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Integral inequalities for closed linear Weingarten
submanifolds in the product spaces

FÁBIO R. DOS SANTOS, SYLVIA F. DA SILVA & ANTONIO F. DE SOUSA

Abstract: An integral inequality for closed linear Weingarten 𝑚-submanifolds with
parallel normalized mean curvature vector field (pnmc lw-submanifolds) in the product
spaces 𝑀𝑛(𝑐) × ℝ, 𝑛 > 𝑚 ≥ 4, where 𝑀𝑛(𝑐) is a space form of constant sectional curvature
𝑐 ∈ {−1, 1}, is proved. As an application is shown that the sharpness in this inequality
is attained in the totally umbilical hypersurfaces, and in a certain family of standard
product of the form 𝕊1(√1 − 𝑟2) × 𝕊𝑚−1(𝑟) with 0 < 𝑟 < 1 when 𝑐 = 1. In the case where
𝑐 = −1, is obtained an integral inequality whose sharpness is attained only in the totally
umbilical hypersurfaces. When 𝑚 = 2 and 𝑚 = 3, an integral inequality is also obtained
with equality happening in the totally umbilical hypersurfaces.

Key words: Closed pnmc lw-submanifolds, product spaces, totally umbilical
hypersurfaces, standard product.

INTRODUCTION

Within the theory of isometric immersions, the characterization of closed submanifolds (compact
with empty boundaries) with one of their constant curvatures using integral inequalities constitutes
a classical research topic. Notable among these is Simons’ integral inequality (see Simons 1968),
which establishes a relationship between the squared norm of the second fundamental form and the
dimension and codimension of the minimal submanifold in the unit sphere. It is worth highlighting
that Simons’ tool has proven effective not only in the study of minimal closed submanifolds in the
sphere but also in the investigation of submanifolds with other constant curvatures, as well as in more
general ambient spaces (see, for example, Chern et al. 1970, Lawson 1969, Ôtsuki 1970, dos Santos &
da Silva 2021, and references therein).

In the context of hypersurfaces, Cheng & Yau (1977) investigated the rigidity of hypersurfaces with
constant scalar curvature in a space form. They introduced a new second-order differential operator
known as the square operator. Building upon Cheng-Yau’s technique, Li (1996) studied the pinching
problem concerning the square norm of the second fundamental form for complete hypersurfaces
with constant scalar curvature. Later, Wei (2008) derived a Simons’ type integral inequality for
closed 𝑘-minimal rotational hypersurfaces immersed in 𝕊𝑚+1, characterizing the equality through the
standard product 𝕊1(√1 − 𝑟2) × 𝕊𝑚−1(𝑟). In higher codimension, Guo & Li (2013) extended the results
of Li (1996) and showed that the only closed submanifolds with parallel normalized mean curvature
(pnmc) in the unit sphere 𝕊𝑚+𝑝 with constant scalar curvature, and whose second fundamental form

2020 Mathematics Subject Classification: Primary 53C42; Secondary 53A10, 53C20.

An Acad Bras Cienc (2023) 95(Suppl. 2)



FÁBIO R. DOS SANTOS, SYLVIA F. DA SILVA & ANTONIO F. DE SOUSA PNMC LW-SUBMANIFOLDS IN THE PRODUCT SPACES

satisfies appropriate boundedness, are the totally umbilical sphere 𝕊𝑚(𝑟) and the standard product
𝕊1(√1 − 𝑟2) × 𝕊𝑚−1(𝑟).

Recently, Alías & Meléndez (2020) studied the rigidity of closed hypersurfaces with constant
scalar curvature isometrically immersed in 𝕊𝑚+1. In particular, they established a sharp Simons-type
integral inequality for the squared norm of the traceless second fundamental form, with equality
characterizing the totally umbilical hypersurfaces and the standard product 𝕊1(√1 − 𝑟2) × 𝕊𝑚−1(𝑟).
More recently, by using the approach developed by Alías & Meléndez (2020), dos Santos & da Silva
(2021) generalized the sharp Simons-type integral inequality of Alías & Meléndez (2020) for pnmc
submanifolds immersed in the Riemannian product space 𝕊𝑛 × ℝ having constant second mean
curvature. As an application, they showed that the sharpness in this inequality is attained in the totally
umbilical hypersurfaces, and in a certain family of standard product of the form 𝕊1(√1 − 𝑟2) × 𝕊𝑚−1(𝑟) ⊂
𝕊𝑚+1 × {𝑡0} ↪ 𝕊𝑛 × ℝ, for some 𝑡0 ∈ ℝ with 𝑛 > 𝑚 ≥ 4.

On the other hand, a natural extension of the submanifolds with constant second mean curvature
is the linear Weingarten submanifolds. A submanifold is said to be linear Weingarten (here we will
denote by lw-submanifolds) when the first and the second mean curvatures satisfy a certain linear
relation. Here, we deal with𝑚-dimensional closed pnmc lw-submanifolds immersed in a Riemannian
product space 𝑀𝑛(𝑐) × ℝ, where 𝑀𝑛(𝑐) is a space form of constant sectional curvature 𝑐 = −1, 1 with
𝑛 > 𝑚 ≥ 4. In this setting, we extend the technique developed by the first two authors in dos Santos &
da Silva (2021, 2022) in order to prove a sharp integral inequality for pnmc lw-submanifolds obtaining
natural generalizations of the main results of Alías & Meléndez (2020) and dos Santos & da Silva
(2021). Furthermore, we also obtain integral inequalities when 𝑐 = −1, which is not contemplated in
dos Santos & da Silva (2021).

This manuscript is organized as follows: In Section 1, we provide a brief review of fundamental
concepts related to submanifolds immersed in a Riemannian product space 𝑀𝑛(𝑐) × ℝ. Subsequently,
we establish a Simons’ type formula for pnmc lw-submanifolds in 𝑀𝑛(𝑐) × ℝ (see Proposition 1.2). In
Section 2, we present auxiliary lemmas concerning pnmc lw-submanifolds in 𝑀𝑛(𝑐) × ℝ. Moving on to
Section 3, we provide a lower estimate for a Cheng-Yaumodified operator acting on the square norm of
the traceless second fundamental form of such submanifolds (see Proposition 3.1). We then apply this
result to establish our characterization theorems for closed pnmc lw-submanifolds in 𝑀𝑛(𝑐) × ℝ with
a constant angle between the normalized mean curvature and the unit vector field tangent to ℝ (see
Theorems 3.3 and 3.4). Finally, in the last section, we examine the cases of two and three dimensions
(see Theorems 4.1 and 4.2).

1 - A SIMONS TYPE FORMULA FOR SUBMANIFOLDS IN 𝑀𝑁(𝐶) × ℝ

Along this manuscript, we will always deal with an 𝑚-dimensional connected submanifold Σ𝑚

immersed in a Riemannian manifold 𝑀𝑛+1 with 𝑛 ≥ 𝑚. We choose a local field of orthonormal frames
𝑒1, … , 𝑒𝑛+1 in 𝑀

𝑛+1, with dual coframes 𝜔1, … ,𝜔𝑛+1, such that, at each point of Σ
𝑚, 𝑒1, … , 𝑒𝑚 are tangent

to Σ𝑚 and 𝑒𝑚+1, … , 𝑒𝑛+1 are normal to Σ
𝑚. We will use the following convention of indices:

1 ≤ 𝑖, 𝑗, 𝑘, … ≤ 𝑚 and 𝑚 + 1 ≤ 𝛼, 𝛽, 𝛾, … ≤ 𝑛 + 1.
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Now, restricting all the tensors to Σ𝑚, 𝜔𝛼 = 0 on Σ
𝑚. Hence, ∑𝑖𝜔𝛼𝑖∧𝜔𝑖 = 𝑑𝜔𝛼 = 0 and as it is well known

we get

𝜔𝛼𝑖 = ∑
𝑗
ℎ𝛼𝑖𝑗𝜔𝑗 and ℎ𝛼𝑖𝑗 = ℎ

𝛼
𝑗𝑖. (1)

This gives

𝐴 = ∑
𝛼,𝑖,𝑗

ℎ𝛼𝑖𝑗𝜔𝑖 ⊗ 𝜔𝑗𝑒𝛼, ℎ𝛼𝑖𝑗 = ⟨𝐴𝛼(𝑒𝑖), 𝑒𝑗⟩ = ⟨𝐴(𝑒𝑖, 𝑒𝑗), 𝑒𝛼⟩ (2)

with 𝐴 denoting the second fundamental form of Σ𝑚 in 𝑀𝑛+1. The square length of the shape operator
is

|𝐴|2 = ∑
𝛼
|𝐴𝛼|

2 = ∑
𝛼,𝑖,𝑗
(ℎ𝛼𝑖𝑗)2. (3)

Furthermore, we define the mean curvature vector ℎ and the mean curvature function 𝐻 of Σ𝑚 in 𝑀𝑛+1,
respectively by

ℎ = 1
𝑚∑

𝛼
tr(𝐴𝛼)𝑒𝛼 and 𝐻 = |ℎ| = 1

𝑚√∑𝛼
tr(𝐴𝛼)2, (4)

where tr(𝐴𝛼) = ∑𝑖 ℎ
𝛼
𝑖𝑖.

As it is well known, the basic equations of the submanifolds are the Gauss equation

𝑅𝑖𝑗𝑘𝑙 = 𝑅𝑖𝑗𝑘𝑙 +∑
𝛽
(ℎ𝛽𝑖𝑘ℎ

𝛽
𝑗𝑙 − ℎ

𝛽
𝑖𝑙ℎ

𝛽
𝑗𝑘), (5)

where 𝑅𝑖𝑗𝑘𝑙 and 𝑅𝑖𝑗𝑘𝑙 are the components of the curvature tensor of 𝑀
𝑛+1 and Σ𝑚, respectively, the Ricci

equation

𝑅⟂𝛼𝛽𝑖𝑗 = 𝑅𝛼𝛽𝑖𝑗 +∑
𝑘
(ℎ𝛼𝑖𝑘ℎ

𝛽
𝑘𝑗 − ℎ

𝛼
𝑘𝑗ℎ

𝛽
𝑖𝑘), (6)

where 𝑅⟂𝛼𝛽𝑖𝑗 are the components of the normal curvature tensor of Σ
𝑚, and the Codazzi equation

ℎ𝛼𝑖𝑗𝑘 − ℎ
𝛼
𝑖𝑘𝑗 = −𝑅𝛼𝑖𝑗𝑘. (7)

where ℎ𝛼𝑖𝑗𝑘 denote the first covariant derivatives of ℎ
𝛼
𝑖𝑗. Additionally,

|∇𝐴|2 = ∑
𝛼,𝑖,𝑗,𝑘

(ℎ𝛼𝑖𝑗𝑘)2, (8)

where ∇ denotes the covariant derivative of the second fundamental form 𝐴. In particular, we say that
Σ𝑚 is a parallel submanifold of 𝑀𝑛+1 when ∇𝐴 = 0 (see van der Veken & Vrancken 2008).

In this setting, the following Simons-type formula is well-known (see dos Santos & da Silva 2021,
2022):
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Proposition 1.1. Let Σ𝑚 a submanifold immersed isometrically in a Riemannian manifold 𝑀𝑛+1, 𝑛 ≥ 𝑚.
Then, we have

1
2
Δ|𝐴|2 = |∇𝐴|2 + ∑

𝛼,𝑖,𝑗,𝑘
ℎ𝛼𝑖𝑗 (ℎ

𝛼
𝑘𝑘𝑖𝑗 − 𝑅𝛼𝑖𝑘𝑗𝑘 − 𝑅𝛼𝑘𝑘𝑖𝑗)

+ ∑
𝛼,𝛽,𝑖,𝑗,𝑘

ℎ𝛼𝑖𝑗 (−ℎ
𝛽
𝑘𝑘𝑅𝛼𝑖𝑗𝛽 + 2ℎ

𝛽
𝑗𝑘𝑅𝛼𝛽𝑘𝑖 − ℎ

𝛽
𝑖𝑗𝑅𝛼𝑘𝛽𝑘 + 2ℎ

𝛽
𝑘𝑖𝑅𝛼𝛽𝑘𝑗)

−∑
𝛼,𝛽
(𝑁(𝐴𝛼𝐴𝛽 − 𝐴𝛽𝐴𝛼) + [tr(𝐴𝛼𝐴𝛽)]

2 − tr(𝐴𝛽)tr(𝐴
2
𝛼𝐴𝛽))

+ 2∑
𝛼,𝑖,𝑗,𝑘,𝑝

ℎ𝛼𝑝𝑗 (ℎ𝛼𝑝𝑘𝑅𝑝𝑖𝑗𝑘 + ℎ
𝛼
𝑝𝑗𝑅𝑝𝑘𝑖𝑘) ,

(9)

where 𝑁(𝐴) = tr(𝐴𝐴𝑡) for all matrix 𝐴 = (𝑎𝑖𝑗).

From now on, let us consider the case where the ambient space is a product space. Let 𝑀𝑛+1 =
𝑀𝑛(𝑐) ×ℝ be a product space, where 𝑀𝑛(𝑐) be a connected Riemannian manifold endowed with metric
tensor ⟨ , ⟩𝑀 and of constant sectional curvature 𝑐 = −1, 1 andℝ is the real line. Thus, the product space
𝑀𝑛(𝑐) × ℝ is the differential manifold 𝑀𝑛(𝑐) × ℝ endowed with the Riemannian metric

⟨𝑣, 𝑤⟩ = ⟨(𝜋𝑀)∗𝑣, (𝜋𝑀)∗𝑤⟩𝑀 + ⟨(𝜋ℝ)∗𝑣, (𝜋ℝ)∗𝑤⟩ℝ, (10)

with (𝑝, 𝑡) ∈ 𝑀𝑛(𝑐) × ℝ and 𝑣, 𝑤 ∈ 𝑇(𝑝,𝑡)(𝑀
𝑛(𝑐) × ℝ), where 𝜋ℝ and 𝜋𝑀 denote the projections onto the

corresponding factor. Associated with the product space, we know that, the vector field

𝜕𝑡 ∶= (𝜕/𝜕𝑡)|(𝑝,𝑡), (𝑝, 𝑡) ∈ 𝑀𝑛(𝑐) × ℝ (11)

is parallel and unitary, that is,
∇𝜕𝑡 = 0 and ⟨𝜕𝑡, 𝜕𝑡⟩ = 1, (12)

where ∇ is the Levi-Civita connection of the Riemannian metric of 𝑀𝑛(𝑐) × ℝ. Using the notations
established in Fetcu & Rosenberg (2013), we write the decomposition

𝜕𝑡 = 𝑇 + 𝑁 (13)

where 𝑇 ∶= 𝜕𝑡 and 𝑁 ∶= 𝜕⟂𝑡 denotes, respectively, the tangent and normal parts of the vector field 𝜕𝑡
on the tangent and normal bundle of the submanifold Σ𝑚 in 𝑀𝑛(𝑐) × ℝ. Moreover, from (12) and (13),
we get the relation

1 = ⟨𝜕𝑡, 𝜕𝑡⟩ = |𝑇|
2 + |𝑁|2. (14)

It is clear that, if 𝑇 = 0 then, 𝜕𝑡 is normal to Σ
𝑚 and, hence Σ𝑚 lies in 𝑀𝑛(𝑐).

Moreover, let us recall that the curvature tensor1 of 𝑀𝑛(𝑐) × ℝ satisfies, (see Daniel 2007),

𝑅(𝑋, 𝑌)𝑍 = 𝑐(⟨𝑋, 𝑍⟩𝑌 − ⟨𝑌, 𝑍⟩𝑋) + 𝑐⟨𝑍, 𝜕𝑡⟩(⟨𝑌, 𝜕𝑡⟩𝑋 − ⟨𝑋, 𝜕𝑡⟩𝑌)
+ 𝑐(⟨𝑌, 𝑍⟩⟨𝑋, 𝜕𝑡⟩ − ⟨𝑋, 𝑍⟩⟨𝑌, 𝜕𝑡⟩)𝜕𝑡,

(15)

where 𝑋, 𝑌, 𝑍 ∈ 𝑋(𝑀𝑛(𝑐) × ℝ).

1We adopt for the (1, 3)-curvature tensor the following definition of Chapter 3 of O’Neill (1983): 𝑅(𝑋, 𝑌)𝑍 = ∇[𝑋,𝑌]𝑍−[∇𝑋, ∇𝑌]𝑍.
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In what follows, we will denote by ∇ and ∇⟂, respectively, the tangent and normal Levi-Civita
connections along the tangent and normal bundle of Σ𝑚, a direct computation by (13) give us

∇𝑋𝑇 = 𝐴𝑁(𝑋) and ∇⟂𝑋𝑁 = −𝐴(𝑇, 𝑋), for all 𝑋 ∈ 𝑋(𝑀), (16)

where 𝐴𝑁 = ∑𝛼⟨𝑁, 𝑒𝛼⟩𝐴𝛼 denotes the Weingarten operator in the 𝑁 direction.
By this digression, our aim now is to get a Simons-type formula for a pnmc lw-submanifold Σ𝑚 in

𝑀𝑛(𝑐) × ℝ. Firstly, since 𝑀𝑛(𝑐) × ℝ locally symmetric, we have 𝑅𝛼𝑖𝑘𝑗𝑘 = 𝑅𝛼𝑘𝑘𝑖𝑗 = 0. On the other hand, a
direct computation from (15), gives 𝑅𝛼𝛽𝑘𝑗 = 0, for all 𝛼, 𝛽, 𝑗, 𝑘. Moreover,

∑
𝛼,𝛽,𝑖,𝑗,𝑘

ℎ𝛼𝑖𝑗 (ℎ
𝛽
𝑘𝑘𝑅𝛼𝑖𝑗𝛽 + ℎ

𝛽
𝑖𝑗𝑅𝛼𝑘𝛽𝑘) = −𝑐𝑚

2𝐻2 + 𝑐𝑚⟨𝐴(𝑇, 𝑇), ℎ⟩ − 𝑐𝑚|𝐴𝑁|
2

+ 𝑐𝑚2⟨ℎ, 𝑁⟩2 + 𝑐(𝑚 − |𝑇|2)|𝐴|2
(17)

and

∑
𝛼,𝑖,𝑗,𝑘,𝑝

ℎ𝛼𝑝𝑗 (ℎ𝛼𝑝𝑘𝑅𝑝𝑖𝑗𝑘 + ℎ
𝛼
𝑝𝑗𝑅𝑝𝑘𝑖𝑘) = −𝑐𝑚∑

𝛼
|𝐴𝛼(𝑇)|

2 + 𝑐(𝑚 − |𝑇|2)|𝐴|2

− 𝑐𝑚2𝐻2 + 2𝑐𝑚⟨𝐴(𝑇, 𝑇), ℎ⟩.
(18)

Next, we will also consider the traceless second fundamental form

𝜙 = ∑
𝛼,𝑖,𝑗
𝜙𝛼𝑖𝑗𝜔𝑖 ⊗ 𝜔𝑗𝑒𝛼, 𝜙𝛼𝑖𝑗 = ⟨𝜙𝛼(𝑒𝑖), 𝑒𝑗⟩ = ℎ

𝛼
𝑖𝑗 − ⟨ℎ, 𝑒𝛼⟩𝛿𝑖𝑗. (19)

It is easy to check that each 𝜙𝛼 = 𝐴𝛼 − ⟨ℎ, 𝑒𝛼⟩𝐼 is traceless and that

|𝜙|2 = ∑
𝛼
|𝜙𝛼|

2 = ∑
𝛼,𝑖,𝑗
(𝜙𝛼𝑖𝑗)2 = |𝐴|2 − 𝑚𝐻2. (20)

Observe that |𝜙|2 = 0 if and only if Σ𝑚 is a totally umbilical submanifold of 𝑀𝑛(𝑐) × ℝ. Within this
context, a standard computation give us

𝑚|𝐴𝑁|
2 = 𝑚|𝜙𝑁|

2 + 𝑚2⟨ℎ, 𝑁⟩2 (21)

and
∑
𝛼
|𝐴𝛼(𝑇)|

2 = ∑
𝛼
|𝜙𝛼(𝑇)|

2 + 2⟨𝜙ℎ(𝑇), 𝑇⟩ + 𝐻
2|𝑇|2. (22)

Now, let Σ𝑚 be a 𝑝𝑛𝑚𝑐 submanifolds immersed in product space 𝑀𝑛(𝑐) ×ℝ. This means that 𝐻 > 0
and the normalized mean curvature vector field 𝜂 = ℎ/𝐻 is parallel as a section of the normal bundle.
In this setting, we will consider {𝑒𝑚+1, … , 𝑒𝑛+1} be a local orthonormal frame field in the normal bundle
such that 𝑒𝑚+1 = 𝜂. By this,

tr(𝐴𝜂) = 𝑚𝐻 and tr(𝐴𝛼) = 𝑚⟨ℎ, 𝑒𝛼⟩ = 0, for all 𝛼 ≥ 𝑚 + 2, (23)

and by (19)
𝜙𝑚+1𝑖𝑗 = ℎ𝑚+1𝑖𝑗 − 𝐻𝛿𝑖𝑗 and 𝜙𝛼𝑖𝑗 = ℎ

𝛼
𝑖𝑗, for all 𝛼 ≥ 𝑚 + 2. (24)
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Since 𝜂 parallel, the Ricci equation (6) guarantees that 𝐴𝛼𝐴𝜂 = 𝐴𝜂𝐴𝛼 for all 𝛼 ≥ 𝑚 + 2. Using this, (20)
and (24),

∑
𝛼,𝛽

tr(𝐴𝛽)tr(𝐴
2
𝛼𝐴𝛽) −∑

𝛼,𝛽
(𝑁(𝐴𝛼𝐴𝛽 − 𝐴𝛽𝐴𝛼) + [tr(𝐴𝛼𝐴𝛽)]

2)

= 𝑚𝐻2|𝜙|2 + 𝑚𝐻∑
𝛼

tr(𝜙2𝛼𝜙𝜂)

− ∑
𝛼,𝛽>𝑚+1

𝑁(𝜙𝛼𝜙𝛽 − 𝜙𝛽𝜙𝛼) −∑
𝛼,𝛽
[tr(𝜙𝛼𝜙𝛽)]

2
.

(25)

Therefore, inserting (17), (18), (21), (22) and (25) in Proposition 1.1 we get

1
2
Δ|𝐴|2 = |∇𝐴|2 + 𝑚∑

𝑖,𝑗
ℎ𝑚+1𝑖𝑗 𝐻𝑖𝑗 + 𝑐𝑚|𝜙𝑁|

2 − 2𝑐𝑚∑
𝛼
|𝜙𝛼(𝑇)|

2

+ (𝑐(𝑚 − |𝑇|2) + 𝑚𝐻2) |𝜙|2 − 𝑐𝑚⟨𝜙ℎ(𝑇), 𝑇⟩ + 𝑚𝐻∑
𝛼

tr(𝜙2𝛼𝜙𝜂)

− ∑
𝛼,𝛽>𝑚+1

𝑁(𝜙𝛼𝜙𝛽 − 𝜙𝛽𝜙𝛼) −∑
𝛼,𝛽
[tr(𝜙𝛼𝜙𝛽)]

2
.

(26)

According to Grosjean (2002) and Cao & Li (2007), we define the r-th mean curvature function 𝐻𝑟
of an 𝑚-dimensional submanifold immersed in a Riemannian space, as follows: for any even integer
𝑟 ∈ {0, 1, … ,𝑚 − 1}, the 𝑟-th are given by

(𝑛
𝑟
)𝐻𝑟 ∶= 𝑆𝑟 =

1
𝑟! ∑𝑖1…𝑖𝑟
𝑗1…𝑗𝑟

𝛿
𝑖1…𝑖𝑟
𝑗1…𝑗𝑟⟨𝐵𝑖1𝑗1, 𝐵𝑖2𝑗2⟩ ⋯ ⟨𝐵𝑖𝑟−1𝑗𝑟−1, 𝐵𝑖𝑟𝑗𝑟⟩, (27)

where (𝑛𝑟) is the binomial coefficient, 𝛿
𝑖1…𝑖𝑟
𝑗1…𝑗𝑟 is the generalized Kronecker symbol and 𝐵𝑖𝑗 = ∑𝛼,𝑖,𝑗 ℎ

𝛼
𝑖𝑗𝑒𝛼

with {𝑒𝑚+1, … , 𝑒𝑛+1} an orthonormal frame on the normal bundle. By convention, 𝐻0 = 𝑆0 = 1. For our
study on submanifolds Σ𝑚 in the product space 𝑀𝑛(𝑐) ×ℝ, we will consider the second mean curvature
function 𝐻2, which is given by

𝑚(𝑚 − 1)𝐻2 = 2𝑆2 = 𝑚
2𝐻2 − |𝐴|2. (28)

On the other hand, a natural extension of submanifolds having constant second mean curvature
is the so-called linear Weingarten, in short, lw-submanifolds. A submanifold is said to be linear
Weingarten red if its first and second mean curvatures are linearly related, that is,

𝐻2 = 𝑎𝐻 + 𝑏 (29)

for constants 𝑎, 𝑏 ∈ ℝ. Observe that when 𝑎 = 0, (29) reduces to 𝐻2 constant.
For the study of the lw-submanifolds, we will consider the following Cheng-Yau’s modified

differential operator given by

𝐿(𝑢) = ∑
𝑖,𝑗
[(𝑚𝐻 − 𝑚 − 1

2
𝑎) 𝛿𝑖𝑗 − ℎ

𝑚+1
𝑖𝑗 ] 𝑢𝑖𝑗 = (𝑚𝐻 −

𝑚 − 1
2

𝑎) Δ𝑢 −∑
𝑖,𝑗
ℎ𝑚+1𝑖𝑗 𝑢𝑖𝑗, (30)

where 𝑢𝑖𝑗 stands for a component of the Hessian of 𝑢 ∈ 𝐶
2(𝑀). From the tensorial point of view, (30)

can be written as
𝐿(𝑢) = tr(𝑃 ∘Hess𝑢), (31)
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with
𝑃 = (𝑚𝐻 − 𝑚 − 1

2
𝑎) 𝐼 − ℎ𝑚+1 (32)

where 𝐼 is the identity in the algebra of smooth vector fields on Σ𝑚 and ℎ𝑚+1 = (ℎ𝑚+1𝑖𝑗 ) denotes the
second fundamental form of Σ𝑚 in the direction 𝑒𝑚+1. By (31), it is not difficult to see that

𝐿(𝑢𝑣) = 𝑢𝐿(𝑣) + 𝑣𝐿(𝑢) + 2⟨𝑃(∇𝑢), ∇𝑣⟩ (33)

for every 𝑢, 𝑣 ∈ 𝐶2(𝑀) and
𝐿(𝑓(𝑢)) = 𝑓 ′(𝑢)𝐿(𝑢) + 𝑓″(𝑢)⟨𝑃(∇𝑢), ∇𝑢⟩ (34)

for every smooth function 𝑓 ∶ ℝ → ℝ.
Hence, taking 𝑢 = 𝑚𝐻 in (30), by (28) and (29), we obtain

𝐿(𝑚𝐻) = ∑
𝑖,𝑗
[(𝑚𝐻 − 𝑚 − 1

2
𝑎) 𝛿𝑖𝑗 − ℎ

𝑚+1
𝑖𝑗 ] (𝑚𝐻)𝑖𝑗

= 𝑚𝐻Δ(𝑚𝐻) −
𝑚(𝑚 − 1)

2
Δ(𝑎𝐻) − 𝑚∑

𝑖,𝑗
ℎ𝑚+1𝑖𝑗 𝐻𝑖𝑗

= 1
2
Δ(𝑚2𝐻2 − 𝑚(𝑚 − 1)𝐻2) − 𝑚

2|∇𝐻|2 − 𝑚∑
𝑖,𝑗
ℎ𝑚+1𝑖𝑗 𝐻𝑖𝑗

= 1
2
Δ|𝐴|2 − 𝑚2|∇𝐻|2 − 𝑚∑

𝑖,𝑗
ℎ𝑚+1𝑖𝑗 𝐻𝑖𝑗.

From all these results we have the following Simons-type formula for Cheng-Yau’s modified
operator acting on the mean curvature function of Σ𝑚 in 𝑀𝑛(𝑐) × ℝ which generalizes Proposition 2 of
dos Santos & da Silva (2022):

Proposition 1.2. If Σ𝑚 is a 𝑝𝑛𝑚𝑐 lw-submanifold of 𝑀𝑛(𝑐) × ℝ, then we have

𝐿(𝑚𝐻) = |∇𝐴|2 − 𝑚2|∇𝐻|2 + 𝑐𝑚|𝜙𝑁|
2 − 2𝑐𝑚∑

𝛼
|𝜙𝛼(𝑇)|

2

+ (𝑐(𝑚 − |𝑇|2) + 𝑚𝐻2) |𝜙|2 − 𝑐𝑚𝐻⟨𝜙𝜂(𝑇), 𝑇⟩

+ 𝑚𝐻∑
𝛼

tr(𝜙2𝛼𝜙𝜂) −∑
𝛼,𝛽
(𝑁(𝜙𝛼𝜙𝛽 − 𝜙𝛽𝜙𝛼) + [tr(𝜙𝛼𝜙𝛽)]

2
) .

2 - KEY LEMMAS

In this section, we will present some necessary results for the proof of our results. The first ones are
extensions of the Lemmas 1 and 2 of dos Santos & da Silva (2022) (see also Lemma 2.3 of dos Santos
& da Silva (2021) and Lemmas 4.1 and 4.3 of dos Santos (2021)) to lw-submanifolds.

Lemma 2.1. Let Σ𝑚 be an lw-submanifold in the product space 𝑀𝑛(𝑐) × ℝ, such that 𝐻2 = 𝑎𝐻 + 𝑏 with

(𝑚 − 1)𝑎2 + 4𝑚𝑏 ≥ 0. (35)

Then
|∇𝐴|2 ≥ 𝑚2|∇𝐻|2. (36)

Moreover, if the inequality (35) is strict and the equality occurs in (36), then Σ𝑚 is an open piece of a
parallel submanifold of 𝑀𝑛(𝑐) × ℝ.
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Proof. Inserting 𝐻2 = 𝑎𝐻 + 𝑏 in (28) we have

𝑚2𝐻2 = |𝐴|2 + 𝑚(𝑚 − 1)(𝑎𝐻 + 𝑏). (37)

By taking the derivative in (37),

2|𝐴|∇|𝐴| = (2𝑚2𝐻 − 𝑚(𝑚 − 1)𝑎) ∇𝐻 (38)

and consequently
4|𝐴|2|∇|𝐴||2 = (2𝑚2𝐻 − 𝑚(𝑚 − 1)𝑎)2 |∇𝐻|2. (39)

It is not difficult to check that

(2𝑚2𝐻 − 𝑚(𝑚 − 1)𝑎)2 = 4𝑚2|𝐴|2 + 𝑚2(𝑚 − 1)(4𝑚𝑏 + (𝑚 − 1)𝑎2). (40)

Thus by using (35),

4|𝐴|2|∇|𝐴||2 = [4𝑚2|𝐴|2 + 𝑚2(𝑚 − 1)(4𝑚𝑏 + (𝑚 − 1)𝑎2)] |∇𝐻|2 ≥ 4𝑚2|𝐴|2|∇𝐻|2. (41)

Now, from Kato’s inequality
|∇|𝐴||2 ≤ |∇𝐴|2 (42)

we obtain
𝑚2|𝐴|2|∇𝐻|2 ≤ |𝐴|2|∇|𝐴||2 ≤ |𝐴|2|∇𝐴|2. (43)

Therefore, we have either
|𝐴|2 = 0 and 𝑚2|∇𝐻|2 = |∇𝐴|2 = 0 (44)

or
|∇𝐴|2 ≥ 𝑚2|∇𝐻|2. (45)

If the inequality (35) is strict, from (41) we get

(2𝑚2𝐻 − 𝑚(𝑚 − 1)𝑎)2 > 4𝑚2|𝐴|2. (46)

Now, let us assume in addition that the equality holds in (36) on Σ𝑚. In this case, we wish to show
that 𝐻 is constant on Σ𝑚. Suppose, by contradiction, that it does not occur. Consequently, there exists
a point 𝑝 ∈ Σ𝑚 such that |∇𝐻(𝑝)| > 0. So, one deduces from (39) that

4|𝐴|2(𝑝)|∇𝐴|2(𝑝) > 4𝑚2|𝐴|2(𝑝)|∇𝐻(𝑝)|2 (47)

and, since |∇𝐴|2(𝑝) = 𝑚2|∇𝐻(𝑝)|2 > 0, we arrive at a contradiction. Hence, in this case, we conclude
that 𝐻 must be constant on Σ𝑚.

Lemma 2.2. Let Σ𝑚 be a pnmc lw-submanifold in the product space 𝑀𝑛(𝑐) × ℝ, such that 𝐻2 = 𝑎𝐻 + 𝑏
with 𝑏 ≥ 0. Then the operator 𝑃 defined in (32) is positive semidefinite. In the case where 𝑏 > 0, we
have that 𝑃 is positive definite.
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Proof. Let us consider {𝑒1, … , 𝑒𝑚} an orthonormal frame on Σ
𝑚 such that ℎ𝑚+1𝑖𝑗 = 𝜆𝑚+1𝑖 𝛿𝑖𝑗. Since 𝑏 ≥ 0,

from (37), we have
𝑚2𝐻2 = |𝐴|2 + 𝑚(𝑚 − 1)(𝑎𝐻 + 𝑏) ≥ (𝜆𝑚+1𝑖 )2 + 𝑚(𝑚 − 1)𝑎𝐻, (48)

for each principal curvature 𝜆𝑚+1𝑖 of Σ𝑚, 𝑖 = 1, … ,𝑚.
On the other hand, with a straightforward computation, we verify that

(𝜆𝑚+1𝑖 )2 ≤ 𝑚2𝐻2 − 𝑚(𝑚 − 1)𝑎𝐻 = (𝑚𝐻 − 𝑚 − 1
2

𝑎)
2
−
(𝑚 − 1)2

4
𝑎2

≤ (𝑚𝐻 − 𝑚 − 1
2

𝑎)
2
.

(49)

Now, we claim that 𝑚𝐻 − 𝑚−1
2 𝑎 ≥ 0. For this, let us consider two cases. When 𝑎 ≤ 0, our assertion is

immediate. Otherwise, if 𝑎 > 0, from (37) we see that

𝑚𝐻 (𝑚𝐻 − (𝑚 − 1)𝑎) = |𝐴|2 + 𝑚(𝑚 − 1)𝑏 > 0, (50)

since Σ𝑚 is a pnmc submanifold. Thus, 𝑚𝐻 − (𝑚 − 1)𝑎 > 0 and consequently, 𝑚𝐻 − 𝑚−1
2 𝑎 ≥ 0 as claimed.

So, from (49) we obtain

−𝑚𝐻 + 𝑚 − 1
2

𝑎 ≤ 𝜆𝑚+1𝑖 ≤ 𝑚𝐻 − 𝑚 − 1
2

𝑎, 𝑖 = 1, … ,𝑚, (51)

and hence, for each 𝑖 ∈ {1, … ,𝑚}

0 ≤ 𝑚𝐻 − 𝑚 − 1
2

𝑎 − 𝜆𝑖 ≤ 2𝑚𝐻 − (𝑚 − 1)𝑎. (52)

Since𝑚𝐻−𝑚−12 𝑎−𝜆𝑖 are the eigenvalues of 𝑃, follows that 𝑃 is positive semidefinite. Similarly if 𝑏 > 0.

Given a unit normal vector field 𝜉 ∈ 𝑋(Σ)⟂, we say that a submanifold Σ𝑚 of 𝑀𝑛(𝑐) ×ℝ has constant
𝜉-angle if the angle between 𝜉 and 𝜕𝑡 is constant, that is, the function ⟨𝜉, 𝜕𝑡⟩ is constant along of Σ

𝑚. We
should notice that constant 𝜂-angle submanifolds, where 𝜂 = ℎ/𝐻, corresponds to a natural extension
of hypersurfaces with constant angle in a product space, which was widely studied by Dillen and many
other authors (see, for instance, Dillen et al. 2007, Dillen & Munteanu 2009, Navarro et al. 2016, Nistor
2017). By using this context, the next result is a suitable adaptation of Lemma 2.1 of dos Santos & da
Silva (2021) which assures that the integral of the 𝐿 operator acting on any nonnegative function is
equal to zero.

Lemma 2.3. Let Σ𝑚 be a closed pnmc lw-submanifold in 𝑀𝑛(𝑐) × ℝ such that 𝐻2 = 𝑎𝐻 + 𝑏. If Σ
𝑚 has

constant 𝜂-angle, then this angle is always zero. Moreover

∫
Σ
𝐿(𝑢)𝑑Σ = 0, (53)

for all nonnegative functions 𝑢 ∈ 𝐶2(Σ).

Proof. By a standard tensorial computation, it is not difficult to see that

𝐿(𝑢) = div (𝑃(∇𝑢)) − ⟨div(𝑃), ∇𝑢⟩, (54)
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for every 𝑢 ∈ 𝐶2(𝑀), where
div(𝑃) = ∑

𝑖
(∇𝑒𝑖𝑃)𝑒𝑖 = tr(∇𝑃), (55)

with ∇𝑃 is defined as
∇𝑃(𝑋, 𝑌) = (∇𝑋𝑃)𝑌 = ∇𝑋𝑃(𝑌) − 𝑃(∇𝑋𝑌), 𝑋, 𝑌 ∈ 𝑇𝑀. (56)

From this and (32), we write
∇𝑃(𝑒𝑖, 𝑒𝑖) = 𝑚⟨∇𝐻, 𝑒𝑖⟩𝑒𝑖 − ∇ℎ

𝑚+1(𝑒𝑖, 𝑒𝑖), (57)

where {𝑒1, … , 𝑒𝑛+1} an orthonormal frame on 𝑀
𝑛 × ℝ adapted to Σ𝑚, that is, {𝑒1, … , 𝑒𝑚} are tangent to

Σ𝑚 and choose 𝑒𝑚+1 = 𝜂. By Codazzi equation (7),

⟨∇ℎ𝑚+1(𝑒𝑖, 𝑒𝑖), 𝑋⟩ = ⟨(∇𝑒𝑖ℎ
𝑚+1)𝑒𝑖, 𝑋⟩ = ⟨𝑒𝑖, (∇𝑒𝑖ℎ

𝑚+1)𝑋⟩

= ⟨(∇𝑋ℎ
𝑚+1)𝑒𝑖, 𝑒𝑖⟩ −∑

𝑗
⟨𝑋, 𝑒𝑗⟩𝑅(𝑚+1)𝑖𝑗𝑖,

(58)

for all 𝑋 ∈ 𝑇𝑀. By using (15), a direct computation give us

∑
𝑗
⟨𝑋, 𝑒𝑗⟩𝑅(𝑚+1)𝑖𝑗𝑖 = 𝑐⟨𝜂, 𝜕𝑡⟩ (⟨𝑒𝑖, 𝑇⟩⟨𝑋, 𝑒𝑖⟩ − ⟨𝑇, 𝑋⟩⟨𝑒𝑖, 𝑒𝑖⟩) . (59)

Hence,
div(𝑃) = 𝑚∇𝐻 − 𝑚∇𝐻 − 𝑐(𝑚 − 1)⟨𝜂, 𝜕𝑡⟩𝑇 = −𝑐(𝑚 − 1)⟨𝜂, 𝜕𝑡⟩𝑇. (60)

On the other hand, we take the vector field 𝑋 = 𝑢𝑇. Computing its divergence, we obtain

div(𝑋) = 𝑢 div(𝑇) + 𝑇(𝑢) = 𝑢div(𝑇) + ⟨𝑇, ∇𝑢⟩. (61)

By (16), div(𝑇) = 𝑚⟨ℎ, 𝜕𝑡⟩. So,
div(𝑋) = 𝑢𝑚⟨ℎ, 𝜕𝑡⟩ + ⟨𝑇, ∇𝑢⟩. (62)

Since Σ𝑚 has constant 𝜂-angle, we get

div(⟨𝜂, 𝜕𝑡⟩𝑋) = 𝑢𝑚⟨𝜂, 𝜕𝑡⟩⟨ℎ, 𝜕𝑡⟩ + ⟨𝜂, 𝜕𝑡⟩⟨𝑇, ∇𝑢⟩. (63)

Therefore, as ⟨ℎ, 𝜕𝑡⟩ = 𝐻⟨𝜂, 𝜕𝑡⟩, from (54), (62) and (63),

div (𝑃(∇𝑢)) = 𝐿(𝑢) − (𝑚 − 1)div(⟨𝜂, 𝜕𝑡⟩𝑋) + 𝑚(𝑚 − 1)𝑢𝐻⟨𝜂, 𝜕𝑡⟩
2. (64)

Taking into account Stokes’ Theorem,

∫
Σ
𝐿(𝑢)𝑑Σ = −𝑐𝑚(𝑚 − 1)⟨𝜂, 𝜕𝑡⟩

2∫
Σ
𝑢𝐻𝑑Σ. (65)

Finally, let us choose 𝑢 a positive constant function. Since 𝐻 > 0, from (65) we must have ⟨𝜂, 𝜕𝑡⟩ = 0.
Therefore, inserting this in (65) we obtain the result.

The following two results are fundamental to our study and can be found in Li & Li (1992) and
Santos (1994), respectively.
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Lemma 2.4. Let 𝐵1, … , 𝐵𝑝, where 𝑝 ≥ 2, be symmetric 𝑚 ×𝑚 matrices. Then

𝑝

∑
𝛼,𝛽=1

(𝑁(𝐵𝛼𝐵𝛽 − 𝐵𝛽𝐵𝛼) + [tr(𝐵𝛼𝐵𝛽)]
2) ≤ 3

2
(
𝑝

∑
𝛼=1

𝑁(𝐵𝛼))
2

.

Lemma 2.5. Let 𝐵, 𝐶 ∶ ℝ𝑚 → ℝ𝑚 be symmetric linear maps that [𝐵, 𝐶] = 0 and tr(𝐵) = tr(𝐶) = 0, then

− 𝑚 − 2

√𝑚(𝑚 − 1)
|𝐵|2|𝐶| ≤ tr(𝐵2𝐶) ≤ 𝑚 − 2

√𝑚(𝑚 − 1)
|𝐵|2|𝐶|.

Moreover, the equality holds if and only if (𝑚 − 1) of the eigenvalues 𝑥𝑖 of 𝐵 and corresponding
eigenvalues 𝑦𝑖 of 𝐶 satisfy

|𝑥𝑖| = √
𝑁(𝐵)

𝑚(𝑚 − 1)
, 𝑥𝑖𝑦𝑖 ≥ 0 and 𝑦𝑖 = √

𝑁(𝐶)
𝑚(𝑚 − 1)

(𝑟𝑒𝑠𝑝. − √
𝑁(𝐶)

𝑚(𝑚 − 1)
) .

We will conclude this section by quoting the following codimension reduction result for
submanifolds in the product space 𝑀𝑛(𝑐) × ℝ, see Lemma 1.6 of Mendonça & Tojeiro (2013).

Lemma 2.6. Let Σ𝑚 be a submanifold of 𝑀𝑛(𝑐) × ℝ and let 𝑁 be the normal vector field defined by (13).
Assume that 𝐿 ∶= 𝑁1 + span{𝑁} is a subbundle of 𝑇Σ⟂ with rank 𝑞 < 𝑛 − 𝑚 + 1 and that ∇⟂𝑁1 ⊂ 𝐿, where
𝑁1 denotes the first normal subspace of Σ

𝑚. Then the codimension of Σ𝑚 reduces to 𝑞, that is, Σ𝑚 is
contained in a totally geodesic submanifold 𝑀𝑚+𝑞−1(𝑐) × ℝ of 𝑀𝑛(𝑐) × ℝ.

3 - MAIN RESULTS

In our first result, we obtain a suitable lower estimate for the operator 𝐿 applied on the squared norm
of the traceless operator of a lw-submanifold, which will be also essential to the proofs of our main
results.

Proposition 3.1. Let Σ𝑚 be a pnmc lw-submanifold in a product space 𝑀𝑛(𝑐) × ℝ, 𝑛 > 𝑚 ≥ 4, such that
𝐻2 = 𝑎𝐻 + 𝑏 with 𝑎, 𝑏 ≥ 0. Then

𝐿(|𝜙|2) ≥ −2(𝑚 − 1) (|𝜙|2𝜑𝑎,𝑏,𝑐 (|𝜙|, |𝑇|) − 𝑄𝑐)√
|𝜙|2

𝑚(𝑚 − 1)
+ 𝑏 + 𝑎

2

4
, (66)

where
𝑄𝑐 = 𝑐𝑚|𝜙𝑁|

2 − 2𝑐𝑚∑
𝛼
|𝜙𝛼(𝑇)|

2 − 𝑐𝑚𝐻⟨𝜙𝜂(𝑇), 𝑇⟩ (67)

and

𝜑𝑎,𝑏,𝑐(𝑥, 𝑦) =
𝑚 − 2
𝑚 − 1

𝑥2 + 𝑐𝑦2 − 𝑚(𝑎 − 𝑚 − 2

√𝑚(𝑚 − 1)
𝑥)√

𝑥2
𝑚(𝑚 − 1)

+ 𝑏 + 𝑎
2

4

+
𝑚(𝑚 − 2)𝑎

2√𝑚(𝑚 − 1)
𝑥 − 𝑚 (𝑎

2

2
+ 𝑏 + 𝑐) .

(68)

In particular, if 𝑏 > 0 and equality holds in (66), then Σ𝑚 is a part of a parallel submanifold in 𝑀𝑛(𝑐) ×ℝ
with two distinct principal curvatures, one of which is simple.
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Proof. From Cauchy Schwarz’s inequality and Lemma 2.5, we get

∑
𝛼,𝛽
[tr(𝜙𝛼𝜙𝛽)]

2 ≤ |𝜙𝜂|
4 + 2|𝜙𝜂|

2 (|𝜙|2 − |𝜙𝜂|
2) + ∑

𝛼,𝛽>𝑚+1
[tr(𝜙𝛼𝜙𝛽)]

2, (69)

and
𝑚𝐻∑

𝛼
tr(𝜙2𝛼𝜙𝜂) ≥ −

𝑚(𝑚 − 2)

√𝑚(𝑚 − 1)
𝐻|𝜙|2|𝜙𝜂|. (70)

Besides these, by Lemma 2.4, we also can estimate

∑
𝛼,𝛽>𝑚+1

(𝑁(𝜙𝛼𝜙𝛽 − 𝜙𝛽𝜙𝛼) + [tr(𝜙𝛼𝜙𝛽)]
2) ≤ 3

2
( ∑
𝛼>𝑚+1

|𝜙𝛼|
2)
2

= 3
2
(|𝜙|2 − |𝜙𝜂|

2)
2
. (71)

Then, inequalities (69), (70) and (71), becomes in

𝑚𝐻∑
𝛼

tr(𝜙2𝛼𝜙𝜂) −∑
𝛼,𝛽≠𝑚+1

𝑁(𝜙𝛼𝜙𝛽 − 𝜙𝛽𝜙𝛼) −∑
𝛼,𝛽
[tr(𝜙𝛼𝜙𝛽)]

2

≥ −
𝑚(𝑚 − 2)

√𝑚(𝑚 − 1)
𝐻|𝜙|2|𝜙𝜂| − |𝜙𝜂|

4

− 2|𝜙𝜂|
2 (|𝜙|2 − |𝜙𝜂|

2) − 3
2
(|𝜙|2 − |𝜙𝜂|

2)
2
.

(72)

After some standard computations, we can express (72) as follows:

𝑚𝐻2|𝜙|2 −
𝑚(𝑚 − 2)

√𝑚(𝑚 − 1)
𝐻|𝜙|2|𝜙𝜂| −

3
2
|𝜙|4 + |𝜙|2|𝜙𝜂|

2 − 1
2
|𝜙𝜂|

4

= (|𝜙| − |𝜙𝜂|) (
𝑚(𝑚 − 2)

√𝑚(𝑚 − 1)
𝐻|𝜙|2 − 1

2
(|𝜙| − |𝜙𝜂|)(|𝜙| + |𝜙𝜂|)

2)

+ |𝜙|2 (−|𝜙|2 −
𝑚(𝑚 − 2)

√𝑚(𝑚 − 1)
𝐻|𝜙| + 𝑚𝐻2) .

(73)

Hence, by replacing (73) into Proposition 1.2,

𝐿(𝑚𝐻) ≥ |∇𝐴|2 − 𝑚2|∇𝐻|2 + 𝑐𝑚|𝜙𝑁|
2 − 2𝑐𝑚∑

𝛼
|𝜙𝛼(𝑇)|

2 − 𝑐𝑚𝐻⟨𝜙𝜂(𝑇), 𝑇⟩

+ (|𝜙| − |𝜙𝜂|) (
𝑚(𝑚 − 2)

√𝑚(𝑚 − 1)
𝐻|𝜙|2 − 1

2
(|𝜙| − |𝜙𝜂|)(|𝜙| + |𝜙𝜂|)

2)

+ |𝜙|2 (−|𝜙|2 −
𝑚(𝑚 − 2)

√𝑚(𝑚 − 1)
𝐻|𝜙| + 𝑐(𝑚 − |𝑇|2) + 𝑚𝐻2) .

(74)

On the other hand, from (20) and (37), we write

𝐻2 = 1
𝑚(𝑚 − 1)

|𝜙|2 + 𝑎𝐻 + 𝑏, (75)

and since 𝑎, 𝑏 ≥ 0 we obtain
𝐻 ≥ 1

√𝑚(𝑚 − 1)
|𝜙|. (76)
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Moreover, the following inequality is well known (see Equation 3.5 of Guo & Li 2013)

(|𝜙| − |𝜙𝜂|)(|𝜙| + |𝜙𝜂|)
2 ≤ 32

27
|𝜙|3. (77)

Thus, from (76) and (77) we conclude that

𝑚(𝑚 − 2)

√𝑚(𝑚 − 1)
𝐻|𝜙|2 − 1

2
(|𝜙| − |𝜙𝜂|)(|𝜙| + |𝜙𝜂|)

2 ≥ (𝑚 − 2
𝑚 − 1

− 16
27
) |𝜙|3. (78)

Assuming that 𝑚 ≥ 4,
𝑚 − 2
𝑚 − 1

− 16
27

> 0. (79)

Therefore, from (78) and (79), (74) becomes

𝐿(𝑚𝐻) ≥ |∇𝐴|2 − 𝑚2|∇𝐻|2 + 𝑐𝑚|𝜙𝑁|
2 − 2𝑐𝑚∑

𝛼
|𝜙𝛼(𝑇)|

2 − 𝑐𝑚𝐻⟨𝜙𝜂(𝑇), 𝑇⟩

+ |𝜙|2 (−|𝜙|2 −
𝑚(𝑚 − 2)

√𝑚(𝑚 − 1)
𝐻|𝜙| + 𝑐(𝑚 − |𝑇|2) + 𝑚𝐻2) .

(80)

On the other hand, from (50) we have 𝑚𝐻 − (𝑚 − 1)𝑎 > 0. Since 𝑚 ≥ 4, it follows that 𝐻 − 𝑎
2 ≥

1
𝑚 (𝑚𝐻 −

(𝑚 − 1)𝑎) > 0. Consequently, by making a direct computation, (75) can be written as follows:

𝐻 − 𝑎
2
= √

|𝜙|2

𝑚(𝑚 − 1)
+ 𝑏 + 𝑎

2

4
. (81)

By using this and (75) we can write

−|𝜙|2−
𝑚(𝑚 − 2)

√𝑚(𝑚 − 1)
𝐻|𝜙| + 𝑐(𝑚 − |𝑇|2) + 𝑚𝐻2

= −𝑚 − 2
𝑚 − 1

|𝜙|2 −
𝑚(𝑚 − 2)

√𝑚(𝑚 − 1)
|𝜙| (√

|𝜙|2

𝑚(𝑚 − 1)
+ 𝑏 + 𝑎

2

4
+ 𝑎
2
)

+ 𝑚𝑎√
|𝜙|2

𝑚(𝑚 − 1)
+ 𝑏 + 𝑎

2

4
+ 𝑚 (𝑎

2

2
+ 𝑏) + 𝑐(𝑚 − |𝑇|2)

= −|𝜙|2𝜑𝑎,𝑏,𝑐(|𝜙|, |𝑇|),

(82)

where 𝜑𝑎,𝑏,𝑐 is a real function defined in (68). Since 𝑏 ≥ 0, Lemma 2.1 assures that

|∇𝐴|2 − 𝑚2|∇𝐻|2 ≥ 0. (83)

Therefore, inserting (83) and (82) into (80), we obtain.

𝐿(𝑚𝐻) ≥ 𝑐𝑚|𝜙𝑁|
2 − 𝑐𝑚𝐻⟨𝜙𝜂(𝑇), 𝑇⟩ − 2𝑚𝑐∑

𝛼
|𝜙𝛼(𝑇)|

2 − |𝜙|2𝜑𝑎,𝑏,𝑐(|𝜙|, |𝑇|), (84)

where 𝜑𝑎,𝑏,𝑐 is defined in (68).
Now, Lemma 2.2 guarantees that the operator 𝑃 is positive definite since 𝑏 ≥ 0. So, by (33) and (75),

we can write
1

𝑚 − 1
𝐿(|𝜙|2) = 2𝐻𝐿(𝑚𝐻) + 2𝑚⟨𝑃(∇𝐻), ∇𝐻⟩ − 𝑎𝐿(𝑚𝐻) ≥ 2 (𝐻 − 𝑎

2
) 𝐿(𝑚𝐻). (85)
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Hence, by inserting (84) in (85), we get (66).
Finally, if equality holds in (66), considering that 𝑏 > 0 and 𝑃 is positive definite, we can deduce

from (85) that 𝐻 is constant. Moreover, (83) must also be satisfied as an equality. Since we already
established that 𝐻 is constant, this implies ∇𝐴 = 0, indicating that the second fundamental form
is parallel. Additionally, in order to achieve equality in Lemma 2.5, (70) must also be an equality.
Consequently, we conclude that Σ𝑚 is a parallel submanifold of 𝑀𝑛(𝑐) × ℝ with exactly two distinct
principal curvatures, one of which is simple.

Remark 3.2. Since the mean curvature vector field is normalized, it follows that 𝐻 > 0. By using (75),

|𝜙|2 = 𝑚(𝑚 − 1)(𝐻2 − 𝑎𝐻 − 𝑏). (86)

If 𝑎 = 𝑏 = 0 and there exists a point 𝑝 ∈ Σ𝑚 such that |𝜙|(𝑝) = 0, then 𝐻must vanish, which contradicts
the fact that 𝐻 > 0. Therefore, we conclude that |𝜙|, 𝑎, and 𝑏 cannot vanish simultaneously.

Now, we are ready to give proof of our first result.

Theorem 3.3. Let Σ𝑚 be a closed pnmc lw-submanifold in 𝕊𝑛 × ℝ, 𝑛 > 𝑚 ≥ 4, such that 𝐻2 = 𝑎𝐻 + 𝑏 with
𝑎, 𝑏 ≥ 0. If Σ𝑚 has constant 𝜂-angle, then

∫
Σ
|𝜙|𝑝+2𝐹𝑎,𝑏(|𝜙|, |𝑇|)𝑑Σ ≥ 0, (87)

for every real number 𝑝 > 2, where 𝐹𝑎,𝑏 is the real function given by

𝐹𝑎,𝑏(𝑥, 𝑦) =
𝑚 − 2
𝑚 − 1

𝑥2 + (2𝑚 + 1)𝑦2 − 𝑚(𝑎 − 𝑚 − 2

√𝑚(𝑚 − 1)
𝑥)√

𝑥2
𝑚(𝑚 − 1)

+ 𝑏 + 𝑎
2

4

+
𝑚(𝑚 − 2)𝑎

2√𝑚(𝑚 − 1)
𝑥 − 𝑚 (𝑎

2

2
+ 𝑏 + 1) .

(88)

Moreover, if 𝑏 > 0 the equality holds in (87) if and only if:

(i) either Σ𝑚 is a totally umbilical hypersurface in 𝕊𝑚+1 × {𝑡0} ↪ 𝕊𝑛 × ℝ for some 𝑡0 ∈ ℝ;

(ii) or |𝜙|2 = 𝛾(𝑚, 𝑎, 𝑏), where 𝛾(𝑚, 𝑎, 𝑏) is a positive constant depending only on 𝑚,𝑎, 𝑏 and Σ𝑚 is
isometric to a standard product 𝕊1(√1 − 𝑟2) × 𝕊𝑚−1(𝑟) ⊂ 𝕊𝑚+1 × {𝑡0} ↪ 𝕊𝑛 × ℝ for some 𝑡0 ∈ ℝ, with
𝑟 = √(𝑚 − 1)/𝑚(𝐻2 + 1) > 0.

Proof. Firstly, let us take 𝑐 = 1 in Proposition 3.1. By using Cauchy-Schwarz inequality, we get

−2𝑚∑
𝛼
|𝜙𝛼(𝑇)|

2 ≥ −2𝑚∑
𝛼
|𝜙𝛼|

2|𝑇|2 = −2𝑚|𝜙|2|𝑇|2. (89)

On the other hand, since If Σ𝑚 has constant 𝜂-angle and 𝜂 = 𝑒𝑚+1 is parallel, by (16),

0 = 𝑋⟨𝜂, 𝜕𝑡⟩ = ⟨∇
⟂
𝑋𝜂, 𝑁⟩ + ⟨𝜂, ∇

⟂
𝑋𝑁⟩ = −⟨𝐴(𝑇, 𝑋), 𝜂⟩ = −⟨𝐴𝜂(𝑇), 𝑋⟩, (90)

for all 𝑋 ∈ 𝑋(𝑀). So, from (24), 𝜙𝜂(𝑇) = −𝐻𝑇. Thus, from (89),

𝑄1 = 𝑚|𝜙𝑁|
2 − 2𝑚∑

𝛼
|𝜙𝛼(𝑇)|

2 − 𝑚𝐻⟨𝜙𝜂(𝑇), 𝑇⟩

≥ 𝑚|𝜙𝑁|
2 + 𝑚𝐻2|𝑇|2 − 2𝑚|𝜙|2|𝑇|2 ≥ −2𝑚|𝜙|2|𝑇|2,

(91)
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with equality holding if and only if 𝜙𝑁 = 𝑇 = 0. Thus, inserting (91) in (66), we obtain

𝐿(|𝜙|2) ≥ −2(𝑚 − 1)|𝜙|2𝐹𝑎,𝑏(|𝜙|, |𝑇|)√
|𝜙|2

𝑚(𝑚 − 1)
+ 𝑏 + 𝑎

2

4
, (92)

where 𝐹𝑎,𝑏(𝑥, 𝑦) is given in (88).
From now on, for simplicity, we will denote 𝑢 = |𝜙|2. So, (85) can be rewritten as follows

𝐿(𝑢) ≥ −√
𝑚 − 1
𝑚

𝑢𝐹𝑎,𝑏(√𝑢, |𝑇|)√4𝑢 + 𝑚(𝑚 − 1)(𝑎2 + 4𝑏). (93)

Taking into account that 𝑢 ≥ 0 and 𝑏 ≥ 0, from Remark 3.2 and (93) we get

𝑢
𝑝+2
2 𝐹𝑎,𝑏 (√𝑢, |𝑇|) ≥ −√

𝑚
𝑚 − 1

𝑢
𝑝
2

√4𝑢 + 𝑚(𝑚 − 1)(𝑎2 + 4𝑏)
𝐿(𝑢), (94)

for every real number 𝑝. By closedness of Σ𝑚, we can integrate both sides of (94) in order to obtain

∫
Σ
𝑢

𝑝+2
2 𝐹𝑎,𝑏 (√𝑢, |𝑇|) 𝑑Σ ≥ −√

𝑚
𝑚 − 1 ∫Σ

𝑢
𝑝
2

√4𝑢 + 𝑚(𝑚 − 1)(𝑎2 + 4𝑏)
𝐿(𝑢)𝑑Σ. (95)

Now, we will define the function
𝑓(𝑡) = ∫

𝑡

𝑡0

𝑔(𝑠)𝑑𝑠, (96)

where 𝑔(𝑠) is given by

𝑔(𝑠) = 𝑠𝑝/2

√4𝑠 + 𝑚(𝑚 − 1)(𝑎2 + 4𝑏)
, 𝑠 ≥ 0. (97)

Since 𝑝 > 2, 𝑏 ≥ 0 and 𝑔 is a smooth function, we have that 𝑓 is well defined (see Remark 3.2) and
𝑓 ≥ 0. Hence, taking into the integral, from (34) and Lemma 2.3, we have

0 = ∫
Σ
𝐿(𝑓(𝑢))𝑑Σ = ∫

Σ
𝑓 ′(𝑢)𝐿(𝑢)𝑑Σ +∫

Σ
𝑓″(𝑢)⟨𝑃(∇𝑢), ∇𝑢⟩𝑑Σ, (98)

that is,
−∫

Σ
𝑓 ′(𝑢)𝐿(𝑢)𝑑Σ = ∫

Σ
𝑓″(𝑢)⟨𝑃(∇𝑢), ∇𝑢⟩𝑑Σ. (99)

Taking the first and second derivatives of (96), we have

𝑓 ′(𝑡) = 𝑡𝑝/2

√4𝑡 + 𝑚(𝑚 − 1)(𝑎2 + 4𝑏)
≥ 0 (100)

and

𝑓″(𝑡) =
4(𝑝 − 1)𝑡𝑝/2 + 𝑝𝑚(𝑚 − 1)(𝑎2 + 4𝑏)𝑡

𝑝−2
2

2 (4𝑡 + 𝑚(𝑚 − 1)(𝑎2 + 4𝑏))3/2
≥ 0. (101)

Lemma 2.2 assures that the operator 𝑃 is positive semidefinite, using (99), (100) and (101) in (95), we
can estimate

∫
Σ
𝑢

𝑝+2
2 𝐹𝑎,𝑏 (√𝑢, |𝑇|) 𝑑Σ ≥ √

𝑚
𝑚 − 1 ∫Σ

𝑓″(𝑢)⟨𝑃(∇𝑢), ∇𝑢⟩𝑑Σ ≥ 0. (102)
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Therefore, we conclude
∫
Σ
𝑢

𝑝+2
2 𝐹𝑎,𝑏 (√𝑢, |𝑇|) 𝑑Σ ≥ 0. (103)

This proves inequality (87).
We assume that the equality holds in (103) and 𝑏 > 0. By (102), we get

∫
Σ
𝑓″(𝑢)⟨𝑃(∇𝑢), ∇𝑢⟩𝑑Σ = 0, (104)

where

𝑓″(𝑢) =
4(𝑝 − 1)𝑢𝑝/2 + 𝑝𝑚(𝑚 − 1)(𝑎2 + 4𝑏)𝑢

𝑝−2
2

2 (4𝑢 + 𝑚(𝑚 − 1)(𝑎2 + 4𝑏))3/2
≥ 0, (105)

with equality holding if and only if 𝑝 > 2 and 𝑢 = 0. Since 𝑏 > 0, from Lemma 2.2, 𝑃 is positive definite,
consequently

⟨𝑃(∇𝑢), ∇𝑢⟩ ≥ 0 (106)

with equality if and only if ∇𝑢 = 0. Therefore, it follows from (104) that:

𝑓″(𝑢)⟨𝑃(∇𝑢), ∇𝑢⟩ = 0 on Σ𝑚, (107)

which implies that the function 𝑢 = |𝜙|2 must be constant, either 𝑢 ≡ 0 or 𝑢 ≡ 𝑢0 > 0.
If |𝜙|2 = 𝑢 ≡ 0, then Σ𝑚 is a totally umbilical submanifold. Hence, by (91) we get 𝑇 = 0. Otherwise,

if |𝜙|2 = 𝑢 ≡ 𝑢0 > 0. From this, the equality in (103) implies in

∫
Σ
𝐹𝑎,𝑏(|𝜙|, |𝑇|)𝑑Σ = 0. (108)

Hence, from (91) we also must have 𝜙𝑁 = 0 and 𝑇 = 0 in the non-totally umbilical case. Thus, by this,
(88) can be written as follows, 𝐹𝑎,𝑏 = 𝑐𝑜𝑛𝑠𝑡. and follows by (108) that 𝐹𝑎,𝑏 = 0. Consequently, we must
have that |𝜙|2 = 𝛾(𝑚, 𝑎, 𝑏), where 𝛾(𝑚, 𝑎, 𝑏) is the only positive root of 𝜑𝑎,𝑏,1. From this, we are able
to see that all inequalities obtained along of the proof become equalities. In particular, the equality
holds in (70) and (83). So, from Lemmas 2.1 and 2.5 we must have that Σ𝑚 is a parallel submanifold in
𝕊𝑛 with two distinct principal curvatures one of which is simple. Besides this, also occurs the equality
in (80), which implies |𝜙| = |𝜙𝜂|. In both cases, |𝜙| = 0 or |𝜙| = |𝜙𝜂|, we can always get that 𝜙𝛼 = 0 for
all 𝛼 > 𝑚 + 1. By using this, since 𝑛 > 𝑚, if 𝑛 = 𝑚 + 1, then Σ𝑚 ↪ 𝕊𝑚+1 × ℝ and as 𝑇 = 0, we obtain that
Σ𝑚 is a hypersurface of 𝕊𝑚+1 × {𝑡0} for some 𝑡0 ∈ ℝ. So, let us assume then 𝑛 > 𝑚 + 1. Once 𝐴𝛼 = 0 for
all 𝛼 ≥ 𝑚 + 2, we observe that the first normal subspace

𝑁1 = {𝜉 ∈ 𝑇𝑀
⟂ ; 𝐴𝜉 = 0}

⟂ = span{𝜂}, (109)

has dimension 1 and ∇⟂𝑁1 ⊂ 𝐿 = 𝑁1 + span{𝑁}. Since 𝜂 is orthogonal to 𝜕𝑡 we have that rank(𝐿) = 𝑞 = 2.
Finally, we observe that the condition 𝑛−𝑚+1 > 2 = 𝑞 is satisfied. Therefore we can apply Lemma 2.6 in
order to obtain that Σ𝑚 lies in a totally geodesic submanifold 𝕊𝑚+1×ℝ of 𝕊𝑛×ℝ. So, we can conclude that
Σ𝑚 is an isoparametric hypersurface in 𝕊𝑚+1 × {𝑡0}, for some 𝑡0 ∈ ℝ, with at most two distinct principal
curvatures. Therefore, we can use Theorem 1.1 of dos Santos & da Silva 2021 (see also Theorem 1 of
Alías et al. 2012) in order to conclude that Σ𝑚 must be isometric to the following standard product
𝕊1(√1 − 𝑟2) × 𝕊𝑚−1(𝑟) with 𝑟 = √(𝑚 − 2)/𝑚(𝐻2 + 1).

An Acad Bras Cienc (2023) 95(Suppl. 2) e20230345 16 | 21



FÁBIO R. DOS SANTOS, SYLVIA F. DA SILVA & ANTONIO F. DE SOUSA PNMC LW-SUBMANIFOLDS IN THE PRODUCT SPACES

In the case 𝑐 = −1, we have:

Theorem 3.4. Let Σ𝑚 be a closed pnmc lw-submanifold in ℍ𝑛 ×ℝ, 𝑛 > 𝑚 ≥ 4, such that 𝐻2 = 𝑎𝐻 +𝑏 with
𝑎, 𝑏 ≥ 0. If Σ𝑚 has constant 𝜂-angle, then

∫
Σ
|𝜙|𝑝+2𝐺𝑎,𝑏(|𝜙|, |𝑇|)𝑑Σ ≥ 0, (110)

for every real number 𝑝 > 2, where 𝐺𝑎,𝑏 is given by

𝐺𝑎,𝑏(𝑥, 𝑦) =
𝑚 − 2
𝑚 − 1

𝑥2 − (𝑚 + 1)𝑦2 − 𝑚(𝑎 − 𝑚 − 2

√𝑚(𝑚 − 1)
𝑥)√

𝑥2
𝑚(𝑚 − 1)

+ 𝑏 + 𝑎
2

4

+
𝑚(𝑚 − 2)𝑎

2√𝑚(𝑚 − 1)
𝑥 − 𝑚 (𝑎

2

2
+ 𝑏 − 2) .

(111)

Moreover, if 𝑏 > 0 the equality holds in (110) if and only if Σ𝑚 is a totally umbilical hypersurface in
ℍ𝑚+1 × {𝑡0} ↪ ℍ𝑛 × ℝ for some 𝑡0 ∈ ℝ.

Proof. Let us consider a local orthonormal frame field {𝑒𝑚+1, … , 𝑒𝑛+1} in the normal bundle such that
𝑒𝑚+1 = 𝜂. Then, from (19), it is easy to see that

𝜙𝑁 =
𝑛+1

∑
𝛼=𝑚+1

⟨𝑁, 𝑒𝛼⟩𝜙𝛼. (112)

From Cauchy-Schwarz’s inequality and Hilbert-Schmidt’s norm definition, we have

|𝜙𝑁|
2 = ∑

𝛼,𝑖
⟨𝑁, 𝑒𝛼⟩

2⟨𝜙𝛼(𝑒𝑖), 𝜙𝛼(𝑒𝑖)⟩

≤ ∑
𝛼,𝑖
|𝑁|2|𝑒𝛼|

2⟨𝜙𝛼(𝑒𝑖), 𝜙𝛼(𝑒𝑖)⟩ = |𝑁|
2|𝜙|2.

(113)

Hence, from (14), (90) and (113),

𝑄−1 = −𝑚|𝜙𝑁|
2 + 𝑚𝐻⟨𝜙𝜂(𝑇), 𝑇⟩ + 2𝑚∑

𝛼
|𝜙𝛼(𝑇)|

2

≥ −𝑚|𝑁|2|𝜙|2 + 𝑚𝐻⟨𝜙𝜂(𝑇), 𝑇⟩ + 2𝑚|𝜙𝜂(𝑇)|
2 + 2𝑚∑

𝛼>𝑚+1
|𝜙𝛼(𝑇)|

2

≥ −𝑚(1 − |𝑇|2)|𝜙|2 + 𝑚𝐻⟨𝜙𝜂(𝑇), 𝑇⟩ + 2𝑚|𝜙𝜂(𝑇)|
2

= −𝑚(1 − |𝑇|2)|𝜙|2 − 𝑚𝐻2|𝑇|2 + 2𝑚𝐻2|𝑇|2

= −𝑚(1 − |𝑇|2)|𝜙|2 + 𝑚𝐻2|𝑇|2 ≥ −𝑚(1 − |𝑇|2)|𝜙|2,

(114)

with equality holding if and only if 𝑇 = 0. Thus, inserting (114) in (66),

𝐿(|𝜙|2) ≥ −2(𝑚 − 1)|𝜙|2𝐺𝑎,𝑏(|𝜙|, |𝑇|)√
|𝜙|2

𝑚(𝑚 − 1)
+ 𝑏 + 𝑎

2

4
, (115)

where 𝐺𝑎,𝑏(𝑥, 𝑦) is given in (111).
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At this point the proof follows as the one of Theorem 3.3 until reaching inequality (110). If the
equality holds, from (104) we have

⟨𝑃(∇|𝜙|2), ∇|𝜙|2⟩ = 0, (116)

since

𝑓″(|𝜙|) =
4(𝑝 − 1)|𝜙|𝑝 + 𝑚(𝑚 − 1)(4𝑏 + 𝑎2)𝑝|𝜙|𝑝−2

2 (4|𝜙|2 + 𝑚(𝑚 − 1)(4𝑏 + 𝑎2))3/2
> 0,

where it was used that 𝑝 > 2 and 𝑏 > 0. Hence, being 𝑃 positive definite, from (116) it follows that |𝜙|
is constant along of 𝑀𝑛. If |𝜙| = 0, then 𝑀𝑛 is a totally umbilical, and as before, Σ𝑚 hypersurface in
ℍ𝑚+1 ↪ ℍ𝑛 × {𝑡0}, for some 𝑡0 ∈ ℝ. Otherwise, |𝜙| is a positive constant. So, from the equality (110),

∫
Σ
𝐺𝑎,𝑏(|𝜙|, |𝑇|)𝑑Σ = 0. (117)

Therefore, reasoning as in the last part of Theorem 3.3, we must have that Σ𝑚 is an isoparametric
hypersurface of ℍ𝑚+1 × {𝑡0} ↪ ℍ𝑛 ×ℝ, for some 𝑡0 ∈ ℝ. So, taking into account Theorem 2 of Alías et al.
(2012), we conclude that 𝑀𝑛 should be isometric to a hyperbolic cylinder ℍ1(−√1 + 𝑟2) × 𝕊𝑛−1(𝑟), which
is not closed manifold. Therefore, the equality holds in (110) if, and only if, Σ𝑚 is a totally umbilical
hypersurface in ℍ𝑚+1.

Remark 3.5. Let us recall that a submanifold Σ𝑚 of 𝑀𝑛(𝑐) × ℝ is said to be a vertical cylinder over
𝑀𝑚−1 if Σ𝑚 = 𝜋−1𝑀 (𝑀

𝑚−1) where 𝑀𝑚−1 is a submanifold of 𝑀𝑛(𝑐). It is not difficult to check that Σ𝑚 is
a non-minimal parallel vertical cylinder in 𝑀𝑛(𝑐) × ℝ if, and only if, 𝑀𝑚−1 is a non-minimal parallel
submanifold in 𝑀𝑛(𝑐). Moreover, its mean curvature vector field ℎ is given by ℎ = 𝑚−1

𝑚 ℎ0, where ℎ0
denotes the mean curvature vector field of 𝑀𝑚−1. Hence, Σ𝑚 is a pnmc lw-submanifold of 𝑀𝑛(𝑐) × ℝ
having constant 𝜂-angle and that is not lies in a slice provided vertical cylinders are characterized by
the fact that 𝜕𝑡 is always tangent to Σ

𝑚 (see Fetcu & Rosenberg 2013). Therefore, we conclude that the
hypothesis of the submanifold to be closed in Theorems 3.3 and 3.4 is, indeed, necessary.

4 - FURTHER RESULTS FOR 𝑀 = 2 AND 𝑀 = 3

We should notice that when𝑚 = 2 and𝑚 = 3, the integral inequalities obtained in Theorems 3.3 and 3.4
holds. To see this, it is sufficient to do a rereading on the first inequality of (72). In fact, from (72),

𝑚𝐻∑
𝛼

tr(𝜙2𝛼𝜙𝑚) − ∑
𝛼,𝛽≠𝑚+1

𝑁(𝜙𝛼𝜙𝛽 − 𝜙𝛽𝜙𝛼) −∑
𝛼
[tr(𝜙𝛼𝜙𝛽)]

2

≥ −
𝑚(𝑚 − 2)

√𝑚(𝑚 − 1)
𝐻|𝜙|2|𝜙𝜂| −

1
2
|𝜙𝜂|

4 + |𝜙|2|𝜙𝜂|
2 − 3

2
|𝜙|4.

(118)

A straightforward computation, gives

|𝜙|2|𝜙𝜂|
2 ≥ −1

2
|𝜙𝜂|

4 − 1
2
|𝜙|4, (119)

with equality holding if and only if |𝜙| = |𝜙𝜂| = 0, that is, if and only if Σ𝑚 is totally umbilical
submanifold. Besides this,

|𝜙|2 = |𝜙𝜂|
2 + ∑

𝛼>𝑚+1
|𝜙𝛼|

2 ≥ |𝜙𝜂|
2, (120)
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with equality holding if and only if |𝜙𝛼| = 0 for 𝛼 > 𝑚 + 1. Hence, inserting (119) and (120) in (118), we
get

𝑚𝐻∑
𝛼

tr(𝜙2𝛼𝜙𝜂)− ∑
𝛼,𝛽≠𝑚+1

𝑁(𝜙𝛼𝜙𝛽 − 𝜙𝛽𝜙𝛼) −∑
𝛼
[tr(𝜙𝛼𝜙𝛽)]

2

≥ −|𝜙|2 (
𝑚(𝑚 − 2)

√𝑚(𝑚 − 1)
𝐻|𝜙| + 3|𝜙|2) .

By using this in Proposition 1.2,

𝐿(𝑚𝐻) ≥ |∇𝐴|2 − 𝑚2|∇𝐻|2 + 𝑐𝑚|𝜙𝑁|
2 − 2𝑐𝑚∑

𝛼
|𝜙𝛼(𝑇)|

2 − 𝑐𝑚𝐻⟨𝜙𝜂(𝑇), 𝑇⟩

+ (𝑐(𝑚 − |𝑇|2) + 𝑚𝐻2 −
𝑚(𝑚 − 2)

√𝑚(𝑚 − 1)
𝐻|𝜙| − 3|𝜙|2) |𝜙|2.

(121)

Hence, by replacing (75) and (81) in (121), we have

𝐿(𝑚𝐻) ≥ |∇𝐴|2 − 𝑚2|∇𝐻|2 + 𝑄𝑐 − |𝜙|
2𝜑𝑎,𝑏,𝑐(|𝜙|, |𝑇|), (122)

where
𝜑𝑎,𝑏,𝑐(𝑥, 𝑦) = 2𝑥

2 + 𝜑𝑎,𝑏,𝑐(𝑥, 𝑦) (123)

with 𝑄𝑐 and 𝜑𝑎,𝑏,𝑐(𝑥, 𝑦) defined in (67) and (68), respectively.
Therefore, since 𝑏 ≥ 0, we can apply Lemma 2.1 together with inequality (85) in (122) in order to

obtain:

𝐿(|𝜙|2) ≥ −2(𝑚 − 1) (|𝜙|2𝜑𝑎,𝑏,𝑐(|𝜙|, |𝑇|) − 𝑄𝑐)√
|𝜙|2

𝑚(𝑚 − 1)
+ 𝑏 + 𝑎

2

4
. (124)

By this previous digression, we obtain:

Theorem 4.1. Let Σ𝑚 be a closed pnmc lw-submanifold in 𝕊𝑛 × ℝ, 𝑛 > 𝑚, such that 𝐻2 = 𝑎𝐻 + 𝑏 with
𝑎, 𝑏 ≥ 0. If Σ𝑚 has constant 𝜂-angle, then

∫
Σ
|𝜙|𝑝+2𝐹𝑎,𝑏(|𝜙|, |𝑇|)𝑑Σ ≥ 0, (125)

for every real number 𝑝 > 2, where 𝐹𝑎,𝑏 is the real function given by

𝐹𝑎,𝑏(𝑥, 𝑦) = 2𝑥
2 + 𝐹𝑎,𝑏(𝑥, 𝑦),

with 𝐹𝑎,𝑏(𝑥, 𝑦) defined in (88). Moreover, the equality holds in (125) if and only if Σ
𝑚 is a totally umbilical

hypersurface in 𝕊𝑚+1 × {𝑡0} ↪ 𝕊𝑛 × ℝ for some 𝑡0 ∈ ℝ.

Proof. The proof follows the same steps as the proof of Theorem 3.3 until we reach inequality (103),
changing the function 𝜑𝑎,𝑏,𝑐 by 𝜑𝑎,𝑏,𝑐 along of the computations. If the equality in (125) holds, then also
occurs equality in (119) and hence, Σ𝑚 is a totally umbilical. Besides this, the equality also occurs in (91),
from where we conclude that 𝑇 = 0. Therefore, Σ𝑚 is a totally umbilical hypersurface in 𝕊𝑚+1 × {𝑡0} ↪
𝕊𝑛 × ℝ for some 𝑡0 ∈ ℝ.
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Following the same steps of the proof of Theorems 3.4 and 4.1, we have:

Theorem 4.2. Let Σ𝑚 be a closed pnmc lw-submanifold in ℍ𝑛 × ℝ, 𝑛 > 𝑚, such that 𝐻2 = 𝑎𝐻 + 𝑏 with
𝑎, 𝑏 ≥ 0. If Σ𝑚 has constant 𝜂-angle, then

∫
Σ
|𝜙|𝑝+2𝐺𝑎,𝑏(|𝜙|, |𝑇|)𝑑Σ ≥ 0, (126)

for every real number 𝑝 > 2, where 𝐺𝑎,𝑏 is given by

𝐺𝑎,𝑏(𝑥, 𝑦) = 2𝑥
2 + 𝐺𝑎,𝑏(𝑥, 𝑦),

with 𝐺𝑎,𝑏(𝑥, 𝑦) defined in (111). Moreover, the equality holds in (126) if and only if Σ
𝑚 is a totally umbilical

hypersurface in ℍ𝑚+1 × {𝑡0} ↪ ℍ𝑛 × ℝ for some 𝑡0 ∈ ℝ.

Remark 4.3. The approach developed here is not effective to find parallel submanifolds with two
distinct principal curvatures as in Proposition 3.1, because of this, we use it only in the cases where
𝑚 = 2 and 𝑚 = 3. So, following Remark 3.2 of Guo & Li (2013), it is an interesting question is to know if
Proposition 3.1 holds or not for 𝑚 = 2 and 𝑚 = 3.
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