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Also consider 1 P as retailer’s full-price at the first period. By substituting 1 P and *
2 P  into (5), we can 

rewrite strategic customer’s surplus  ScU , as follows,

( ) ( )
1, 1

, 0
H

Sc
H L X m

V P
U

V V F D
β

θ β
− =

=  − =
,

The strategic customer is indifferent between buying at the full-price and waiting until the second 
period by hoping to get the product at the lower price, if only if his surplus at the first period be as much as 
it at the second period or:

.

Where [ ]H,ˆ  vwP P∈ . Therefore, 1 ˆP P>  means strategic customer’s surplus at the second period is 
greater than ones at the first period so he wait until second period and otherwise, he buy the product at the 
first period. 

□

Proof	of	Theorem	1:

Consider retailer’s total expected profit function, ( )1 2, , r P P QΠ  in (4). Define 
 as first derivative of retailer’s total expected profit function with respect to 1 P. As 

you can see, ( )1 2, , r P P QΠ  is non-decreasing function on 1 P so optimal full-price is on boundaries. 
In addition, based on the lemma 3, there is a full-price 1 ˆP P=  that strategic customer is indifferent 

about his decision. So if retailer chooses 1 ˆP P> , strategic costumer waits until the second; otherwise he 
buys at the first period. Therefore, in this two-person non-cooperative simultaneous general game, both of 
the retailer and strategic consumer have two strategies where strategic customer’s and retailer’s strategies 
are { } 0,1 β ∈  and { }1 , ˆ

HP P V∈ , respectively. In the other words, clearly, strategic customer has always to 
decide choose about his buying time so { }0,1 β ∈ . 

While, retailer must choose either setting full-price at 1 ˆP P>  or 1 ˆP P≤ , but by notice to the non-de-
creasing property of , we found that his full-price’s set of strategies is { }1 H vˆ ,P P∈ . According 
to the above and by attending to (4), table of players’ pay off could be obtained as table iv.

Based on the first part of theorem 1, the perfect Nash equilibrium (Ne) strategy is { }* *
1 , 0HP V β= = , so 

it must satisfy the Nash equilibrium (NE) conditions. In the other words, according to the Nash equilibrium 
(Ne) definition in two-person non-cooperative simultaneous general game, we know that the strategy 
profile *y S∈  is a Nash equilibrium if no unilateral deviation in strategy by any single player is profitable 
for that player, that is

( ) ( )* * *, : , , i i i i i i i ii y S f y y f y y− −∀ ∈ ≥

Where  iS  and  iy  are the strategy set and profile of player i, and ( ) i if y  is the payoff function for  i iy S∈ . 
Also,  iy−  is a strategy profile of all players except for player i.

Therefore, as you can see at the table iv, we have,
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Then, the strategy { }* *
1 , 0HP V β= =  is a perfect Nash equilibrium (NE) strategy which is also unique 

because there is no strategy to satisfy Nash equilibrium (Ne) conditions. Therefore, the retailer’s equilibrium 
total expected profit function and strategic customers’ equilibrium surplus are equal to,

TABLE iv 
Players’ pay off under their different strategies.

Strategic customer

0β =1β =

1
ˆP P=

Re
ta

ile
r

1  HP V=

Re
ta

ile
r

1 ( )1λ α= −
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( ) ( )Sc H L X mU V V F Dθ= − .

□

Proof	of	Theorem	2:

The retailer’s total expected profit under the equilibrium pricing strategy is

First derivative of this expression with respect to Q yields

( ) ( ) ( ) ( ) ( )/  1  0,r L X m H X H X u wd Q dQ V F D V F Q V F D Pθ θΠ = + + − − =  
(A-1)

1. According to theorem 2 definitions, we know that  . 
By substituting these expressions in (A-1), we have

( ) ( )/ 0,r wd Q dQ Z Q PΠ = − =  (A-2)

Furthermore, it is obvious that the functions ( ) X mF D , ( ) XF Q  and ( ) X uF D  are continues and because 
of the continuity of continues functions’ summation, ( ) Z Q  is continues. Therefore, according to 
extreme value theorem or Bolzano–Weierstrass theorem (Rusnock & kerr-Lawson 2005), ( ) Z Q  has 
at least a maximum and minimum value in the closed and bounded interval [ ] 0, MaxQ . In the other 
words, there exist some points [ ], 0, L H MaxQ Q Q∈  such that for all [ ] 0, MaxQ Q∈ ,

( )* **QZ Z Z≤ ≤

where ( )*
LZ Z Q=  and ( )**

HZ Z Q= .

2. a. suppose ( )*,  ,  wP C Max C Z ∈ . Because wP  is always lower than or equal to ( )QZ , so 
( ) / 0rd Q dQΠ ≥ . This leads to ( )r QΠ  be a non-decreasing function of Q and gets the maximum 

value in its upperbound, MaxQ Q= .

b. Suppose ( )( )* **,  ,  wP Max C Z Z∈ . By attending to ( ) */ 0
L

r wQ Q
d Q dQ Z P

=
Π = − <  and ( ) **/ 0

H
r wQ Q

d Q dQ Z P
=

Π = − >
( ) **/ 0

H
r wQ Q

d Q dQ Z P
=

Π = − > , so ( ) /rd Q dQΠ  has certainly at least one root or encompasses at least one 
local maximum. To demonstrate quasi-concavity of ( )r QΠ  we must show that ( ) /rd Q dQΠ  has 
a unique root or in the other words, ( ) /rd Q dQΠ  has at most one local optimum (because of its 
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asymptotic behavior). Infact, it means that ( ) /rd Q dQΠ  is either quasi-concave or quasi-convex, 
and ( )2 2/rd Q dQΠ  will include at most one interior zero. Therefore,

( )2 2/rd Q dQΠ = ( ) ( ) ( ) ( )2 /  1 /L X m H X H X uV f D V f Q V f Dλ θ θ α− − − ,

By putting above expression equal to zero and after simplification, we could achieve the local 
optimum,

( ) ( ) ( ) ( ) ( )2 /  / 1 / 0,L X m X u H X X u HV f D f D V f Q f D Vλ θ θ α− − − =  (A-3)

According to the mSLR assumption, Assume that ( ) ( ) /X Xf x f xλ  is weakly increasing in x (The 
proof is identical if ( ) ( ) /X Xf x f xλ  is weakly decreasing in  x). So, in (A-3), the first term is positive 
and increasing in Q. Similarly, the second term is negative and increasing in Q and the third term 
is constant. Each term on the right hand side of (A-3) is increasing in Q, and if a solution to the 
equation exists, it is unique. This implies ( ) /rd Q dQΠ  has at most one interior optimum, and 
consequently ( )r QΠ  is quasiconcave in Q. then, Q is determined by the unique solution to the first-
order derivatives’ equation of ( ) r QΠ ,

( ) ( )/ 0r wd Q dQ Z Q PΠ = − = .

c. Suppose ** , )wP Z∈ ∞ . Because wP  is always greater than or equal to ( ) QZ , so ( ) / 0rd Q dQΠ ≤ . 
This implies ( )r QΠ  is a non-increasing function of Q and gets the maximum value in its lowerbound,
 0Q = .

□

Proof	of	Theorem	3:

The supplier’s total profit is equal to,

( ) ( ) ( ) ,w w w wP P C g PΠ = −  (A-4)

Where ( )wg P  is decreasing ( ( ) / 0w wdg P dP < ) with reversible function of ( )1 .g − . Because max 0 Q Q≤ ≤ , 
so ( ) ( ) ( )1 1 1

maxQ Q 0g g g− − −≤ ≤  or simply, ( ), L H
w w wMax C P P P≤ ≤ .

In the other hand, the derivative of ( )w wPΠ  with respect to wP  can be written as

( ) ( ) ( ) ( )/ / 0,w w w w w w wd P dP g P P C dg P dPΠ = + − =  
(A-5)

By attending to the ( ) / 0
w

w w w MaxP C
d P dP Q

=
Π = >  and

( ) ( ) ( )( ) / / 0H H
w w w w

H
w w w w w wP P P P

d P dP P C dg P dP
= =

Π = − < ,

It is apparent that ( ) /w w wd P dPΠ  possesses at least one root. Furthermore, if ( )wg P  be a concave 
function or ( )2 2 / 0w wd g P dP < , then ( ) /w wdg P dP  will be decreasing function. Now by notice to (A-5), we 
have,

( ) ( ) ( ) /w w w wg P P C dg P dP= − − ,
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As observe, the left-hand-side is decreasing (because ( )wg P  is decreasing function), and the right-
hand-side is increasing in wP  (because ( ) /w wdg P dP  is decreasing function), so the first-order-condition has 
a unique solution. Therefore, ( )w wPΠ  is quasiconcave and has a uniquximizer and could be calculated by 
solving

( ) / 0w w wd P dPΠ = .

Otherwise, if ( )wg P  does not be a concave function, the first-order-condition of ( )w wPΠ  might 
have a unique solution but certainly has at least one solution and if it happens, we must calculate 
the value of ( )w wPΠ . in all critical points and boundaries, then choose the point with maximum objective 
value as optimal wholesale price.

Now, if ( )* , , L
w wP C Max C P ∈ , then *

MaxQ Q=  and ( )* , L
w wP Max C P= . If ( ) ( )( )* , , ,L H

w w H wP Max C P Min V P∈ , 
then ( )* *

wQ g P= , finally if ( )* , , )H
w H wP Min V P∈ ∞ , then * 0Q =  and ( )* , H

w H wP Min V P= .
□


