Acessibilidade / Reportar erro

Charcoal anatomy of Brazilian species. II. 15 native species occurring in Atlantic or Amazon rainforest

Abstract

Anthracology is the identification of charcoal remains through wood anatomy. Paleoecological and paleoethnobotanical evidence from anthracological studies provides information on past environments as well as the fuel economy and use of plants by those living in ancient societies. Historical ecology and forest conservation can also accrue from findings in anthracological studies. Charcoal identification must rely on adequate reference material, in particular reference collections and descriptions of charcoal anatomy. This paper presents charcoal anatomy descriptions of fifteen Brazilian native species that occur in the Atlantic Forest and the Amazon Rainforest. The charcoal anatomy of six of these species is here described for the first time. Samples were analyzed under a reflected light microscope; the descriptions followed the procedures and terminology recommended by the International Association of Wood Anatomists. Increased knowledge of the charcoal and wood anatomy of native tropical species may improve taxonomic identification, thereby increasing accordingly the amount and quality of data for sociocultural inferences about past societies. In addition, it contributes to a better knowledge of the native flora, which helps to prevent deforestation and to drive more sustainable charcoal production chains.

Key words
anthracology; archeobotany; paleoecology; wood anatomy; nature conservation

INTRODUCTION

Archeology, the study of past human societies, has many fields of specialization. In one of them, archeobotany (paleoethnobotany), the botanical remnants from archeological sites are studied to investigate the interrelations between humans and plants in ancient societies (Ford 1989FORD R. 1989. Paleoethnobotany in American Archaeology. In: Schiffer MB (Ed). Advances in Archaeological Method and Theory 2: 285-333.). Archeobotanists recover (from fieldwork) and analyze (in the laboratory) micro- and macro-botanical remains. Phytoliths, starch grains, and pollen are the main types of plant micro-remains. Seeds, nuts, underground organs, and charcoal are the principal macro-remains. Botanical analysis, description, and identification of these remains are followed by social and cultural interpretations of the uses that the plants from which they originated might have had within each particular society in the past (Ford 1989FORD R. 1989. Paleoethnobotany in American Archaeology. In: Schiffer MB (Ed). Advances in Archaeological Method and Theory 2: 285-333., Scheel-Ybert 2016aSCHEEL-YBERT R. 2016a. Editorial: Archaeobotany in South America: Landscape, diet, and use of plants in the past. Cad LEPAARQ (UFPEL) 13: 118-130.).

Charcoal remains are the object of study of anthracology. Charcoal identification, based on wood anatomy, provides information on the environment, fuel economy, and the use of plants of ancient societies (Scheel-Ybert 2020SCHEEL-YBERT R. 2020. Anthracology (Charcoal Analysis). In: Smith C (org). Encyclopedia of Global Archaeology. 2nd ed., New York: Springer-Verlag, p. 408-418.).

The identification of plant species based on the analysis of charred remains has been done since the 19th century, but anthracology developed as a scientific field from the 1970s in Europe. Brazilian anthracology began in the late 20th century, with the establishment of the first charcoal collection of tropical species in 1994 (Scheel-Ybert 2016bSCHEEL-YBERT R. 2016b. Charcoal collections of the world. IAWA J 37: 489-505.). European anthracology focuses mainly on paleoecological data. In Brazil, both paleoecological and paleoethnobotanical inferences are based as much as possible on the same samples. Different studies have shown that these two interpretative lines are not incompatible and can be deduced from the same material (Scheel-Ybert 2004SCHEEL-YBERT R. 2004. Teoria e métodos em antracologia. 1. Considerações teóricas e perspectivas. Arq Museu Nacional 62(1): 3-14., 2020). These interpretations, however, depend on accurate charcoal identifications, which must rely on adequate reference material – especially comparative collections and studies of charcoal anatomy (Scheel-Ybert 2020SCHEEL-YBERT R. 2020. Anthracology (Charcoal Analysis). In: Smith C (org). Encyclopedia of Global Archaeology. 2nd ed., New York: Springer-Verlag, p. 408-418.).

To contribute to the effort of providing adequate reference material to such studies, and therefore improving the quality of charcoal determination, this paper presents descriptions of charcoal anatomy for 15 Brazilian native species that occur in the Atlantic Forest or the Amazon Rainforest. Besides its importance for archeological research, it may be useful for many other scientific areas that are also interested in charcoal anatomy and identification, such as botany, ecology, paleoecology, paleobotany, forest science, and geology (Scheel-Ybert 2016bSCHEEL-YBERT R. 2016b. Charcoal collections of the world. IAWA J 37: 489-505.).

MATERIALS AND METHODS

For this study, 28 wood samples of 15 species from 12 families native to Brazil were described: Anemopaegma prostratum DC. (Bignoniaceae), Cordia ecalyculata Vell. (Boraginaceae), Kielmeyera coriacea Mart. & Zucc., Kielmeyera excelsa Cambess. (Calophyllaceae), Terminalia glabrescens Mart. (Combretaceae), Bauhinia forficata Link, Copaifera langsdorffii Desf., Copaifera trapezifolia Hayne, Peltophorum dubium (Spreng.) Taub. (Fabaceae Caesalpinioideae), Anadenanthera colubrina var. cebil (Griseb.) Altschul (Fabaceae Mimosoideae), Bowdichia virgiloides Kunth., Dalbergia nigra (Vell.) Allemão ex Benth. (Fabaceae Papilionoideae), Mouriri chamissoana Cogn. (Melastomataceae), Myrcia minutiflora Sagot. (Myrtaceae), and Qualea grandiflora Mart. (Vochysiaceae). These species were selected because they are representative of forest formations in areas of important precolonial occupation.

Wood samples were obtained through field sampling (by R Scheel-Ybert [RS] and ME Solari [ME]) and donations from institutional wood collections: Instituto de Pesquisas Tecnológicas do Estado de São Paulo (BCTw), Instituto de Botânica de São Paulo (SPw), Jardim Botânico do Rio de Janeiro (RBw), Instituto Florestal de São Paulo (SPSFw). For carbonization, samples were wrapped in aluminum foil and charred in a muffle furnace at 400 °C for 40 minutes. All samples are deposited in the charcoal collection of the National Museum in Rio de Janeiro (Antracoteca do Museu Nacional, UFRJ – Laboratório de Arqueobotânica e Paisagem, Universidade Federal do Rio de Janeiro) (cf. Scheel-Ybert 2016bSCHEEL-YBERT R. 2016b. Charcoal collections of the world. IAWA J 37: 489-505.). Collection information is provided according to the herbaria or wood collections label data, including voucher number when available (a wood sample’s voucher consisting of the herbarium specimen of vegetative and reproductive structures that allowed the individual taxonomic identification).

For the microscopic analysis, the charcoal samples were manually split along the three wood structural sections: transversal, longitudinal tangential, and longitudinal radial. Samples were analyzed under a reflected light brightfield/darkfield microscope at 50x to 1000x magnification. The descriptions followed the procedures and terminology recommended by the International Association of Wood Anatomist (IAWA Committee 1989IAWA COMMITTEE. 1989. IAWA list of microscopic features for hardwood identification. IAWA Bull 10(3): 219-332.), except for intervessel pits size, for which the internal horizontal diameter of pits apertures was measured (Scheel-Ybert & Gonçalves 2017SCHEEL-YBERT R & GONÇALVES TAP. 2017. Primeiro atlas antracológico de espécies brasileiras (First anthracological atlas of Brazilian species). Rio de Janeiro: Série Livros Museu Nacional, 234 p.). Arithmetic means and amplitude (minimum and maximum values) are given for quantitative measurements. Micrographs were obtained using a JEOL 6300F SEM from University Montpellier (France); specimens were sputter-coated with platinum. Numbers between parentheses in the anatomical descriptions correspond to codes for the definitions of wood anatomical characters described by the IAWA Committee (1989)IAWA COMMITTEE. 1989. IAWA list of microscopic features for hardwood identification. IAWA Bull 10(3): 219-332..

Data regarding vernacular names, geographical distribution, ecological features and uses for each one of the analyzed species, provided in Table I, were retrieved from the specialized literature, from the internet, and from the List of Species of the Brazilian Flora (JBRJ 2012JBRJ. 2012. Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. Published on the Internet. In: http://floradobrasil.jbrj.gov.br [15/05/2017].
http://floradobrasil.jbrj.gov.br...
).

Table I
Supplementary data for the studied species (common names, geographical distribution, ecological data, phytogeographical domains, uses).

RESULTS

The anatomical descriptions for each one of the analyzed species are presented below. A synthesis of the quantitative and some qualitative data is provided in Table II.

Table II
Synthesis of main qualitative and quantitative data for wood anatomical features of the studied species and number of individuals analyzed. (+)= present; (-)= absent

BIGNONIACEAE – Anemopaegma prostratum DC. (Figure 1 a-b-c)

Figure 1
a-b-c. Anemopaegma prostratum DC. (Bignoniaceae / SPw731) [Arrows: a- vessels of two distinct diameter classes, wood not ring-porous; b- rays of two distinct sizes (uni and multiseriate); c- vessel-ray pits similar to intervessel pits (up left) and procumbent and square cells mixed in a multiseriate ray]. d-e-f. Cordia ecalyculata Vell. (Boraginaceae / BCTw3799) [Arrows: d- axial parenchyma; e- sheath cells; f- crystal sand]. g-hi Kielmeyera coriacea Mart. & Zucc. (Calophyllaceae / BCTw 15140) [Arrows: g- growth rings (inclined lower arrows) and axial parenchyma (horizontal arrows); h- uniseriate rays; i procumbent and square cells mixed in the ray (left arrow); axial parenchyma cells (middle arrow); vessel-ray pits larger than intervessel pits (right arrow)]. a-d-g: Transverse section. – b-e-h: Tangential section. – c-f-i Radial section. Bars = 100 µm.

Material studied: BRASIL: São Paulo, Araraçá, SP, junto à Caixa d’água. F.C. Hoehne. voucher SP1826 (SPw731).

Growth rings: distinct (1); boundaries marked by thick-walled and radially flattened fibers in latewood.

Vessels: wood diffuse-porous (5), in random arrangement; solitary (85,8%) and in multiples; solitary vessel outline circular to oval; vessels of two distinct diameter classes, wood not ring-porous (45); larger vessels tangential diameter 162 (80-300) µm (42); 18 (11,6-23,3) vessels/mm² (47); perforation plates simple (13); intervessel pits alternate (22), non-vestured, aperture diameter 4,8 (2-6) µm; vessel-ray pits similar to intervessel pits in size and shape throughout the ray cell (30).

Axial parenchyma: scanty paratracheal (78); 1-3 cells per parenchyma strand (91).

Rays: 5-6-(8) seriate (98); 4,7 (4-6) rays/mm (115); ray height 1-2 mm (102); rays of two distinct sizes (uni and multiseriate) (103); multiseriate rays with procumbent, square, and upright cells mixed throughout the ray (109), uniseriate rays with all ray cells upright and/or square (105).

Fibers: septate (65), thin- to thick-walled (69), with simple to minutely bordered pits (61).

Mineral inclusions: Prismatic crystals present (136).

BORAGINACEAE – Cordia ecalyculata Vell. (Figure 1 d-e-f)

Material studied: BRASIL: São Paulo, Estação Experimental de Ibiti, Estado de São Paulo. Antônio Gentil Gomes 148 (1945) (BCTw3799).

Growth rings: absent or indistinct (2).

Vessels: wood diffuse-porous (5), in random arrangement; solitary (61,4%) and in multiples of 2 (29,8%), 3 (7%), and 4 (1,7%); solitary vessel outline angular (12); tangential diameter 81,2 (50-110) µm (41); 9,1 (6,7-13,5) vessels/mm² (47); perforation plates simple (13); intervessel pits alternate (22), with coalescent chambers probably due to carbonization, non-vestured, aperture diameter 12,8 (8-20) µm; vessel-ray pits similar to intervessel pits in size and shape throughout the ray cell (30).

Axial parenchyma: aliform (80), lozenge-aliform (81), and confluent (83); 2-3 cells per parenchyma strand (91-92).

Rays: 5-7 seriate (98); 6,5 (5-8) rays/mm (115); ray height 1-2 mm (102); sheath cells (110); body ray cells procumbent with mostly 2-4 rows of upright and/or square marginal cells (107), sometimes procumbent cells of variable width.

Fibers: septate (65), thin- to thick-walled (69), with simple to minutely bordered pits (61).

Mineral inclusions: Prismatic crystals present (136), in axial parenchyma cells (141/142), crystal sand frequent (153).

CALOPHYLLACEAE – Kielmeyera coriacea Mart. & Zucc. (Figure 1 g-h-i)

Material studied: BRASIL: prox. Luminárias, Minas Gerais. Carmen Regina Marcati (BCTw15140).

Growth rings: distinct (1); boundaries marked by thick-walled and radially flattened fibers in late wood, but the difference between late and early wood is tenuous and hardly observable.

Vessels: wood diffuse-porous (5), in random arrangement; solitary (76,8%) and in multiples of 2 (15,7%), 3 (3,1%), 4 (3,1%), and 5 (1%); solitary vessel outline circular to oval; tangential diameter 125,2 (90-180) µm (42); 12,2 (8,7-16,5) vessels/mm² (47); perforation plates simple (13); intervessel pits alternate (22), non-vestured, aperture diameter 7,4 (6-10) µm; vessel-ray pits larger than intervessel pits, borders much reduced to apparently simple, rounded (31) or horizontally elongate (32). Vascular or vasicentric tracheids present (60).

Axial parenchyma: in narrow bands up to three cells wide (86).

Rays: exclusively uniseriate (96); 4,1 (3-8) rays/mm (115); all ray cells upright and/or square (105), rays with procumbent, square, and upright cells mixed throughout the ray (109).

Fibers: non-septate (66), thin- to thick-walled (69), with simple to minutely bordered pits (61).

Mineral inclusions: absent.

CALOPHYLLACEAE – Kielmeyera excelsa Cambess.

Material studied: BRASIL: Rio de Janeiro, Guanabara. Pedra de Itaúna, restinga de Jacarepaguá. D. Sucre 5336 (16/06/1969). det. Graziela Maciel Barroso. Voucher RB145924 (RBw5938).

Growth rings: absent or indistinct (2).

Vessels: wood diffuse-porous (5), in random arrangement; solitary (66,6%) and in multiples of 2 (22,2%), 3 (5,5%), and 4 (5,5%); solitary vessel outline circular to oval; tangential diameter 107,6 (70-150) µm (42); 5,5 (1,6-13,1) vessels/mm² (47); tyloses common (56); perforation plates simple (13); intervessel pits alternate (22), non-vestured, aperture diameter 8,6 (6-10) µm; vessel-ray pits larger than intervessel pits, borders much reduced to apparently simple, rounded (31). Vascular or vasicentric tracheids present (60).

Axial parenchyma: in unicellular lines (86) to narrow bands up to three cells wide (86).

Rays: uniseriate (96), rare locally biseriate; 9 (6-11) rays/mm (115); all ray cells upright and/or square (105).

Fibers: non-septate (66), thin- to thick-walled (69), with simple to minutely bordered pits (61).

Mineral inclusions: Prismatic crystals present (136).

COMBRETACEAE – Terminalia glabrescens Mart. (Figure 2)

Figure 2
Terminalia glabrescens Mart. (Combretaceae / SPw 18). a: Transverse section [arrows: axial parenchyma]. – b: Tangential section [arrows: uniseriate rays; alternate intervessel pits]. – c: Radial section [arrows: all ray cells upright or square]. Bars = 100 µm.

Material studied: BRASIL: Ituituba, Minas Gerais. Amaro Macedo 15 (BCTw 3820). BRASIL: São Simão, São Paulo. J. Pinho 16 (VIII.1962). det. J. Mattos (1963). voucher SP 84973 (SPw 18).

Growth rings: absent or indistinct (2).

Vessels: wood diffuse-porous (5), in random arrangement, solitary (73,8%) and in multiples of 2 (19,1%), 3 (4,6%), and 4 (2,5%); solitary vessel outline circular to oval; tangential diameter 107,4 (70-150) µm (42); vessels frequency 14,6 (8,2-25,4) (SPw018) to 5,6 (2-11) vessels/mm² (BCTw3820) (47); tyloses common (56); perforation plates simple (13); intervessel pits alternate (22), vestured (29), aperture diameter 5,5 (4-6) µm; vessel-ray pits similar to intervessel pits in size and shape throughout the ray cell (30).

Axial parenchyma: vasicentric (79) (BCTw3820), aliform (80), lozenge-aliform (81), and confluent (83).

Rays: exclusively uniseriate (96); all ray cells upright and/or square (105) (SPw018) or body ray cells procumbent with one row of upright and/or square marginal cells (106) (BCTw3820); 9,1 (7-11) rays/mm (115).

Fibers: septate (65); thin- to thick-walled (69); simple to minutely bordered pits (61).

Mineral inclusions: styloids (151) and prismatic crystals present in axial parenchyma (141/142).

FABACEAE CAESALPINOIDEAE – Bauhinia forficata Link. (Figure 3 a-b-c)

Figure 3
a-b-c. Bauhinia forficata Link. (Fabaceae Caesalpinioideae / BCTw8774) [Arrows: a- axial parenchyma; b- rays; c- row of square marginal cells siding procumbent ray cells; vessel-ray pits larger than intervessel pits (right arrows)]. d-e-f. Copaifera langsdorffii Desf. (Fabaceae Caesalpinoideae / SPSFw139) [Arrows: d- axial canals; axial parenchyma; growth ring (horizontal arrow); e- rays; f- ray cells]. g-h-i Peltophorum dubium (Spreng.) Taub. (Fabaceae Caesalpinioideae / BCTw s/nº) [Arrows: g- axial parenchyma; h- rays; i ray cells]. a-d-g: Transverse section. – b-e-h: Tangential section. – c-f-i Radial section. Bars = 100 µm.

Material studied: BRASIL: Rio de Janeiro, estrada da Guanabara, Horto Florestal. João Geraldo Kuhlmann (RBw236); BRASIL: Monte Alegre, Paraná. D.B. Pickel. det. Pickel (BCTw8774).

Growth rings: absent or indistinct (2).

Vessels: wood diffuse-porous (5), in random arrangement; solitary (74%) and in multiples of 2 (20,5%), 3 (3,5%), 4 (1%), and 6 (1%); solitary vessel outline circular to oval; tangential diameter 87,0 (70-115) µm (41); vessels frequency 15,0 (7,3-21,3) (47) (RBw236) to 34,6 (31,9-40,1) (48) (BCTw8774) vessels/mm²; tyloses common (56) (RBw236) or absent (BCTw8774); perforation plates simple (13); intervessel pits alternate (22), non-vestured, aperture diameter 4,1 (3-5) µm; vessel-ray pits larger than intervessel pits, borders much reduced to apparently simple, rounded (31). Vascular or vasicentric tracheids present (60).

Axial parenchyma: aliform (80), lozenge-aliform (81), and confluent (83).

Rays: 3-5 seriate (98); 8,2 (5,5-10) rays/mm (115); body ray cells procumbent with one row of upright and/or square marginal cells (106).

Fibers: non-septate (66), thin- to thick-walled (69), with simple to minutely bordered pits (61).

Mineral inclusions: Prismatic crystals present (136) in RBw236, frequently in axial alignments in chambered cells (142), also in fibers (143).

Storied structure: absent.

FABACEAE CAESALPINOIDEAE – Copaifera langsdorffii Desf. (Figure 3 d-e-f)

Material studied: BRASIL: São Paulo (SPSFw139). BRASIL: Minas Gerais, Patrocínio, Serra do Salitre, Lagoa Campestre. G. Ceccantini 421 (21.VIII.1994) (GC421/USPw).

Growth rings: distinct, boundaries marked by thick-walled and radially flattened fibers in late wood, marginal parenchyma, and axial canals in tangential lines.

Vessels: wood diffuse-porous (5), in random arrangement, solitary (89,3%) and in multiples of 2 (6,9 %) and 3 (3,8%); solitary vessel outline circular to oval; tangential diameter 111,0 (70-170) µm (42); vessels frequency 7,5 (5-11) vessels/mm² (47); perforation plates simple (13); intervessel pits alternate (22), vestured (29), aperture diameter 4,3 (3-6) µm; vessel-ray pits similar to intervessel pits in size and shape throughout the ray cell (30).

Axial parenchyma: vasicentric (79), aliform (80), and lozenge-aliform (81).

Rays: 1-2 seriate (97); 9,2 (6-14) rays/mm (115); body ray cells procumbent with one row of upright and/or square marginal cells (106).

Fibers: non-septate (66); very thin-walled (68); with simple to minutely bordered pits (61).

Secretory elements: axial canals in tangential lines (127, 128).

Mineral inclusions: absent.

Storied structure: absent.

FABACEAE CAESALPINOIDEAE– Copaifera trapezifolia Hayne

Material studied: BRASIL: São Paulo, Jardim Botânico de São Paulo. M. Kuhlmann (21.VI.1946) (BCTw4115). BRASIL: Santa Catarina, Itajaí, Herb. Barbosa Rodrigues (1960) (RBw3682).

Growth rings: distinct (1), boundaries marked by marginal parenchyma and axial canals in tangential lines.

Vessels: wood diffuse-porous (5), in random arrangement, solitary (71,1%) and in multiples of 2 (15,7%), 3 (10,6%), 4 (1,5%), and 5 (1,1%); solitary vessel outline circular to oval; tangential diameter 78,0 (60-90) µm (41) (BCTw4115) to 129,2 (110-150) µm (42) (RBw3682); vessels frequency 11,5 (9-17) (47) (BCTw4115) to 24,6 (19-29) (48) (RBw3682) vessels/mm²; tyloses common (56); perforation plates simple (13); intervessel pits alternate (22), vestured (29); aperture diameter 4,8 (4-6) µm; vessel-ray pits similar to intervessel pits in size and shape throughout the ray cell (30).

Axial parenchyma: vasicentric (79), lozenge-aliform (81).

Rays: (1)-2 seriate (97); 8,3 (6-11) rays/mm (115); body ray cells procumbent with one row of upright and/or square marginal cells (106).

Fibers: non-septate (66); very thin-walled (68) (BCTw4115) or thin- to thick-walled (69) (RBw3682); with simple to minutely bordered pits (61).

Secretory elements: axial canals in tangential lines (127, 128).

Mineral inclusions: prismatic crystals present in rays and in axial alignments in chambered cells (142).

Storied structure: absent.

FABACEAE CAESALPINIOIDEAE– Peltophorum dubium (Spreng.) Taub. (Figure 3 g-h-i)

Material studied: BRASIL: Rio de Janeiro, Parque Nacional de Itatiaia. J.G.. Kuhlmann (1948) (RBw 2234). BRASIL: Mato Grosso (BCTw 10936). BRASIL: Mato Grosso (BCTw 10950). BRASIL: E.F.S. Rancharia (BCTw 8390). BRASIL: (BCTw s/nº).BRASIL: Rio de Janeiro, Iguaba Grande. R. Scheel-Ybert 77 (22.X.1995) (RS 77).

Growth rings: absent or indistinct (2) (BCTw10936, BCTw10950, BCTw s/nº, BCTw8390) or distinct (1) (RBw2234), boundaries marked by thick-walled and radially flattened fibers in late wood.

Vessels: wood diffuse-porous (5), in random arrangement, solitary (71,8%) and in multiples of 2 (26,1%) and 3 (2,0%); solitary vessel outline circular to oval; tangential diameter 119,9 (70-180) µm (42); vessels frequency 3,4 (0-8) vessels/mm² (46); tyloses absent (BCTw10936, RBw2234, BCTw10950) or common (56) (BCTw s/nº, BCTw8390); perforation plates simple (13); intervessel pits alternate (22), vestured (29), aperture diameter 4,6 (4-6) µm; vessel-ray pits similar to intervessel pits in size and shape throughout the ray cell (30).

Axial parenchyma: vasicentric (79), lozenge-aliform (81), confluent (83).

Rays: 1-2 seriate (97); 10,3 (7-15) rays/mm (115); all ray cells procumbent (104).

Fibers: septate (65); very thin-walled (68) (BCTw10950, RBw2234) or thin- to thick-walled (69) (BCTw10936, BCTw s/nº, BCTw8390); with simple to minutely bordered pits (61).

Mineral inclusions: absent.

Storied structure: absent.

FABACEAE FABOIDEAE – Bowdichia virgilioides Kunth. (Figure 4 a-b-c)

Figure 4
a-b-c. Bowdichia virgilioides Kunth. (Fabaceae Faboideae / SPSFw1148) [Arrows: a- axial parenchyma; b- storied rays; storied parenchyma cells (right arrows); c- procumbent ray cells]. d-e-f. Dalbergia nigra (Vell.) Allemão ex Benth. (Fabaceae Faboideae / BCTw s/nº) [Arrows: d- aliform axial parenchyma; e- storied rays; f- ray cells]. g-hi Anadenanthera colubrina var. cebil (Griseb.) Altschul (Fabaceae Mimosoideae / SPSFw1121) [Arrows: g- vasicentric axial parenchyma; h- rays; axial alignment of prismatic crystals (vertical arrow); i axial alignments of prismatic crystals]. a-d-g: Transverse section. – b-e-h: Tangential section. – c-f-i Radial section. Bars = 100 µm.

Material studied: BRASIL: Espírito Santo (SPSFw1148).

Growth rings: distinct (1), boundaries marked by parenchyma marginal bands (89).

Vessels: wood diffuse-porous (5), in random arrangement; solitary (51%) and in multiples of 2 (18,5%), 3 (24,5%), and 4 (6%); solitary vessel outline circular to oval; tangential diameter 110 (70-160) µm (42); vessels frequency 7,2 (4-13,9) vessels/mm² (47); perforation plates simple (13); intervessel pits alternate (22), vestured (29), aperture diameter 8,4 (6-10) µm; vessel-ray pits similar to intervessel pits in size and shape throughout the ray cell (30).

Axial parenchyma: in marginal or seemingly marginal bands (89) and aliform (80), lozenge-aliform (81), and confluent (83); 5-10 cells per parenchyma strand (93-94).

Rays: 1-2-(3) seriate (97); 8,4 (5-10) rays/mm (115); body ray cells procumbent with one row of upright and/or square marginal cells (106), sometimes procumbent cells of variable width.

Fibers: non-septate (66); very thick-walled (70), with simple to minutely bordered pits (61).

Mineral inclusions: absent.

Storied structure: all rays storied (118); axial parenchyma storied (120).

FABACEAE FABOIDEAE – Dalbergia nigra (Vell.) Allemão ex Benth. (Figure 4 d-e-f)

Material studied: BRASIL: Rio de Janeiro, Parque Nacional de Itatiaia. E. Cunha Mello 8 (1948) (RBw2222). BRASIL: Rio de Janeiro, Parque Nacional de Itatiaia. Wanderbilt Duarte de Barros (IX.1947) (BCTw7490). BRASIL: Espírito Santo (BCTw1473). BRASIL (BCTw1479).

Growth rings: absent or indistinct (2) (BCTw1473, BCTw7490, BCTw1479) or distinct (1), boundaries marked by marginal parenchyma bands (RBw2222).

Vessels: wood diffuse-porous (5), in random arrangement, solitary (89,5%) and in multiples of 2 (7,8%), 3 (1,9%), and 4 (0,7%); solitary vessel outline circular to oval; tangential diameter 131,9 (80-190) µm (42); vessels frequency 3,4 (1-7,4) vessels/mm² (46); tyloses common (56) (BCTw1473, BCTw1479) or absent (BCTw7490, RBw2222); perforation plates simple (13); intervessel pits alternate (22), vestured (29); aperture diameter 6,2 (4-8) µm; vessel-ray pits similar to intervessel pits in size and shape throughout the ray cell (30).

Axial parenchyma: vasicentric (79), aliform (80), lozenge-aliform (81); apotracheal diffuse-in-aggregates (77) and in marginal or seemingly marginal bands (89).

Rays: 1-2 seriate (97); 14 (9-18) rays/mm (116); body ray cells procumbent with one row of upright and/or square marginal cells (106).

Fibers: non-septate (66); thick-walled (70); with simple to minutely bordered pits (61).

Mineral inclusions: absent.

Storied structure: all rays storied (118), axial parenchyma storied (120), fibers storied (121).

FABACEAE MIMOSOIDEAE – Anadenanthera colubrina var. cebil (Griseb.) Altschul (Figure 4 g-h-i)

Material studied: BRASIL: São Paulo (SPSFw1121).

Growth rings: absent or indistinct (2)

Vessels: wood diffuse-porous (5) in random arrangement, solitary (81,7%) and in multiples of 2 (12%), 3 (5,8%) and 5 (0,2%); solitary vessel outline circular to oval; tangential diameter 87,6 (70-110) µm (41); vessels frequency 13,4 (8,9-16,8) vessels/mm² (47); tyloses common (56); perforation plates simple (13); intervessel pits alternate (22), vestured (29); aperture diameter 5 (4-6) µm; vessel-ray pits similar to intervessel pits in size and shape throughout the ray cell (30).

Axial parenchyma: vasicentric (79)

Rays: 1-3 seriate (97), but larger rays commonly 4-5 seriate (98); 7,6 (6-9) rays/mm (115); all ray cells procumbent (104).

Fibers: non-septate (66); thin to thick-walled (69); with simple to minutely bordered pits (61).

Mineral inclusions: axial alignments of prismatic crystals in chambered cells.

Storied structure: absent.

MELASTOMATACEAE – Mouriri chamissoana Cogn. (Figure 5 a-b-c)

Figure 5
a-b-c. Mouriri chamissoana Cogn. (Melastomataceae / SPw1138) [Arrows: a- included phloem; b- uniseriate rays; c- all ray cells upright or square]. d-e-f. Myrcia minutiflora Sagot. (Myrtaceae / SPSFw2576) [Arrows: d- axial parenchyma diffuse-in-aggregates; e-f- uniseriate portion of multiseriate rays, composed of many rows of square and upright cells]. g-hi Qualea grandiflora Mart. (Vochysiaceae / BCTw11246) [Arrows: g- axial parenchyma; hi rays]. a-d-g: Transverse section. – b-e-h: Tangential section. – c-f-i Radial section. Bars = 100 µm.

Material studied: BRASIL: Parque do Estado. F.C. Hoehne 298. det. F.C. Hoehne. (BCTw646); BRASIL: São Paulo, Jardim Botânico, SP. Oswaldo Handro (IX.35). det. F.C. Hoehne. voucher SP29291 (SPw1138); BRASIL: São Paulo, Serra da Cantareira, Pinheirinho, SP (ávore L4-10) (SPSFw2564); BRASIL: Maranhão. Mario Tomazello (BCTw17369); BRASIL: Chapada – 94. E. Navarro (BCTw645).

Growth rings: absent or indistinct (2).

Vessels: wood diffuse-porous (5), in random arrangement; solitary (88,8%) and in multiples of 2 (10,1%) and 3 (1,2%); solitary vessel outline circular to oval; tangential diameter 77,6 (52-118) µm (41); vessels frequency 14,0 (10,1-19,3) vessels/mm² (47); tyloses usually absent, but common (56) in BCTw645; perforation plates simple (13); intervessel pits alternate (22), vestured (29), aperture diameter 6,1 (4,5-8) µm; vessel-ray pits similar to intervessel pits in size and shape throughout the ray cell (30).

Axial parenchyma: scanty paratracheal (78), vasicentric (79), and apotracheal diffuse (76); 2-4 cells per parenchyima strand (91-92).

Rays: exclusively uniseriate (96); 5 (4 -10,5) rays/mm (115); all ray cells upright and/or square (105).

Fibers: non-septate (66), thin- to thick-walled (69), with simple to minutely bordered pits (61).

Mineral inclusions: crystal sand (153).

Cambial variants: Included phloem diffuse (134).

MYRTACEAE – Myrcia minutiflora Sagot. (Figure 5 d-e-f)

Material studied: BRASIL: São Paulo, Serra da Cantareira, Pinheirinho (árvore L2-6) (SPSFw2576).

Growth rings: distinct (1) boundaries marked by thick-walled and radially flattened fibers in late wood.

Vessels: wood diffuse-porous (5), in diagonal and/or radial pattern (7); exclusively solitary (9), rarely in multiples of 2 (5%); solitary vessel outline circular to oval; tangential diameter 64,8 (50-90) µm (41); vessels frequency 23,5 (18-27) vessels/mm (48); perforation plates simple (13); intervessel pits alternate (22), vestured (29), aperture diameter 4,4 (3-6) µm; vessel-ray pits similar to intervessel pits in size and shape throughout the ray cell (30).Vascular or vasicentric tracheids present (60).

Axial parenchyma: diffuse-in-aggregates (77); 1-2 cells per parenchyma strand (90-91).

Rays: (3)4-5(6) seriate (98); 6,5 (5-9) rays/mm (115); body ray cells procumbent with many rows of upright and/or square marginal cells (108).

Fibers: non-septate (66), thin- to thick-walled (69), with distinctly bordered pits (62).

Mineral inclusions: prismatic crystals in rays and in non-chambered parenchyma cells (141)

VOCHYSIACEAE – Qualea grandiflora Mart. (Figure 5 g-h-i)

Material studied: BRASIL: São Paulo, São Simão, Estado de São Paulo. R.A. Pinho 44 (21.XI.63). det. J. Mattos (BCTw11246); BRASIL: Campus da Universidade de Campo Grande (UFMS). M.E. Solari (01-08-95). det. Arnildo e Vali Pott (ME 187).

Growth rings: hardly distinct (1); boundaries marked by thick-walled and radially flattened fibers in latewood.

Vessels: wood diffuse-porous (5), in random arrangement; solitary (53,3%) and in multiples of 2 (39,4%), 3 (9%), 4 (1,5%), 5 (0,4%), and 6 (1,5%); Solitary vessel outline circular to oval; tangential diameter 55,8 (30-80) µm (41); vessels frequency 31,8 (22,9-37,7) (48) (BCTw11246) to 58,9 (41,8-78,6) (49) (ME187) vessels/mm²; perforation plates simple (13); intervessel pits alternate (22), vestured (29), aperture diameter 6,3 (4,5-7,5) µm; vessel-ray pits similar to intervessel pits in size and shape throughout the ray cell (30).

Axial parenchyma: aliform (80), lozenge-aliform (81), and confluent (83); 4 cells per parenchyma strand (92).

Rays: mostly 2-3 seriate (97), but 1 to 4-seriate present; 8,2 (6-10,5) rays/mm (115); body ray cells procumbent with one row of upright and/or square marginal cells (106).

Fibers: septate (65), very thick-walled (70), with simple to minutely bordered pits (61); pits common in both radial and tangential walls (63).

Mineral inclusions: prismatic crystals (136), both in procumbent ray cells (138) and in axial parenchyma cells (141).

Storied structure: rays and/or axial elements irregularly storied (122).

DISCUSSION

The anatomical description of charcoal aims to improve taxonomical identification and to provide better means to anthracological studies in the tropics.

The charcoal descriptions presented here closely agree with general wood anatomy characterizations previously published for the families Bignoniaceae, Boraginaceae, Calophyllaceae, Combretaceae, Fabaceae, Melastomataceae, Myrtaceae, and Vochysiaceae (Metcalfe & Chalk 1950METCALFE CR & CHALK L. 1950. Anatomy of the dicotyledons.Vol 2. Clarendon Press: Oxford, UK, 1500 p., InsideWood 2004). They also agree with generic descriptions for Anemopaegma, Bauhinia, Cordia, Copaifera, Kielmeyera, and Myrcia (Metcalfe & Chalk 1950METCALFE CR & CHALK L. 1950. Anatomy of the dicotyledons.Vol 2. Clarendon Press: Oxford, UK, 1500 p.), and with specific wood descriptions of Bowdichia virgiloides Kunth., Copaifera langsdorffii Desf., Dalbergia nigra (Vell.) Allemão ex Benth., Kielmeyera coriacea Mart. & Zucc., Mouriri chamissoana Cogn., Piptadenia macrocarpa Benth., Peltophorum dubium (Spreng.) Taub., Qualea grandiflora Mart., and Terminalia glabrescens Mart. (Tortorelli 1956TORTORELLI LA. 1956. Maderas y bosques argentinos. Editorial Acme: Buenos Aires, 910 p., Kribs 1968KRIBS DA. 1968. Commercial foreign woods on the American market. Dover Publications: New York, 241 p., Paula 1974PAULA JE. 1974. Anatomia de Madeira: Guttiferae. Acta Amazonica 4: 27-64., Ter Welle & Koek-Noorman 1981TER WELLE BJH & KOEK-NOORMAN J. 1981. Wood anatomy of the Neotropical Melastomataceae. BLUMEA 27: 335-339., Détienne & Jacquet 1983DÉTIENNE P & JACQUET P. 1983. Atlas d’identification des bois de l’Amazonie et des régions voisines. CTFT, Nogent s/Marne, 640 p., Berti & Abbate 1992BERTI RN & ABBATE MLE. 1992. Legnami tropicali importati in Italia: anatomia e identificazione. Vol. II. America Latina: CNR, Firenze, 406 p., Carvalho 1997CARVALHO AM. 1997. A synopsis of the genus Dalbergia (Fabaceae: Dalbergieae) in Brazil. Brittonia 49(1): 87-109., Richter & Dallwitz 2000RICHTER HG & DALLWITZ MJ. 2000. Commercial timbers: descriptions, illustrations, identification, and information retrieval. In English, French, German, and Spanish. Version: 25th June 2009., Marcati et al. 2001MARCATI CR, ANGYALOSSY-ALFONSO V & BENTATI L. 2001. Anatomia comparada do lenho de Copaifera langsdorffii Desf. (Leguminosae-Caesalpinoideae) de floresta e cerradão. Rev Brasil Bot 24(3): 311-320., Mattos et al. 2003MATTOS PP, TEIXEIRA LL, SEITZ RA, SALIS SM & BOTOSSO PC. 2003. Anatomia de madeiras do Pantanal Mato-Grossense (Características microscópicas. Embrapa Florestas, Columbo, PR. Embrapa Pantanal: Corumbá, MS Brasil, 182 p., Miller & Wiemann 2006MILLER RB & WIEMANN MC. 2006. Separation of Dalbergia nigra from Dalbergia spruceana. Research Paper FPL-RP-632. Madison: U.S.D.A., Forest Service, 5 p., Miller 2007MILLER RB. 2007. Fluorescent woods of the world. A Guide to the More Useful Woods of the World. Forest Products Society: Madison, p 271-305., Sonsin et al. 2014SONSIN JO, GASSON P, MACHADO SR, CAUM C & MARCATI CR. 2014. Atlas da diversidade de madeiras do cerrado paulista. Fund Estudos e Pesquisas Agricolas e Florestais, 423 p., Sonsin-Oliveira 2006SONSIN-OLIVEIRA J. 2006. Variações estruturais do lenho de espécies de cerrado do Estado de São Paulo. (Mestrado em Botânica), UNESP. (Unpublished).).

However, some quantitative features differed from these previous descriptions. Differences, of small amplitude, were observed concerning tangential diameter and frequency of vessels, ray frequencies, and pit diameters. The discrepancies may be explained by the carbonization process, ecological factors, or intraspecific variability. Mass loss and wood shrinkage may cause changes in diameter and frequency of vessels and rays, while the fusion of secondary cell walls frequently obliterates pit chambers. These changes, however, do not prevent taxonomic identification, since they lie within the range of individual variation in wood anatomy (Gonçalves et al. 2012GONÇALVES TAP, MARCATI CR & SCHEEL-YBERT R. 2012. The effect of carbonization on wood structure of Dalbergia violacea, Stryphnodendron polyphyllum, Tapirira guianensis, Vochysia tucanorum, and Pouteria torta from the Brazilian cerrado. IAWA J 33: 73-90., Gonçalves & Scheel-Ybert 2016GONÇALVES TAP & SCHEEL-YBERT R. 2016. Charcoal anatomy of Brazilian species.I. Anacardiaceae. An Acad Bras Cienc 88: 1711-1725.).

A few qualitative features also differed from previous descriptions. We identified growth rings in Bowdichia virgilioides and Kielmeyera coriacea, conversely of what was previously described (Détienne & Jacquet 1983DÉTIENNE P & JACQUET P. 1983. Atlas d’identification des bois de l’Amazonie et des régions voisines. CTFT, Nogent s/Marne, 640 p., Richter & Dallwitz 2000RICHTER HG & DALLWITZ MJ. 2000. Commercial timbers: descriptions, illustrations, identification, and information retrieval. In English, French, German, and Spanish. Version: 25th June 2009., Mattos et al. 2003MATTOS PP, TEIXEIRA LL, SEITZ RA, SALIS SM & BOTOSSO PC. 2003. Anatomia de madeiras do Pantanal Mato-Grossense (Características microscópicas. Embrapa Florestas, Columbo, PR. Embrapa Pantanal: Corumbá, MS Brasil, 182 p., Sonsin et al. 2014SONSIN JO, GASSON P, MACHADO SR, CAUM C & MARCATI CR. 2014. Atlas da diversidade de madeiras do cerrado paulista. Fund Estudos e Pesquisas Agricolas e Florestais, 423 p., Sonsin-Oliveira 2006SONSIN-OLIVEIRA J. 2006. Variações estruturais do lenho de espécies de cerrado do Estado de São Paulo. (Mestrado em Botânica), UNESP. (Unpublished). for B. virgilioides; Paula 1974PAULA JE. 1974. Anatomia de Madeira: Guttiferae. Acta Amazonica 4: 27-64. for K. coriacea). The specimens of Qualea grandiflora that we analyzed presented simple perforation plates and tyloses absent, while Sonsin et al. (2014)SONSIN JO, GASSON P, MACHADO SR, CAUM C & MARCATI CR. 2014. Atlas da diversidade de madeiras do cerrado paulista. Fund Estudos e Pesquisas Agricolas e Florestais, 423 p. described the perforation plates as scalariform and the tyloses as common. These discrepancies, especially regarding growth rings and tyloses, are easily explained by ecological factors, intraspecific variability, and timber age.

These results reiterate the similarity between charcoal and wood anatomy, already enunciated by Gonçalves & Scheel-Ybert (2016)GONÇALVES TAP & SCHEEL-YBERT R. 2016. Charcoal anatomy of Brazilian species.I. Anacardiaceae. An Acad Bras Cienc 88: 1711-1725., as, despite morphometrical changes due to the carbonization process, wood anatomical features seem directly comparable between carbonized and non-carbonized samples. Yet, we restate the advantage of studying charcoal anatomy to assist anthracological research. Charcoal identification is much more effective when unknown samples are compared to charred extant equivalents, instead of to wood slides (Scheel-Ybert & Gonçalves 2017SCHEEL-YBERT R & GONÇALVES TAP. 2017. Primeiro atlas antracológico de espécies brasileiras (First anthracological atlas of Brazilian species). Rio de Janeiro: Série Livros Museu Nacional, 234 p.).

Some charcoal anatomy studies for the Brazilian flora already exist, but much work is still needed on the subject. Up to the present time, there are studies comparing wood and charcoal anatomy to investigate anatomical changes (Dias Leme et al. 2010DIAS LEME CL, CARTWRIGHT C & GASSON P. 2010. Anatomical changes to the wood of Mimosa ophthalmocentra and Mimosa tenuiflora when charred at different temperatures. IAWA J 31: 333-351., Gonçalves et al. 2012GONÇALVES TAP, MARCATI CR & SCHEEL-YBERT R. 2012. The effect of carbonization on wood structure of Dalbergia violacea, Stryphnodendron polyphyllum, Tapirira guianensis, Vochysia tucanorum, and Pouteria torta from the Brazilian cerrado. IAWA J 33: 73-90., Albuquerque 2012ALBUQUERQUE AR. 2012. Anatomia comparada do lenho e do carvão aplicada na identificação de 75 espécies da floresta Amazônica, no estado do Pará, Brasil. (Mestrado em Recursos Florestais). ESALQ-USP. (Unpublished).), charcoal anatomy descriptions aiming to assist anthracological studies (Pinto et al. 2017PINTO AA, GIONGO C & SCHEEL-YBERT R. 2017. Anatomia do Lenho Carbonizado de 10 Espécies Nativas da Planície Costeira do Rio Grande do Sul: Subsídio a Pesquisas Arqueobotânicas e Paleoecológicas. Cad LEPAARQ 14(27): 480-511., Gonçalves & Scheel-Ybert 2016GONÇALVES TAP & SCHEEL-YBERT R. 2016. Charcoal anatomy of Brazilian species.I. Anacardiaceae. An Acad Bras Cienc 88: 1711-1725., Scheel-Ybert & Gonçalves 2017SCHEEL-YBERT R & GONÇALVES TAP. 2017. Primeiro atlas antracológico de espécies brasileiras (First anthracological atlas of Brazilian species). Rio de Janeiro: Série Livros Museu Nacional, 234 p.), and charcoal anatomy investigations aiming to contribute to control the use of illegal logged native wood as charcoal (Nisgoski et al. 2012NISGOSKI S, MUÑIZ GIB, FRANÇA RF & BATISTA FRR. 2012. Anatomia do lenho carbonizado de Copaifera cf. langsdorfii Desf. e Dipteryx odorata (Aubl.) Wild Rev Cienc Madeira 3(2): 66-79., 2015NISGOSKI S, MUÑIZ GIB, MORRONE SR, SCHARDOSIN FZ & FRANÇA RF. 2015. NIR and anatomy of wood and charcoal from Moraceae and Euphorbiaceae species. Rev Cienc Madeira 6(3): 183-190., Carvalho et al. 2017CARVALHO AF, BRAND MA, NISGOSKI S, MUÑIZ GIB, FRIEDERICHS G, KUSTER LC & SANTOS TS. 2017. Anatomia do carvão oriundo de cinco espécies comercializadas no estado de Santa Catarina. Rev Cienc Madeira 8(3): 158-167., Muñiz et al. 2016MUÑIZ GIB, CARNEIRO ME, BATISTA R, RODRIGUES F, SCHARDOSIN FZ & NISGOSKI S. 2016. Wood and charcoal identification of five species from the miscellaneous group known in Brazil as “Angelim” by Near-IR and wood anatomy. Maderas. Cienc Tecnol 18(3): 505-522., Gonçalves et al. 2018GONÇALVES TAP, SONSIN-OLIVEIRA J, NISGOSKI S, MARCATI CR, BALLARIN AW & MUÑIZ GIB. 2018. A contribution to the identification of charcoal origin in Brazil III: microscopic identification of 10 Cerrado species. Austr J Bot 66(3): 255-264.). The importance of these analyses has already largely been demonstrated through the many studies investigating landscape and use of plants in different Brazilian ancient cultures (e.g. Scheel-Ybert 2000SCHEEL-YBERT R. 2000. Vegetation stability in the Southeastern Brazilian coastal area from 5500 to 1400 14C yr BP deduced from charcoal analysis. Rev Palaeobot Palynol 110(2): 111-138., Scheel-Ybert et al. 2009SCHEEL-YBERT R, EGGERS S, WESOLOWSKI V, PETRONILHO CC, BOYADJIAN CHC, GASPAR MD, BARBOSA-GUIMARÃES M, TENÓRIO MC & DEBLASIS P. 2009. Subsistence and lifeway of coastal Brazilian moundbuilders. In: Capparelli A, Chevalier A and Piqué R (Eds). La Alimentación en la América Precolombina y Colonial: Una aproximación interdisciplinaria. Treballs d’Etnoarqueologia 7: 37-53., 2014SCHEEL-YBERT R, BEAUCLAIR M & BUARQUE A. 2014. The Forest People: Landscape and firewood use in the Araruama region (Southeastern Brazil) during the late Holocene. Veg Hist Archaeobot 23(2): 97-111., 2016SCHEEL-YBERT R, CAROMANO CF & AZEVEDO LW. 2016. Of Forests and Gardens: Landscape, environment, and cultural choices in Amazonia, Southeastern and Southern Brazil from c. 3000 to 300 cal yrs BP. Cad LEPAARQ (UFPEL) 13: 425-458., Beauclair et al. 2009BEAUCLAIR M, SCHEEL-YBERT R, BIANCHINI GF & BUARQUE A. 2009. Fire and ritual: bark hearths in South-American Tupiguarani mortuary rites. J Archaeol Sci 36: 1409-1415., Bianchini & Scheel-Ybert 2012BIANCHINI GF & SCHEEL-YBERT R. 2012. Plants in a funerary context at the Jabuticabeira-II shellmound (Santa Catarina, Brazil) – feasting or ritual offerings? Sagvntvm Extra 11: 253-258., Bachelet & Scheel-Ybert 2016BACHELET C & SCHEEL-YBERT R. 2016. Landscape and firewood selection in the Santa Elina rock shelter (Mato Grosso, Brazil) during the Holocene. Quat Int 431: 52-60., Azevedo & Scheel-Ybert 2016AZEVEDO LW & SCHEEL-YBERT R. 2016. Economia de combustíveis e tecnologia de fogueiras em sítios Proto-Jê do Sul. Cad LEPAARQ (UFPEL) 13: 401-424., Robinson et al. 2017ROBINSON M, IRIARTE J, SOUZA JG, MAROZZI O & SCHEEL-YBERT R. 2017. Moiety specific wood selection in funerary ritual for the southern proto-Jê. J Archaeol Sci Reports 11: 237-244.), some historical ecology investigations (Patzlaff et al. 2018PATZLAFF RG, OLIVEIRA RR, ARAÚJO DSD & SCHEEL-YBERT R. 2018. Historical charcoal kilns: a method to compare the surrounding vegetation with the vegetation and the anthracological data in forested slopes of Rio de Janeiro Estate, RJ. In: Paradis-Grenouillet S et al. (Org). Charbonnage, charbonniers, charbonnières Confluence de regards autour d’un artisanat méconnu. Aix-en-Provence: Aix Marseille University Press. p 173-178.), but also in efforts towards managing the illegal commerce of native charcoal (Gonçalves & Scheel-Ybert 2012GONÇALVES TAP & SCHEEL-YBERT R. 2012. Contra o carvão ilegal: estudo da anatomia da madeira pode ajudar a salvar florestas nativas. Cienc Hoje 292: 74-76., Scheel-Ybert & Gonçalves 2017SCHEEL-YBERT R & GONÇALVES TAP. 2017. Primeiro atlas antracológico de espécies brasileiras (First anthracological atlas of Brazilian species). Rio de Janeiro: Série Livros Museu Nacional, 234 p.).

By these means, this contribution discloses its importance not only to charcoal-related disciplines, such as anthracology, archeobotany, paleobotany, paleoecology, forest science, and environmental conservation, but also to wood anatomy.

CONCLUSION

This work successfully described the charcoal anatomy of 15 species from 12 families native to different Brazilian phytogeographical domains. This is the first time that charcoal anatomy is described for six of these species (Anemopaegma prostratum DC., Bauhinia forficata Link., Cordia ecalyculata Vell., Copaifera trapezifolia Hayne, Kielmeyera excelsa Cambess., and Myrcia minutiflora Sagot.).

Increasing the knowledge of charcoal and wood anatomy of native tropical species improves taxonomic identification. In consequence, it helps to achieve better paleoenvironmental and paleoethnobotanical interpretations and, ultimately, a better comprehension of sociocultural aspects of past societies. Concurrently, it contributes to a better knowledge of the native flora, to preventing deforestation, and to driving more sustainable charcoal production chains.

ACKNOWLEDGMENTS

This research was supported by funding from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil), the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ, Brazil), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil). R. Scheel-Ybert is a CNPq fellowship holder and a Senior Scientist from FAPERJ. We thank our colleagues Dr Rubia Patzlaff, Dr Caroline Bachelet (PPGArq, Museu Nacional, UFRJ) and Brigiti Bandini who provided insights and expertise that greatly assisted the research, as well as Dr Celia Boyadjian for the English revision. We sincerely thank two anonymous reviewers who critically read the manuscript and suggested valuable improvements.

REFERENCES

  • ALBUQUERQUE AR. 2012. Anatomia comparada do lenho e do carvão aplicada na identificação de 75 espécies da floresta Amazônica, no estado do Pará, Brasil. (Mestrado em Recursos Florestais). ESALQ-USP. (Unpublished).
  • AZEVEDO LW & SCHEEL-YBERT R. 2016. Economia de combustíveis e tecnologia de fogueiras em sítios Proto-Jê do Sul. Cad LEPAARQ (UFPEL) 13: 401-424.
  • BACHELET C & SCHEEL-YBERT R. 2016. Landscape and firewood selection in the Santa Elina rock shelter (Mato Grosso, Brazil) during the Holocene. Quat Int 431: 52-60.
  • BEAUCLAIR M, SCHEEL-YBERT R, BIANCHINI GF & BUARQUE A. 2009. Fire and ritual: bark hearths in South-American Tupiguarani mortuary rites. J Archaeol Sci 36: 1409-1415.
  • BERTI RN & ABBATE MLE. 1992. Legnami tropicali importati in Italia: anatomia e identificazione. Vol. II. America Latina: CNR, Firenze, 406 p.
  • BIANCHINI GF & SCHEEL-YBERT R. 2012. Plants in a funerary context at the Jabuticabeira-II shellmound (Santa Catarina, Brazil) – feasting or ritual offerings? Sagvntvm Extra 11: 253-258.
  • CARVALHO AF, BRAND MA, NISGOSKI S, MUÑIZ GIB, FRIEDERICHS G, KUSTER LC & SANTOS TS. 2017. Anatomia do carvão oriundo de cinco espécies comercializadas no estado de Santa Catarina. Rev Cienc Madeira 8(3): 158-167.
  • CARVALHO AM. 1997. A synopsis of the genus Dalbergia (Fabaceae: Dalbergieae) in Brazil. Brittonia 49(1): 87-109.
  • DÉTIENNE P & JACQUET P. 1983. Atlas d’identification des bois de l’Amazonie et des régions voisines. CTFT, Nogent s/Marne, 640 p.
  • DIAS LEME CL, CARTWRIGHT C & GASSON P. 2010. Anatomical changes to the wood of Mimosa ophthalmocentra and Mimosa tenuiflora when charred at different temperatures. IAWA J 31: 333-351.
  • FORD R. 1989. Paleoethnobotany in American Archaeology. In: Schiffer MB (Ed). Advances in Archaeological Method and Theory 2: 285-333.
  • GONÇALVES TAP, MARCATI CR & SCHEEL-YBERT R. 2012. The effect of carbonization on wood structure of Dalbergia violacea, Stryphnodendron polyphyllum, Tapirira guianensis, Vochysia tucanorum, and Pouteria torta from the Brazilian cerrado. IAWA J 33: 73-90.
  • GONÇALVES TAP & SCHEEL-YBERT R. 2012. Contra o carvão ilegal: estudo da anatomia da madeira pode ajudar a salvar florestas nativas. Cienc Hoje 292: 74-76.
  • GONÇALVES TAP & SCHEEL-YBERT R. 2016. Charcoal anatomy of Brazilian species.I. Anacardiaceae. An Acad Bras Cienc 88: 1711-1725.
  • GONÇALVES TAP, SONSIN-OLIVEIRA J, NISGOSKI S, MARCATI CR, BALLARIN AW & MUÑIZ GIB. 2018. A contribution to the identification of charcoal origin in Brazil III: microscopic identification of 10 Cerrado species. Austr J Bot 66(3): 255-264.
  • IAWA COMMITTEE. 1989. IAWA list of microscopic features for hardwood identification. IAWA Bull 10(3): 219-332.
  • INSIDEWOOD. 2004 onwards. Published on the Internet. In: http://insidewood.lib.ncsu.edu/search [15/05/2017].
    » http://insidewood.lib.ncsu.edu/search
  • JBRJ. 2012. Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. Published on the Internet. In: http://floradobrasil.jbrj.gov.br [15/05/2017].
    » http://floradobrasil.jbrj.gov.br
  • KRIBS DA. 1968. Commercial foreign woods on the American market. Dover Publications: New York, 241 p.
  • MARCATI CR, ANGYALOSSY-ALFONSO V & BENTATI L. 2001. Anatomia comparada do lenho de Copaifera langsdorffii Desf. (Leguminosae-Caesalpinoideae) de floresta e cerradão. Rev Brasil Bot 24(3): 311-320.
  • MATTOS PP, TEIXEIRA LL, SEITZ RA, SALIS SM & BOTOSSO PC. 2003. Anatomia de madeiras do Pantanal Mato-Grossense (Características microscópicas. Embrapa Florestas, Columbo, PR. Embrapa Pantanal: Corumbá, MS Brasil, 182 p.
  • METCALFE CR & CHALK L. 1950. Anatomy of the dicotyledons.Vol 2. Clarendon Press: Oxford, UK, 1500 p.
  • MILLER RB. 2007. Fluorescent woods of the world. A Guide to the More Useful Woods of the World. Forest Products Society: Madison, p 271-305.
  • MILLER RB & WIEMANN MC. 2006. Separation of Dalbergia nigra from Dalbergia spruceana. Research Paper FPL-RP-632. Madison: U.S.D.A., Forest Service, 5 p.
  • MUÑIZ GIB, CARNEIRO ME, BATISTA R, RODRIGUES F, SCHARDOSIN FZ & NISGOSKI S. 2016. Wood and charcoal identification of five species from the miscellaneous group known in Brazil as “Angelim” by Near-IR and wood anatomy. Maderas. Cienc Tecnol 18(3): 505-522.
  • NISGOSKI S, MUÑIZ GIB, FRANÇA RF & BATISTA FRR. 2012. Anatomia do lenho carbonizado de Copaifera cf. langsdorfii Desf. e Dipteryx odorata (Aubl.) Wild Rev Cienc Madeira 3(2): 66-79.
  • NISGOSKI S, MUÑIZ GIB, MORRONE SR, SCHARDOSIN FZ & FRANÇA RF. 2015. NIR and anatomy of wood and charcoal from Moraceae and Euphorbiaceae species. Rev Cienc Madeira 6(3): 183-190.
  • PATZLAFF RG, OLIVEIRA RR, ARAÚJO DSD & SCHEEL-YBERT R. 2018. Historical charcoal kilns: a method to compare the surrounding vegetation with the vegetation and the anthracological data in forested slopes of Rio de Janeiro Estate, RJ. In: Paradis-Grenouillet S et al. (Org). Charbonnage, charbonniers, charbonnières Confluence de regards autour d’un artisanat méconnu. Aix-en-Provence: Aix Marseille University Press. p 173-178.
  • PAULA JE. 1974. Anatomia de Madeira: Guttiferae. Acta Amazonica 4: 27-64.
  • PINTO AA, GIONGO C & SCHEEL-YBERT R. 2017. Anatomia do Lenho Carbonizado de 10 Espécies Nativas da Planície Costeira do Rio Grande do Sul: Subsídio a Pesquisas Arqueobotânicas e Paleoecológicas. Cad LEPAARQ 14(27): 480-511.
  • RICHTER HG & DALLWITZ MJ. 2000. Commercial timbers: descriptions, illustrations, identification, and information retrieval. In English, French, German, and Spanish. Version: 25th June 2009.
  • ROBINSON M, IRIARTE J, SOUZA JG, MAROZZI O & SCHEEL-YBERT R. 2017. Moiety specific wood selection in funerary ritual for the southern proto-Jê. J Archaeol Sci Reports 11: 237-244.
  • SCHEEL-YBERT R. 2000. Vegetation stability in the Southeastern Brazilian coastal area from 5500 to 1400 14C yr BP deduced from charcoal analysis. Rev Palaeobot Palynol 110(2): 111-138.
  • SCHEEL-YBERT R. 2004. Teoria e métodos em antracologia. 1. Considerações teóricas e perspectivas. Arq Museu Nacional 62(1): 3-14.
  • SCHEEL-YBERT R. 2016a. Editorial: Archaeobotany in South America: Landscape, diet, and use of plants in the past. Cad LEPAARQ (UFPEL) 13: 118-130.
  • SCHEEL-YBERT R. 2016b. Charcoal collections of the world. IAWA J 37: 489-505.
  • SCHEEL-YBERT R. 2020. Anthracology (Charcoal Analysis). In: Smith C (org). Encyclopedia of Global Archaeology. 2nd ed., New York: Springer-Verlag, p. 408-418.
  • SCHEEL-YBERT R, BEAUCLAIR M & BUARQUE A. 2014. The Forest People: Landscape and firewood use in the Araruama region (Southeastern Brazil) during the late Holocene. Veg Hist Archaeobot 23(2): 97-111.
  • SCHEEL-YBERT R, CAROMANO CF & AZEVEDO LW. 2016. Of Forests and Gardens: Landscape, environment, and cultural choices in Amazonia, Southeastern and Southern Brazil from c. 3000 to 300 cal yrs BP. Cad LEPAARQ (UFPEL) 13: 425-458.
  • SCHEEL-YBERT R, EGGERS S, WESOLOWSKI V, PETRONILHO CC, BOYADJIAN CHC, GASPAR MD, BARBOSA-GUIMARÃES M, TENÓRIO MC & DEBLASIS P. 2009. Subsistence and lifeway of coastal Brazilian moundbuilders. In: Capparelli A, Chevalier A and Piqué R (Eds). La Alimentación en la América Precolombina y Colonial: Una aproximación interdisciplinaria. Treballs d’Etnoarqueologia 7: 37-53.
  • SCHEEL-YBERT R & GONÇALVES TAP. 2017. Primeiro atlas antracológico de espécies brasileiras (First anthracological atlas of Brazilian species). Rio de Janeiro: Série Livros Museu Nacional, 234 p.
  • SONSIN JO, GASSON P, MACHADO SR, CAUM C & MARCATI CR. 2014. Atlas da diversidade de madeiras do cerrado paulista. Fund Estudos e Pesquisas Agricolas e Florestais, 423 p.
  • SONSIN-OLIVEIRA J. 2006. Variações estruturais do lenho de espécies de cerrado do Estado de São Paulo. (Mestrado em Botânica), UNESP. (Unpublished).
  • TER WELLE BJH & KOEK-NOORMAN J. 1981. Wood anatomy of the Neotropical Melastomataceae. BLUMEA 27: 335-339.
  • TORTORELLI LA. 1956. Maderas y bosques argentinos. Editorial Acme: Buenos Aires, 910 p.

Publication Dates

  • Publication in this collection
    20 Aug 2021
  • Date of issue
    2021

History

  • Received
    22 Aug 2019
  • Accepted
    20 Mar 2020
Academia Brasileira de Ciências Rua Anfilófio de Carvalho, 29, 3º andar, 20030-060 Rio de Janeiro RJ Brasil, Tel: +55 21 3907-8100 - Rio de Janeiro - RJ - Brazil
E-mail: aabc@abc.org.br