the results show 
that this satellite product (Zarin et al. 2016) is 
consistently able to identify the wide range 
of biomass in this fragmented and extremely 
heterogeneous domain, regions which would 
be extremely challenging to characterize from 
field observations alone. The databased build in 
this work is of great utility for the understanding 
of the climatic effect over different vegetation 
physiognomies and on the total above ground 
biomass density. The importance of climate in 
how it determine the biomass distribution in 
semiarid regions across the globe is critical for 
understanding the effect of the changing current 
and future climate to drier conditions in this 
region. The data base can support numerical 
modeling experiment for better accurate 
simulation of the different physiognomies 
in this semiarid region, and an important 
component to better predict their response to 
climate change. Together, uncontrolled land 
use change and climate changes may cause an 
irreversible scenario of desertification in the 
region. Less than 2 percent of the Caatinga area 
is protected a better understanding and high 
spatial resolution of biomass distribution is 
important to help plan expansion of areas for 
preservation. 

For future analyses accurate annual satellite-
based maps of biomass are important to help 
understand the contribution of the Caatinga 
region to the global seasonally dry tropical 

forests carbon stock and change, quantify 
deforestation and forest growth, understand the 
dynamical responses of the biomass to climate 
changes, and plan for greater preservation.
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SUPPLEMENTARY MATERIAL

Appendix S1.

Figure S1. Map properties for the Caatinga region: a) 
Altitude adapted from (INPE 2000); (b) Precipitation 
adapted from (INPE 2000); (c) Dry season length 
adapted from (IBGE 2006); (d) Temperature adapted 
from (INPE 2000); (e) Soil class adapted from (IBGE 
2006); (f) Soil Texture adapted from (IBGE 2006).

Figure S2. Comparison between Sampaio et al. (2005) 
and Chave et al. (2005) allometric equations models 
for dry tropical forests. It shows in red the Chave 
model used in Satellite retrieval with a wood density 
of 0.55 g/cm3.

Figure S3. Distribution of satellite AGB estimates 
frequency by biomass intervals, within the Caatinga 
domain.

Table SI. Metadata presenting the 104 sites used 
in these analyses. Contains the reference to 
publication source followed by, name of the plot/
municipality, federal unit (FU), plot coordinates (and 
respective quality assurance flags), mean altitude 
[m], precipitation [mm/yr], temperature [°C], method 
of measurement (DGL diameter at ground level, DBH 
diameter at breast height), total basal area [m2/
ha], absolute density of individuals [# / ha], mean 
and maximum tree height [m], mean and maximum 
tree diameter [cm], field site AGB estimate [Mg/ha], 
satellite AGB 30 m resolution pixel corresponding 
to field site location, and corresponding satellite 
uncertainty (Zarin et al. 2016), satellite mean AGB 
and corresponding standard deviation of the 30m 
resolution data averaged in a 500 m radius around the 
field coordinates.

Figure S4. a) Scatter plot comparison of estimated 
AGB between fi eld data and corresponding satellite 
pixel ((Zarin et al. 2016), AGB map 30m resolution); 
b) Difference between fi eld and satellite biomass 
estimate as a function of the mean biomass estimates, 
with the corresponding uncertainty represented by 
the error bars.

Figure S5. Scatter plot of field and satellite estimates 
of biomass averaged by physiognomy as defined in 
field data base (Table SI). The numbers of ground 
data points in each physiognomy is presented, the 
extension of the ellipses indicate the standard 
deviation of the series of AGB to the corresponding 

physiognomies, for field in x and satellite estimates 
in y axis (correlation coefficient r=0.9, 0.015 statistic 
correlation significance). Black continuous line 
represents the regression 1:1.

Figure S6. Fraction of biomass in given ranges as a 
function of mean dry season length. Biomass is based 
satellite biomass map, and dry season length (Figure 
S1b) across the Caatinga region.

Figure S7. Potential above ground biomass estimate 
based on the vegetation type map (Figure 1) and the 
average AGB from the satellite for each vegetation 
type (Figure 5 red dots).
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