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ABSTRACT
The theory of transport in porous media such as clays depends on the level of description. On the macroscopic scale,

hydrodynamics equations are used. These continuous descriptions are convenient to model the fluid motion in a confined

system. Nevertheless, they are valid only if the pores of the material are much larger than the molecular size of the

components of the system. Another approach consists in using molecular descriptions. These two methods which

correspond to different levels of description are complementary. The link between them can be clarified by using a

coarse-graining procedure where the microscopic laws are averaged over fast variables to get the long time macroscopic

laws. We present such an approach in the case of clays. Firstly, we detail the various levels of description and the

relations among them, by emphasizing the validity domain of the hydrodynamic equations. Secondly, we focus on the

case of dehydrated clays where hydrodynamics is not relevant. We show that it is possible to derive a simple model for

the motion of the cesium ion based on the difference on time scale between the solvent and the solute particles.

Key words: clays, multi-scale modelling, molecular dynamics, hydrodynamics, Brownian model.

INTRODUCTION

Clays are multi-scale materials. The description of
the dynamics of such complex systems is to be made
at different scales. On the macroscopic scale, hydrody-
namics equations are very convenient to model the fluid
motion and the diffusion of the various species through
this porous medium. Most of the time, the Navier-
Stokes equation is coupled to the Poisson equation and
the Fick’s law in order to compute the macroscopic
properties of the system as a function of the geometry.
Yet the link among these macroscopic laws and the mi-
croscopic properties of the material has to be clarified.
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They are valid only if the pores of the material are very
large, but the exact condition has to be determined. In
addition, macroscopic parameters (zeta potential, effec-
tive viscosity, diffusion coefficients, adsorption coeffi-
cients) are required.

Further approaches are based on molecular descrip-
tions. With the development of computer science, it is
possible to perform molecular dynamics simulations in
the case of such a confined system. The precise mo-
tion of the particles is obtained at short time and short
length scales. In that case the difficulty arises from the
fact that the boundary conditions of the simulation do
not correspond to the exact experimental system since
long-scale porosities are ignored and the link with the
experiments has to be clarified.

Thus the two methods are complementary since
they allow to describe the complex structure of the
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material. At short scales molecular dynamics can be
used whereas macroscopic laws are required at large
scales. The link between the descriptions still requires
further developments. Rigorous strategy can be obtained
if one uses coarse-graining procedures where the micro-
scopic laws are averaged over fast variables to get the
long time macroscopic laws. We present such ap-
proaches in the case of clays.

First, we will focus on hydrated clays. We will
briefly introduce the various levels of description that
can be used in order to describe montmorillonite clays.
Comparison between molecular dynamics and macro-
scopic laws allows the determination of the validity do-
main of commonly used theories, such as the Poisson-
Boltzmann equation. In the case of hydrodynamics, the
comparisons show that the macroscopic laws are valid
if slip boundary conditions are taken into account.

Second, the case of ionic diffusion for dehydrated
clays is analyzed. In that case, the classical equations
(e.g. Nernst-Planck model) are not valid any more be-
cause of the size of the pore. Continuous solvent mod-
els based on bulk equation are not valid because of the
layering of the solvent, which depends on its molecular
structure. We have introduced a coarse-graining pro-
cedure, which generalizes the latter to the case of con-
fined systems. We take into account the molecular struc-
ture of the water to compute (i) the interactions between
the particles and (ii) their mobility. These preliminary
calculations show that it is possible to describe the mo-
tion of the ions in a continuous solvent model, even in
the case of dehydrated clays, provided that the mass of
the ion is much larger than that of the solvent (cesium
ione.g.).

MULTI-SCALE MODELLING
LEVELS OF DESCRIPTIONS

Hydrated smectite clays such as montmorillonite are
lamellar mineral crystals composed of charged layers
separated by an aqueous solution. They exhibit special
features towards hydration and ion fixation (Karaborni
etal. 1996). Clay lamellae form thin platelet-shaped par-
ticles of diameter close to several hundreds of Angs-
troms. However this lamellar geometry is valid only at
small length scales. At larger scales, the structure is more
complex and it leads to multi-porosities. Thus the de-
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scription of such systems requires a multi-scale strategy.
Many theoretical studies at different levels of description
have been performed. They are summarized in Figure 1.

Ab-initio molecular dynamics (Boek and Sprik
2003, Tunega et al. 2004, Benco et al. 2001) provides
information about the electronic degrees of freedom,
but because of its computational cost it is restricted to
the smallest time and length scales. Classical Monte-
Carlo (Skipper et al. 1995) or Molecular Dynamics sim-
ulations (Malikova et al. 2004, Arab et al. 2004, Great-
house et al. 2000) are able to describe larger systems.
For example, the mechanism of crystalline swelling at
low hydration is well reproduced by these techniques
where the various atoms and ions are considered ex-
plicitly. Nevertheless, very large systems (e.g. for high
hydration, or when different platelets have to be taken
into account) cannot be treated by this technique. The
use of alternative methods such as Brownian dynamics
simulations (Marry et al. 2003) is inescapable. In that
case, only a part of the degrees of freedom (e.g. the mo-
tion of the (free) ions) is considered. At large scales,
continuous methods (e.g. Poisson-Boltzmann (Trizac et
al. 2000) descriptions or hydrodynamics (Rosanne et al.
2004, Leroy and Revil 2004, Moyne and Murad 2002,
Moyne and Murad 2003)) can model the different sort of
porosities. They are especially relevant for the deriva-
tion of the macroscopic laws (such as Darcy’s law) or for
the calculation of the various electrokinetic phenomena.

ELIMINATION OF FAST VARIABLES

Unfortunately, the link among these methods is at first
sight far from obvious. Yet this issue is very important
since every method requires the knowledge of the param-
eters of the model it is based on. These parameters could
be obtained — at least in principle — from the simulations
at the lower level of description. This self-consistent ap-
proach is not commonly used for clays, though. Most of
the numerical studies obtain their parameter from exper-
iments or from semi-phenomenological considerations.
Only a few attempts have been made towards that direc-
tion for clays (Marry et al. 2003, Porion et al. 2003).
The general method, which bridges the gap among
the various models, is the elimination of fast variables
(Van Kampen 1985). Every level of description can be
obtained from the preceding one by averaging over
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Fig. 1 — Various levels of description for the dynamics in charged porous systems. Upper part: simulation and theoretical techniques. Lower part:

ingredients of the models.

some degrees of freedom. Then it only describes the
dynamics of a part of the degrees of freedom (relevant
variables). Further degrees of freedom (irrelevant vari-
ables) are not described explicitly at the considered
level. They are only included via their average effect.
For example, in the case of molecular dynamics, the only
relevant variables are the position of the nuclei. The de-
tails of the electronic degrees of freedom are ignored.
Only their average effects, i.e. the forces on the nuclei
are taken into account. This separation among the vari-
ables makes sense for the calculation of the dynamical
properties only if the irrelevant variables are much faster
than the relevant ones. Thus, such a coarse-grained pro-
cedure is valid if slow variables coincide with relevant
ones. In the case of molecular dynamics, it corresponds
to the Born-Oppenheimer approximation that simplifies
the calculation of the motion of the nuclei under the in-
fluence of the rapid motion of the electrons.

Similarly, in the case of Brownian dynamics, the
motion of the solute particles (i.e. ions) is obtained by
considering that the only relevant variables are the de-
grees of freedom of the solute particles. This Brownian
description which treats the solvent as a continuum is
valid only if the solvent molecules are much faster than
the solute particles.

The elimination of the fast variables is the key
for the derivation of the various models of Figure 1,
except for the last one. Indeed, the experimental macro-
scopic law of porous media (such as Darcy’s law) are
theoretically obtained differently, by averaging over the
geometry of the material, for example thanks to the ho-
mogenization procedure of Moyne and Murad (Moyne
and Murad 2002, 2003).

HYDRODYNAMIC LIMIT

It should be noted that the hydrodynamic equations
themselves correspond to the elimination of fast vari-

ables. Thus the laws of non-equilibrium thermody-
namics (de Groot and Mazur 1983) such as the Navier-
Stokes equation for the convection and the Fick’s law for
the diffusive motion of the solute particles, are valid in
the hydrodynamic limit (Ailawadi et al. 1971, Zwanzig
2001) where the hydrodynamic modes become slow.
The latter corresponds to the limit of large distances r
or small wave-vectors k&, as can be understood from the
following argument.

Non-equilibrium thermodynamics predicts the evo-
lution of particle and momentum distributions in space.
For example, in the case of diffusion, it gives the evolu-
tion of the density of particles in space for the various
components of the systems. The microscopic density of
a species « reads:

pa(r, 1) =Y 8(r—r; (1)) (1)

where the ith particle of type o has position r; (¢) at time
t. The Fourier transform is:

Po (k. 1) = [ pa(e T dr = "7 kn® (2
i

In the hydrodynamic limit k — 0, p; (K, ) becomes
time-independent because it tends towards N, the total
number of particles of type «v. Fork # 0, p} (K, t) # Ny
depends on time. But its evolution gets slower as k —
0. Thus for k — 0, the density of particle becomes a
slow variable. A similar argument can be made for the
average velocity (or momentum) of the particles:

1

v(r, 1) = Y oS —r@)mivi) (3

m;
i
because of the linear momentum conservation law.
Thus in the hydrodynamic limit (small wave-vectors or
large distances), hydrodynamic laws are valid because
the hydrodynamic quantities become slow, on the
grounds of the conservation laws.
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The accuracy of hydrodynamic descriptions can
be checked by comparing their predictions to the re-
sults obtained from molecular dynamics (Marry and
Turq 2003, Dufréche et al. 2005b).
sults are given in Figure 2 for Na montmorillonite clays

Some of the re-

with an interlayer spacing equal to 47.5 A. In that case,
macroscopic hydrodynamic models generally calculate
counterion distributions with the help of the Poisson-
Boltzmann equation. Even for that relatively small in-
terlayer spacing, this hydrodynamic model appears to
be valid. The main differences are the oscillations given
by the microscopic model, which are characteristic of
the discrete nature of the solvent molecules. The electro-
osmotic flow can be calculated from molecular dynam-
ics as well. In that case simple hydrodynamic theory
fails to reproduce the microscopic results. In fact, it
seems that the problem comes from the stick bound-
ary conditions. One can show that microscopically, slip
boundary conditions have to be taken into account.
More precisely, the parallel component of the hydro-
dynamic fluid velocity at the interface is not zero. It
is actually given by:

dvp

vy =82 ©
where z is the direction orthogonal to the interface and
8 is the Navier slip length that quantifies slipping. For
montmorillonite, § is equal to a few Angstréms, which
is very small, but it is enough to modify the electro-
osmotic flow. The reason comes from the fact that
electro-osmosis is created by surface charges, so that
it strongly depends on the boundary conditions. Con-
versely, hydrodynamic motions created by bulk forces
(such as a pressure gradient in the case of a Poiseuille
flow or of a streaming potential experiment) depend less
on the slip length, as it has been recently confirmed by
Joly et al. (Joly et al. 2006).

DEHYDRATED CLAYS

At very low interlayer spacings, hydrodynamic mod-
els inside the pores do not hold anymore. For exam-
ple, in the important case of monohydrated clays, there
is only one layer of water molecules between two clay
sheets, so there is no chance that hydrodynamic equa-
tions work. Yet it is not impossible to derive a contin-
uous solvent model for the dynamics of the ions in that
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case. Indeed, the hydrodynamic quantities are not slow
anymore, because the distance between the layers is not
large enough, but if the ions are much heavier than the
water molecules, their dynamics is much slower than
the dynamics of the solvent. Thus, the position and the
velocity of the solute particles are slow variables and
a coarse-graining procedure can be performed. The
motion of the ions is given by a Brownian model. The
diffusion of heavy ions in clays at low hydration is par-
ticularly important because of the practical applications.
In particular, it corresponds to the case of nuclear waste
storage.

BROWNIAN MODEL

Most theories of transport of electrolyte solutions, which
generalized the pioneering work of Onsager (Onsager
and Fuoss 1932) are actually based on Brownian descrip-
tion. At first sight it may be surprising that Brownian
theories can be applied for simple ions that are not quite
heavier than the solvent molecules. However, in prac-
tice, for bulk solutions, the model is satisfactory even
for small ions as LiT, probably because of the pheno-
menon of hydration. A shell of solvent molecules be-
comes strongly attached to each ion so that it is probably
not too bad an approximation to consider a given ion
together with its solvation shell as a single heavy entity.

Different Brownian models can be implemented
for the dynamics of ions in an aqueous solution. They are
summarized in Figure 3. At the microscopic scale, dis-
crete solvent descriptions consider all the different par-
ticles, the solvent and the ions. The dynamics (Hansen
and McDonald 1986) is driven by Newton’s law (which
corresponds to the Liouville’s equation in phase space).
If solute particles can be considered to be much heav-
ier than the solvent molecules, Brownian models (based
on continuum solvent descriptions) are valid. There are
mainly two classes of Brownian description (Résibois
1968). The first one corresponds to the Langevin ap-
proach. The relevant observables are the velocity (or the
momentum) and the position of the ions. The evolution
in phase space is given by a Fokker-Planck equation, as
it can be shown by a Kramers Moyal expansion (Risken
1996, Van Kampen 1992). The second one is the Smo-
luchowski approach. It is valid for time scales longer
than the relaxation time t, = 1/y of the velocities of
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Fig. 2 — Left: Cation (Nat) distribution between two montmorillonite clay layers. Solid line:

molecular dynamics. Dashed line: Poisson-Boltzmann equation. Right: Electro-osmotic flux.

Diamonds: molecular dynamics. Dashed line: Navier-Stokes equation with stick boundary

condition. Solid line: Navier-Stokes equation with slip boundary conditions (§ = 6 A).
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Fig. 3 — Various levels of description for the description of the dynamics of ions in solution.

the ions. Indeed in that case, the ionic velocities have
the time to relax and it can be shown (Van Kampen
1985) that they are actually fast variables. The dynamics
of the ions is then given by the Smoluchowski equation,
which only depends on the position of the particles.

A few works have been made at the Langevin level
of description (Turq et al. 1977), but almost all theories
correspond to the Smoluchowski level of approximation
(Altenberger and Friedman 1983, Sung and Friedman
1983, Dufréche et al. 2005a). The reason is that the
characteristic time of ions in bulk solution is the Debye
time of the electrolyte (Turq et al. 1992). This time is
typically of a few nanoseconds, it is much longer than
the relaxation time of the velocities (closer to the pico-
second) so that the Smoluchowski approach is valid.

In the case of monohydrated clays the situation is
completely different because of the presence of the
mineral layers. The characteristic time of the motion
of the ion is not the Debye time, because the ion diffu-
sion is actually driven by the surface-ions interactions
(averaged over the solvent configuration). Molecular
dynamics simulations (Malikova et al. 2004) show that

the dynamics follows a hopping mechanism (site-site dif-
fusion), with a characteristic time close to the picosec-
ond, which is of the order of magnitude of 7,. Thus,
contrary to bulk solutions, the Smoluchowski’s equation
is not valid. The correct Brownian model is based on the
Langevin level of description.

There is another price to pay compared to the bulk
case. The site-site diffusion is coupled to the hydra-
tion/dehydration of the water. Thus, it is not possible
anymore to consider the shell of water molecules as a part
of a Brownian particle, because the solvation changes
during the diffusion process. As a matter of fact, Brow-
nian theory can only be applied only to real heavy ions.
The case of small ones cannot be studied from Brownian
models, because the time scale of the hydration process
is close to the time scale of diffusion.

LANGEVIN DYNAMICS SIMULATION

We applied a Langevin description to the case of a clay
with Cs™ counterions and a water monolayer. The
separation of timescales between the slow solute (ion)
and fast solvent (water) dynamics is such that one can
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average over the solvent degrees of freedom. Within
the Langevin approach, the solute/solvent interaction is
modelled by two parameters. The dynamical proper-
ties depend on a single friction coefficient y (in s™!):
The friction force on an ion is proportional to its veloc-
ity (Fsoly = —myv). The important point is that y is
different from the bulk values because the solvent con-
figuration is completely modified by the geometry in the
monolayer. In particular, the orientational configuration
of the water molecules is modified by the sheets so that
the dielectric part of the friction (Hubbard and Onsager
1977, Bagchi 1998), which is an important contribution
to the bulk friction, is completely different. The sec-
ond parameter is the external (free energy) potential V.,
which models the solute/surface interactions.

The Langevin equation which gives the evolution
of the velocity v is

dv F
— =—yv+—+T() 6)
dt m

where F is the external force, i.e. the opposite of the
gradient of Verr. I'(f) is a random force. It can be
modelled by a white noise whose correlation function is
related to y (Risken 1996). We solved this equation nu-
merically using a first order algorithm. Such a numerical
solution method is called the Langevin dynamics simu-
lation method.

The Langevin equation is equivalent to the Fokker-
Planck (FP) equation

vV kgT
8,f+v-Vf:Vv-(yv+—+y 5

m

Vv) f (6

which gives the evolution of the probability density func-
tion f(x, Vv, t) of finding an ion at a given position with
a given velocity. We also solved numerically the FP
equation by a Lattice Fokker-Planck method (Moroni
et al. 2006) which we used in this particular context
of ionic mobility in compacted clays (Rotenberg et al.
2006). The two methods (Langevin dynamics and Lat-
tice Fokker-Planck simulations) were found to give ex-
actly the same results.

An important issue is the value of the McMillan
potential Verr (McMillan and Mayer 1945), averaged
over the configurations of the solvent. It is exactly de-
fined as the N particles distribution function of the
solute when it is infinitely dilute. For the sake of sim-
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plicity, we performed preliminary calculations where
Verr is given by the low density limit:

Vers(r) = —kpT In p(r) (7

with p(r) is the average concentration of counterions
obtained by molecular dynamics. This simplified model
neglects the correlation among the ions.

Verr, which was assumed to be a 2D potential is
represented in Figure 4. This potential clearly indicates
that we have a site-site diffusion for the dynamics of the
cesium ions, the depth of the potential being a few times
the thermal energy kg7. Langevin dynamics gives ex-
actly the same ion distribution (not represented). It is
a direct consequence of the fact that the canonical dis-
tribution function is a stationary solution of the Fokker-
Planck equation.

Fig. 4 — Effective potential (kg7 units) for the counterions in clays
obtained from molecular dynamics simulations. The dark and the white
part respectively correspond to the position of the Si and O atoms of

the surface of the clay sheets. The length unit is A.

DIFFUSION OF IONS

We calculated the velocity correlation function Z(¢)
(Hansen and McDonald 1986) which characterizes the
diffusion of the ions in the system for different values of
the friction y. The results are presented in Figure 5.

At large friction y = 10 ps~!, Z(¢) can be divided
into two parts. First at short times a simple relaxation
corresponds to the friction of the solvent. Then there
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is a long time negative tail which corresponds to the
jumps from site to site.

approaches y = 1 ps~
velocity correlation function. They correspond to the
oscillations of the ions in the layer sites. They are typ-
ical of the Langevin regime for which the velocity re-
laxation is not faster than the characteristic time of the

If the friction decreases and

!, oscillations appear in the

interactions. The two times are close to 1 ps.
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Fig. 5 — Velocity correlation function of the ions obtained from mo-
lecular dynamics (atomic simulations with explicit water molecules)
and from Langevin dynamics dimulations for 4 values of the friction

(continuous solvent simulations).

The results obtained from Langevin dynamics can
be compared to the Z(¢) calculated from molecular dy-
namics. Of course, the velocity correlation function is
quantitatively different because of the simplicity of this
preliminary model: the friction is isotropic and the ion
correlations are neglected. However the curves are qual-
itatively similar. Discrete solvent simulations recover
small oscillations. The value of the friction can be ob-
tained at small time scales. y seems to be between 2
and 5 ps~!. It corresponds to a domain where Z(¢) starts
to exhibit very small velocity oscillations.

CONCLUSION

We briefly describe the different approaches used to
model the dynamics of clays. Every level of descrip-
tion is valid if the variables it models (relevant variables)
are slow variables. In the case of hydrodynamics, the
macroscopic laws are valid as long as the typical size
of the system is larger than a few nanometers, if proper
boundary conditions are taken into account. For mono-
hydrated systems where there is just one layer of solvent

molecules it is still possible to use a continuous solvent
model if the ion is heavy. Then the dynamics is obtained
from a Brownian model. Preliminary results indicate
that this method may be applied for Cs™.

RESUMO

A teoria de transporte em meios porosos tais como argilas
depende do nivel de descri¢do. Na escala macroscopica, equa-
¢des da hidrodinamica sdo utilizadas. Tais descrigdes a nivel
do continuo sdo convenientes para tratar o movimento do flui-
do em sistemas confinados. No entanto, tais equagdes sdo
validas se os poros do material sdo muito maiores do que
as moléculas das componentes do sistema. Uma outra abor-
dagem consiste em usar descrigdes moleculares. Esses dois
métodos que correspondem a diferentes niveis de descrigdo
sdo complementares. A ligagdo entre eles pode ser elucidada
usando um procedimento de mudanga de escala onde sdo to-
madas médias das leis microscopicas sobre as variaveis rapi-
das para se obter as leis macroscopicas para tempos longos.
Apresentamos esta abordagem no caso de argilas. Primeira-
mente apresentamos em detalhes os varios niveis de descrigdo
bem como as relagdes entre eles, enfatizando o dominio de va-
lidade das equagdes hidrodindmicas. Em seguida, focamos no
caso de argilas desidratadas onde a hidrodindmica néo ¢ rele-
vante. Mostramos que € possivel derivar um modelo simples
para o movimento dos ions césio baseado na diferenga entre as

escalas de tempo do solvente e das particulas do soluto.

Palavras-chave: argila, modelagem multiescala, dindmica

molecular, hidrodindmica, movimento Browniano.
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