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ABSTRACT

We briefly review the present status of nonextensive statistical mechanics. We focus on (i) the cen-

tral equations of the formalism, (ii) the most recent applications in physics and other sciences, (iii)

thea priori determination (from microscopic dynamics) of the entropic indexq for two important

classes of physical systems, namely low-dimensional maps (both dissipative and conservative)

and long-range interacting many-body hamiltonian classical systems.
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1 CENTRAL EQUATIONS OF NONEXTENSIVE STATISTICAL MECHANICS

Nonextensive statistical mechanics and thermodynamics were introduced in 1988 [1], and further

developed in 1991 [2] and 1998 [3], with the aim of extending the domain of applicability of

statistical mechanical procedures to systems where Boltzmann-Gibbs (BG) thermal statistics and

standard thermodynamics present serious mathematical difficulties or just plainly fail. Indeed, a

rapidly increasing number of systems are pointed out in the literature for which the usual functions

appearing in BG statistics appear to be violated. Some of these cases are satisfactorily handled

within the formalism we are here addressing (see [4] for reviews and [5] for a regularly updated

bibliography which includes crucial contributions and clarifications that many scientists have given

along the years). Let us start by just reminding the central equations.

First of all, the exponential functionex is generalized into theq-exponential function

ex
q ≡ [1 + (1 − q)x] 1

1−q (q ∈ R) . (1)
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We can trivially verify that this (nonnegative and monotonically increasing) function (i) forq → 1

yields ex
1 = ex(∀ x), (ii) for q > 1, vanishes as a power-law whenx → −∞ and diverges at

x = 1/(q − 1), and (iii) for q < 1, has a cutoff atx = −1/(1 − q), below which it is defined to

be identically zero. Ifx → 0 we haveex
q ∼ 1 + x(∀ q).

The inverse function of theq-exponential is theq-logarithm, defined as follows:

lnq x ≡ x1−q − 1

1 − q
(q ∈ R) . (2)

Of course ln1 x = ln x(∀ x). If x → 1 we have lnq x ∼ x − 1(∀ q).

The nonextensive entropic form we postulate is

Sq = k
1 − ∑W

i=1 p
q

i

q − 1

( W∑
i=1

pi = 1; q ∈ R
)

, (3)

whereW is the total number of microscopic configurations, whose probabilities are{pi}. Without

loss of generality we shall from now on assumek = 1. We can verify that, forq → 1, this

entropy reproduces the usual Boltzmann-Gibbs-Shannon one, namelyS1 = − ∑W
i=1 pi ln pi . The

continuous and the quantum expressions ofSq are respectively given by

Sq = 1 − ∫
dx[p(x)]q
q − 1

(4)

and

Sq = 1 − T rρq

q − 1
, (5)

whereρ is the matrix density. Unless specifically declared in what follows, we shall be using the

form of Eq. (3). It is easy to verify that all its generic properties can be straightforwardly adapted

to both the continuous and quantum cases.

Sq can be written as

Sq =
〈

lnq

1

pi

〉
, (6)

where theexpectation value 〈(. . . )〉 ≡ ∑W
i=1 pi(. . . ). It can also be written as

Sq = 〈− lnq pi〉q , (7)

where theunnormalized q-expectation value is defined to be〈(. . . )〉q ≡ ∑W
i=1 p

q

i (. . . ). Of course

〈(. . . )〉1 = 〈(. . . )〉. This is a good point for defining also thenormalized q-expectation value

〈〈(. . . )〉〉q ≡
∑W

i=1 p
q

i (. . . )∑W
i=1 p

q

i

, (8)
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which naturally emerges in the formalism. We verify trivially that〈〈(. . . )〉〉1 = 〈(. . . )〉1 = 〈(. . . )〉,
and also that〈〈(. . . )〉〉q = 〈(. . . )〉q/〈1〉q .

If A andB are two independent systems (i.e.,pA+B
ij = pA

i pB
j ∀ (i, j)), then we have that

Sq(A + B) = Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B) . (9)

It is from this property that the namenonextensive statistical mechanics was coined. The cases

q < 1 andq > 1 respectively correspond tosuperextensivity andsubextensivity of Sq since in all

casesSq ≥ 0.

At equiprobability, i.e.,pi = 1/W , we obtain

Sq = lnq W , (10)

which is the basis for the microcanonical ensemble.

For thethermal equilibrium corresponding to the canonical ensemble of a Hamiltonian system,

we optimizeSq with the constraints
∑W

i=1 pi = 1 and〈〈εi〉〉q = Uq , where{εi} are the eigenvalues

of the Hamiltonian of the system, andUq is the generalized internal energy. We obtain [3]

pi = e
−β(εi−Uq)
q

Zq

∝ 1[
1 + (q − 1)β(εi − Uq)

] 1
q−1

∝ 1[
1 + (q − 1)β ′εi

] 1
q−1

, (11)

whereβ is the Lagrange parameter,Zq ≡ ∑W
j=q e

−β(εj −Uq)
q andβ ′ a well defined function ofβ.

For q = 1 we recover the celebrated BG weight. Whenβ > 0 and the energyεi increases, the

probability decays like a power law forq > 1 and exhibits a cutoff forq < 1.

Analogously, if we optimizeSq as given by Eq. (4) with the constraints
∫

dxp(x) = 1 and

〈〈x2〉〉q = σ 2(σ > 0), we obtain theq-generalization of the Gaussian distribution, namely [6]

pq(x) = e
−β̄x2

q∫
dye

−β̄y2

q

∝ 1

[1 + (q − 1)β̄x2] 1
q−1

(q < 3) , (12)

whereβ̄ can be straightforward and explicitly related toσ . The variance of these distributions is

finite if q < 5/3 and diverges if 5/3 < q < 3. Forq = 2 we have the Lorentzian distribution.

For q ≥ 3 the function is not normalizable, and therefore is unacceptable as a distribution of

probabilities.

Let us now address typical time dependences. Let us assume thatξ(t) is a quantity characteriz-

ing an exponential behavior and satisfyingξ(0) = 1. Such is the typical case for the sensitivity to the

initial conditions of a one-dimensional chaotic system, whereξ(t) ≡ lim�x(0)→0[�x(t)/�x(0)],
where�x(t) is the discrepancy at timet of two trajectories which, att = 0, started atx(0) and at

x ′(0). Another example is a population which relaxes to zero. IfN(t) is the number of elements,

then we can defineξ(t) ≡ N(t)/N(0). The quantityξ(t) monotonically increases in our first
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example (sensitivity), whereas it decreases in the second one (relaxation). The basic equation that

ξ satisfies is generically

ξ̇ = λ1ξ , (13)

henceξ(t) = eλ1t . In our example of the chaotic system,λ1 is the Lyapunov exponent. In our

population example, we haveλ1 ≡ −1/τ1, whereτ1 is the relaxation time. What happens in the

marginal caseλ1 = 0? Typically we have

ξ̇ = λqξ
q , (14)

hence

ξ = e
λq t
q = [

1 + (1 − q)λqt
] 1

1−q = 1[
1 + (q − 1)(−λq)t

] 1
q−1

. (15)

This quantity monotonically increases ifλq > 0 andq < 1, and decreases ifλq ≡ −1/τq < 0 and

q > 1. In both cases it does so as a power law, instead of exponentially. In the limitt → 0, we

haveξ ∼ 1 + λqt ( ∀q).

A more general situation might occur when bothλ1 andλq are different from zero. In such

case, many phenomena will be described by the following differential equation:

ξ̇ = λ1ξ + (λq − λ1)ξ
q , (16)

hence

ξ =
[
1 − λq

λ1
+ λq

λ1
e(1−q)λ1t

] 1
1−q

. (17)

If q < 1 and 0< λ1 < < λq , ξ increases linearly witht for small times, ast
1

1−q for intermediate

times, and likeeλ1t for large times. Ifq > 0 and 0> λ1 > > λq , ξ decreases linearly witht for

small times, as 1/t
1

q−1 for intermediate times, and likee−|λ1|t for large times.

2 APPLICATIONS IN AND OUT FROM EQUILIBRIUM

A considerable amount of applications and connections have been advanced in the literature using,

in a variety of manners, the above formalism. They concern physics, astrophysics, geophysics,

chemistry, biology, mathematics, economics, linguistics, engineering, medicine, physiology, cog-

nitive psychology, sports and others [5]. It seems appropriate to say that the fact that the range

of applications is so wide probably is deeply related to and reflects the ubiquity of self-organized

criticality [7], fractal structures [8] and, ultimately, power laws in nature. In particular, a natural

arena for this statistical mechanics appears to be the so calledcomplex systems [9].

We shall briefly review here four recent applications, namely fully developed turbulence [10-

12], hadronic jets produced by electron-positron annihilation [13], motion ofHydra viridissima

[14], and quantitative linguistics [15].
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Fully developed turbulence:

As early as in 1996 Boghosian made the first application of the present formalism to turbulence [16].

That was for plasma. What we shall instead focus on here is fully developed turbulence in normal

fluids. Ramos et al advanced in 1999 [10] the possibility of nonextensive statistical mechanics

being useful for such systems. The idea was since then further developed by Beck [11] and by the

Arimitsu’s [12], basically simultaneous and independently. They proposed theories within which

the probability distribution of the velocity differences and related quantities are deduced from basic

considerations. We present in Fig. 1 the comparison of Beck’s theoretical results with recent high

precision experimental data for Lagrangian and Eulerian turbulences [17]. In Fig. 2 we show an

analogous comparison between Arimitsu’s theoretical results and recent computer experimental

data.
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Fig. 1 – The distributions of differences of velocity in two different experi-

ments of fluid turbulence. The solid lines correspond to Beck’s theory [17].

Hadronic jets:

High energy frontal collisions of electron and positron annihilate both and produce relativistic

hadronic jets. The distribution of the tranverse momenta of these jets admits, as advanced by

Fermi, Feynman, Hagedorn and others, a thermostatistical theoretical approach. Hagedorn’s 1965

theory was q-extended by Bediaga et al in 1999. Their results [13], as well as related ones by Beck

[13], compare quite well with the available CERN experimental data, as can be seen in Fig. 3. As

important as this is the fact that both Bediaga et al and Beck theories recover a crucial feature of

Hagedorn’s scenario, namely that the temperature to be associated with the distributions should

not depend on the collision energy.
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Fig. 2 – The distributions of differences of velocity in numerical ex-

periments of fluid turbulence, for typical values ofr/η. The solid lines

correspond to the Arimitsu’s theory (see [18] for details). The entire set

of theoretical curves has been obtained with a single valueqsen < 1.

Hydra viridissima:

The motion of cell aggregates ofHydra viridissima in physiological solution was studied by Upad-

hyaya et al [14]. The strongly nonmaxwellian distribution of velocities is quite well fitted with

q � 1.5: See Fig. 4. They also carried diffusion measurements and verified that diffusion is

anomalous. Under the assumption that it is of the correlated type addressed in [19], they obtained

once againq � 1.5: See Fig. 5. In other words, two different experiments of motion were fitted

by one and the same value forq.
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Fig. 3 – Distributions of transverse momenta of hadronic jets produced in

electron-positron annihilation. The solid lines correspond to the Bediaga-

Curado-Miranda theory [13]. To each curve, a different value ofq (in the range

(1, 1.2)) is associated. The dashed line corresponds to Hagedorn’s theory using

BG statistics(q = 1).

Linguistics:

The frequencyp of words used in a text (say a book or a set of books of one or more authors)

as a function of their rankr roughly follows the so calledZipf law, namelyp ∝ 1/r. This law

was improved by Mandelbrot in the formp ∝ 1/(a + r)γ . This form fits better real data and

is sometimes called theZipf-Mandelbrot law. This law precisely is Eq. (15) with the notation

(t, ξ) ≡ (r, p) (or equivalently Eq. (11) where the energy plays the role of the word rank), as

first argued by Denisov in 1997 [20]. However, although quite faithful at low and intermediate

word ranks, the Zipf-Mandelbrot law fails at high ranks. This point has been addressed recently

by Montemurro [15]: See Fig. 6, where results are shown from well known texts in English,

Greek, Italian and Spanish, from authors of very different historical periods and literary styles (all

reasonably well fitted by usingq � 1.9 henceγ = 1/(q − 1) � 1.1). Montemurro has shown

that the fittings are all sensibly improved by using the present Eq. (17) instead of Eq. (15). The
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Fig. 4 – Anomalous diffusion measurements of cells ofHydra

viridissima [14]. The dot-dashed line corresponds to normal dif-

fusion (q = 1), whereas the solid line corresponds to anomalous

superdiffusion associated withq = 1.5.
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Fig. 5 – Distribution of velocities of cells ofHydra viridissima [14].

The solid line corresponds toq = 1.5, thus coinciding with the value

of Fig. 4.
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agreement obtained is illustrated with a large set of books by Dickens as shown in Fig. 7. In other

words, at large values of the word rank a crossover occurs fromq � 1.9 to q � 1. The reason

for this interesting phenomenon is unknown. As a plausible hypothesis, we would like to advance

that it might be related to the fact that most authors possibly use the very rare words in a manner

which reflects their relatively poor knowledge of their exact meaning. This attitude could make

those words to be used slightly uncorrelated with the context within which they are placed. It is

however clear that this phenomenon is a very subtle one, and its full elucidation would presumably

require very sophisticated analysis.
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 La Divina Comedia (in Italian, N=101911, V=12865)
 Decameron (english translation, N=341661, V=14297)
 William Shakespeare (36 plays, N=890611, V=23182)
 Don Quijote (in Spanish, N=384590, V=23231)
 Ulysses (N=140860, V=19495)
 Dickens (56 books, N=5624548, V=44703)
 Iliad (in Greek, N=127393, V=20067) 
 Large Corpus: 2750 books in English

            (N=187832312, V=507369)

Fig. 6 – Zipf plot (frequency of words with rankr) associated with various books as indicated

on the figure (N is the total number of words;V is the vocabulary, i.e., the number of different

words). See details in [15].

3 A PRIORI DETERMINATION OF THE ENTROPIC INDEX q

Physical bounds to the admissible values ofq were first discussed as early as 1993 by Plastino and

Plastino [21] (for self-gravitating systems), and since then by many others. However, the strict aim

of the present Section is how is to be determined the value ofq to be associated with a specific

system whose microscopic (or mesoscopic) dynamics is exactly known. This is to say, how the

knowledge of the rules that provide the (continuous or discrete) time evolution of the system can
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A 0.07124 ±0.00003
λ 0.40584 ±0.00043
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 Dickens, 56 complete books
          Number of words: 5624548
          Vocabulary suze: 44703

 fit (full range)

Fig. 7 – Zipf plot associated with 56 books by Charles Dickens. The solid line corresponds

to q = 1.9, and the crossover to theq = 1 regime at high rankr is visible on the figure. See

details in [15].

be used in order to determine without ambiguity the appropriate value(s) ofq for that system. This

crucial question must be answered for the present proposal to be a complete theory, in the sense

that it is in principle able to predict the results to be expected in all types of experiments with

well defined systems. This question has by now been answered in several important classes of

systems. We shall briefly review here two of them, namely low-dimensional maps and long-range

many-body classical Hamiltonian systems.

A. Low-dimensional maps

We shall focus on one- and two-dimensional maps. The one-dimensional maps necessarily are dis-

sipative. The two-dimensional ones can be either dissipative or conservative, but we shall primarily

address the latter. Indeed, on one hand the dissipative two-dimensional maps are dynamically not

so different from the one-dimensional ones. On the other hand, two-dimensional conservative maps

provide us anavant premiere of Hamiltonian systems.
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One-dimensional maps:

We consider here one-dimensional dissipative maps of the type

xt+1 = f (xt ; a, z) (t = 0, 1, 2, . . . ; xt ∈ [xmin, xmax]) , (18)

wherea ∈ R is a control parameter such that when it increases for fixedz, it makes the map

to become chaotic (we noteac the smallest value ofa above which the system can be chaotic;

z ∈ R is another control parameter which differs essentially froma in the sense thatz controls

the universality class of the chaotic attractor emerging ata = ac(z); the functionf is such that

chaotic and nonchaotic behaviors are possible for the variablex, depending on the values of(a, z).

A paradigmatic such map is the so calledz-logistic map, defined as

xt+1 = 1 − a|xt |z (t = 0, 1, 2, . . . ; xt ∈ [−1, 1]) , (19)

with a ∈ (0, 2] andz > 1. The critical valueac(z) (chaos threshold or edge of chaos) monotonically

increases from 1 to 2 whenz increases from 1 to infinity;ac(2) = 1.401155. . . . For z = 2 this

map is, as well known, isomorphic toXt+1 ∝ Xt(1 − Xt). The z-logistic maps and several

others have already been studied [22] within the nonextensive scenario. We briefly review here

their main properties. Most of these properties have been found heuristically, and no theorems or

rigorous results are available. Consequently, we are unable to precisely specify how generic are

the properties we are going to describe. We know, however, that wide classes of maps do satisfy

them.

Let us first address the sensitivity to the initial conditions. For all values ofa for which the

Lyapunov exponentλ1 is nonzero we verify thatq = 1, i.e.,ξ(t) = eλ1t , with λ1 < 0 for most

values ofa < ac, andλ1 > 0 for most values ofa > ac. However, for the infinite number of values

of a for whichλ1 = 0 we verify thatq 
= 1. More precisely, for values ofa such as those for which

bifurcations occur between finite cycle attractors of say thez-logistic map, we verify the validity

of Eq. (15) withq > 1 andλq < 0 (this has been very recently proved [23]). Fora = ac(z)

we verify thatξ(t) exhibits a complex behavior which has, nevertheless, a simple upper bound

which satisfies Eq. (15) withq < 1 (from now on notedqsen(z), where the subindexsen stands for

sensitivity) andλq(z) > 0 (also this has been very recently proved [24]) . For the universality class

of the z-logistic map we verify thatqsen monotonically increases from minus infinity to a value

slightly below unity, whenz increases from 1 to infinity (qsen(2) = 0.2445. . . ). For thez-cercle

and other maps we verify similar behaviors.

Let us now address the attractor inx spacea = ac(z). Its anomalous geometry can be usefully

characterized by the so calledmultifractal function f (α, z) which typically is defined in the interval

αmin(z) ≤ α ≤max (z), and whose maximal value is thefractal or Hausdorff dimensiondf (z). For

thez-logistic map universality class we havedf (z) < 1, whereas for thez-circle map universality

class we havedf (z) = 1( ∀z). In all the cases we have checked, we verify a remarkable scaling
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law, namely [25]

1

1 − qsen(z)
= 1

αmin(z)
− 1

αmax(z)
( ∀z) . (20)

This relation has purely geometrical quantities at its right hand member, and a dynamical quantity

at its left hand member. It can also be shown that

1

1 − qsen(z)
= (z − 1)

ln αF

ln b
( ∀z) , (21)

whereαF is one of the two well known Feigenbaum constants, andb is the attractor scaling (b = 2

for period-doubling bifurcations;b = 2/(
√

5 − 1) for cercle maps).

Let us now address the entropy productiondSq(t)/dt . We first make a partition of the interval

[xmin, xmax] into W nonoverlaping little windows. We place (randomly or not) inside one of those

W windows a large numberN of initial conditions, and run the mapt times for each of these points.

We generically verify that theN points spread into the windows, in such a way that we have the

set{Ni}(t) (with
∑W

i=1 Ni(t) = N , ∀t). With these numbers we can define the set of probabilities

{pi(t)} wherepi(t) ≡ Ni(t)/N ( ∀i). We then choose a value forq and calculateSq(t) by using Eq.

(3). We then make an average〈Sq〉(t) over a few or many initial windows (see [22,26] for details),

and finally evaluate numerically limt→∞ limW→∞ limN→∞〈Sq〉(t)/t . We verify a very interesting

result [26], namely that this limit isfinite only for q = qsen(z); it diverges for allq < qsen(z) and

vanishes for allq > qsen(z). We shall note this limitKq and constitutes a naturalq-generalization

of the Kolmogorov-Sinai entropy. Summarizing,

Kqsen
≡ lim

t→∞ lim
W→∞ lim

N→∞
〈Sqsen

〉(t)
t

. (22)

It is easy to verify, wheneverλ1 > 0, thatqsen(z) = 1 and that the Pesin identity holds, i.e.,

K1 = λ1. A fascinating open question constitutes to find, wheneverλ1 = 0 (more specifically for

a = ac(z)), under what circumstances the conjectureKqsen
= λqsen

could be true,λqsen
being the

coefficient appearing in Eq. (15) forq = qsen. We would then have the generalization of the Pesin

identity.

Let us next address another aspect [27] concerning the edge of chaosac(z). We spread now, at

t = 0, theN points uniformly within the entire[xmin, xmax] interval, i.e., overall theW windows,

and follow, as function of timet , the shrinking of the numberW(t) of windows which contain

at least one point (disappearence of the Lebesgue measure on thex-axis); W(0) = W . It can

be verified that, for the sequence limW→∞ limN→∞, we asymptotically haveW(t) ∝ 1/t
1

qrel (z)−1 ,

whereqeq(z) > 1 (the subindexrel stands forrelaxation). The entropic indexqrel monotonically

increases whenz increases from 1 to infinity; also, within some range it is verified [27] that

1/[qrel(z)− 1] ∝ [1− df (z)]2. We shall now advance a recently established [28] relation between

qrel andqsen.

Let us go back to the procedure when, att = 0, only one among theW windows is populated.

That single window is chosen to be that which makesSqsen
(t) to achieve the highest value ast
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increases. To be more preciseSqsen
(0) = 0 and 0< Sqsen

(∞) < lnqsen
W . While t increases,

there are many windows for whichSqsen
(t) overshoots aboveSqsen

(∞). We choose the window

for which the overshooting is the most pronounced. AfterSqsen
(t) achieves this peak, it relaxes

slowly towardsSqsen
(∞). It does so as 1/t

1
qrel (z,W)−1 , whereqrel(z, W) approaches its limiting value

qrel(z, ∞) while W diverges. The remarkable fact is thatqrel(z, ∞) = qrel(z)! More than this, the

approach is asymptotically as follows:

qrel(z) − qrel(z, W) ∝ 1

Wqsen(z)
. (23)

This relation is a remarkable connection between the mixing properties, the equilibration (or re-

laxing) ones, and the degree of graining (from coarse to fine graining whileW increases). We

may also say that in some sense Eq. (23) provides a connection between the Boltzmannian and the

Gibbsian approaches to statistical mechanics. Indeed, the concept ofqsen is kind of natural within

a typical Boltzmann scenario where individual trajectories in phase space are the ‘‘protagonists of

the game’’, whereasqrel is kind of natural within a typical Gibbs scenario where the entire phase

space is to be in principle occupied. Before taking into Eq. (23) theqsen = qrel = 1 particular

case (i.e., the BG-like case), some adaptation is obviously needed; as written in Eq. (23), it is valid

only for qsen < 1 andqrel > 1.

Two-dimensional maps:

We consider here two-dimensional conservative maps of the type

xt+1 = fx(xt , yt ; a, z)

yt+1 = fy(xt , yt ; a, z)
(24)

wherext ∈ [xmin, xmax] and yt ∈ [ymin, ymax] with t = 0, 1, 2, . . . ; the control parameterz

characterizes, as for the one-dimensional maps we considered above, the universality class; the

control parametera ≥ 0 and we assume that, whilea increases from zero to its maximum value,

the nonnegative Lyapunov exponentλ1 monotonically increases from zero to its maximum value.

Since the map is conservative (i.e.,|∂(xt+1, yt+1)/∂(xt , yt )| = 1), the other Lyapunov exponent is

−λ1. A paradigmatic such map is the so calledstandard map, defined as follows

yt+1 = yt + a

2π
sin(2πxt) (mod 1)

xt+1 = yt+1 + xt = yt + a

2π
sin(2πxt) + xt (mod 1)

(25)

as well as itsz-generalization [29], defined as follows

yt+1 = yt + a

2π
sin(2πxt)| sin(2πxt)|z−1 (mod 1)

xt+1 = yt+1 + x1 = yt + a

2π
sin(2πxt)| sin(2πxt)|z−1 + xt (mod 1) ,

(26)
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wherez ∈ R.

Some (not clearly characterized yet) classes of such maps exhibit for the entropy production

dSq(t)/dt a behavior which closely follows the crossover behavior associated with Eq. (17). Let

us be more precise. We first partition the accessible(x, y) phase inW nonoverlaping little areas

(for exampleW little squares), and put a large numberN of initial conditions inside one of those

areas. As before, we follow along time the set of probabilities{pi}, with which we calculateSq(t)

for an arbitrarily chosen value ofq. We then average over the entire accessible phase space and

obtain〈Sq〉(t). Finally we numerically approach the quantitySq(t) ≡ limW→∞ limN→∞〈Sq〉(t).
For large values ofa, we verify [30] thatS1(t) asymptotically increases linearly witht , as

expected from the fact thatλ1(a) > 0, in agreement with Pesin identity. However, an interesting

phenomenon occurs for increasingly smalla, hence increasingly smallλ1. For smallt (say 0<

t < < t1(a, z), Sq(t) is linear witht for q = 0, and acquires an infinite slope for anyq < 0. For

intermediatet (sayt1(a, z) < < t2(a, z), Sq(t) is linear witht for q = qsen(z) < 1, acquires an

infinite slope forq < qsen(z) and acquires a vanishing slope forq > qsen(z). For larget (say

t > > t2(a, z)), Sq(t) is linear witht for q = 1, acquires an infinite slope forq < 1 and acquires

a vanishing slope forq > 1. The characteristic timest1(a, z) andt2(a, z) respectively correspond

to the [q = 0] → [q = qsen(z)] and [q = qsen(z)] → [q = 1] crossovers. The remarkable

feature is that, in the limita → 0, t1(a, z) remains finite whereast2(a, z) diverges. In other

words, for asymptotically small values ofa, the time evolution ofSq(t) is, excepting for an initial

transient, basically characterized byqsen(z) < 1. This fact opens the possibility for something

similar to occur for Hamiltonian classical systems for which the Lyapunov spectrum tends to zero.

This is precisely what occurs when the size of the system increases in the presence of long-range

interactions, as we shall see in the next Subsection. Before closing this subsection, let us mention

that studies focusing onqrel for conservative maps are in progress.

B. Long-range many-body classical hamiltonian systems

From the thermodynamical viewpoint it is interesting to classify the two-body interactions (and

analogously, of course, the many-body interactions). According to their behavior near the origin,

i.e., for r → 0, potentials could be classified ascollapsing andnoncollapsing. Collapsing are

those which exhibit a minimum atr = 0. This minimum can be infinitely deep, i.e., the potential

can be singular atr = 0; such is the case of attractive potentials which asymptotically behave

as−1/rν with ν > 0 (e.g., Newtonian gravitation, henceν = 1). Alternatively, the potential at

this r = 0 minimum can be finite, as it is the case of those which behave as−a + br−ν with

a > 0, b > 0 andν < 0. Collapsing potentials, especially those of the singular type, are known to

exhibit a variety of thermodynamical anomalies.Noncollapsing potentials are those which exhibit

a minimum either at a finite distance (e.g., the Lennard-Jones one, or the hard spheres model or

any other model having a cutoff at a finite distancer0) or at infinity (e.g., Coulombian repulsion).

Potentials can be also classified according to their behavior atr → ∞. We can divide them
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into short- andlong-range interactions. Short-range interactions are those whose associated force

quickly decreases with distance, for example potentials which exponentially decrease with distance,

or classical potentials of the type−1/rα with α > d, d being the space dimension where the system

is defined. For classical systems, thermodynamically speaking,short-range interactions correspond

to the potentials which are integrable at infinity [33], andlong-range interactions correspond to

those which arenot integrable in that limit, such as those increasing like 1/rα with α < 0 (which

belong to theconfining class of potentials, i.e., those which make escape impossible), or those

like −1/rα with 0 ≤ α/d ≤ 1 (which belong to thenonconfining class of potentials, i.e., those

which make escape possible). Long-range interactions, especially those of the nonconfining type,

are also known to induce a variety of thermodynamical anomalies. From the present standpoint

a particularly complex potential is Newtonian gravitation (corresponding toα = 1 andd = 3).

Indeed, it is both singular at the origin, and long-ranged since 0< α/d = 1/3 < 1.

In this Section we address an important case, namely that of nonsingular attractive long-range

two-body interactions in ad-dimensionalN -body classical hamiltonian system withN >> 1. Such

systems are being actively addressed in the literature by many authors (see [31,32] and references

therein). As an illustration of the thermodynamical anomalies that long-range interactions produce,

we shall focus on thed-dimensional simple hypercubic lattice with periodic boundary conditions,

each site of which is occupied by a classical planar rotator. All rotators are coupled two by two as

indicated in the following Hamiltonian:

H =
N∑

i=1

L2
i

2
+

∑
i 
=j

1 − cos(θi − θj )

rα
ij

(θi ∈ [0, 2π ]; α ≥ 0) . (27)

The distance (in crystal units) between any two sites is the shortest one taking into account the

periodicity of the lattice. Ford = 1, it is rij = 1, 2, 3, . . . ; for d = 2, it is rij1,
√

2, 2, . . . ; for

d = 3, it isrij = 1,
√

2,
√

3, 2, . . . ; and so on for higher dimensions. We have written the potential

term in such a way that it vanishes in all cases for the fundamental state, i.e.,θi = θ0( ∀i), where,

without loss of generality, we shall considerθ0 = 0 for simplicity. Also without loss of generality

we have considered unit moment of inertia and unit first-neighbor coupling constant. It is clear that,

excepting for the inertial term, the present model is nothing but the classicalXY ferromagnet. The

casesα = 0 andα → ∞ respectively correspond to the so called HMF model [31] (all two-body

couplings have the same strength), and to the first-neighbor model. For BG statistical mechanics

to be applicable without further considerations, it is necessary that the potential be integrable, i.e.,∫ ∞
1 dr rd−1 r−α < ∞. This impliesα > d. In this case, the energy of the system is extensive, i.e.,

the energy per particle is finite in the thermodynamic limitN → ∞. But the situation becomes

more delicate for 0≤ α/d ≤ 1, since then that integral diverges. However, strictly speaking, the

system being finite, the integral that is to be analyzed is not the one already mentioned but the

An Acad Bras Cienc (2002)74 (3)



408 CONSTANTINO TSALLIS

following one instead:

∫ N1/d

1
dr rd−1 r−α , (28)

which, in theN → ∞ limit, converges forα/d > 1 and diverges otherwise. It is in fact convenient

to introduce the quantity

Ñ ≡ 1 + d

∫ N1/d

1
dr rd−1 r−α = N1−α/d − α/d

1 − α/d
. (29)

Ñ equalsN for α = 0, and, forN → ∞, diverges likeN1−α/d for 0 < α/d, diverges like lnN for

α/d = 1, and is finite forα/d > 1, being unity in the limitα/d → ∞. In general, the energy per

particle scales with̃N ; in other words, the energy is nonextensive for 0≤ α/d ≤ 1. To make the

problem artificially extensive even forα/d ≤ 1, the Hamiltonian can be written as follows:

H′ =
N∑

i=1

L2
i

2
+ 1

Ñ

∑
i 
=j

1 − cos(θi − θj )

rα
ij

. (30)

The rescaling of the potential of this model is more properly taken into account by
∑

i 
=j r−α
ij [34]

rather than bỹN , but since theirN → ∞ asymptotic behaviors coincide, we can as well useÑ

as introduced here. The original (Eq. (27)) and rescaled (Eq. (30)) versions of this model are

completely equivalent (see [32]) and lead to results that can be easily transformed from one to the

other version. To make easier the comparison of results existing in the literature, we shall from

now on refer to the rescaled version (30).

Theα = 0 model (HMF) clearly isd-independent and is paradigmatic of what happens for any

α such that 0≤ α/d < 1. When isolated (microcanonical ensemble) theα/d = 0 model exhibits a

second-order phase transition atu ≡ U/N = 0.75, whereU is its total energy andN → ∞. This

critical valueuc smoothly increases withα/d approaching unity. Dynamical and thermodynamical

anomalies exist in both ordered and disordered phases, respectively foru < uc andu > uc. Let us

discuss some anomalies foru > uc, then some foru < uc, and finally show that these anomalies

on both sides ofuc are in fact connected.

The Lyapunov spectrum is made by couples of real quantities that are equal in absolute value

and opposite in sign, whose sum vanishes in accordance with the Liouville theorem. The sum of

the positive values equals the Kolmogorov-Sinai entropy, in accordance with the Pesin theorem.

If the maximal Lyapunov exponent vanishes, the entire spectrum vanishes, and no exponentially

quick sensitivity to the initial conditions is possible.

We address first the caseu > uc. For the Hamiltonian of rotors we are interested in (Eq. (30)),

the maximal Lyapunov exponentλ̃max scales, for largeN , like

λ̃max ∼ l(u, α, d)

Nκ(α/d)
, (31)
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wherel(u, α, d) is some smooth function of its variables, andκ(α/d) decreases from 1/3 to zero

whenα/d increases from zero to unity;κ remains zero for all values ofα/d above unity, consistently

with the fact thatλ̃max is positive in that region. In other words, above the critical energy, the

sensitivity to the initial conditions is exponential forα/d > 1, and subexponential (possibly power

like) for 0 ≤ α/d ≤ 1.

We address now the case 0< u < uc, and focus especially on the region slightly below the

critical valueuc (e.g.,u = 0.69 for theα = 0 model). For 0≤ α/d ≤ 1, at least two (and possibly

only two with nonzero measure) important basins exist in the space of the initial conditions: one

of them contains the Maxwellian distribution of velocities, the other one contains the water-bag

(as well as the double water-bag) distibution of velocities. When the initial conditions belong to

the Maxwellian basin, the system relaxes quickly onto the BG equilibrium distribution (strictly

speaking, we do not have this numerical evidence but a weaker one, namely that the marginal

probability of one-rotator velocities tends to the Maxwellian one whenN → ∞). When the

initial conditions belong to the other basin, it first relaxes quickly to an anomalous, metastable

(quasi-stationary) state, and only later, at a crossover timeτ , starts slowly approaching the BG

equilibrium. The crossover time diverges withN for α = 0 [36]. It has been conjectured [35]

that it might in general diverge likeτ ∼ Ñ . It has been recently established [37] that, ford = 1

and fixedN , τ exponentially vanishes withα approaching unity. All these features are consistent

with the conjectureτ ∼ Ñ , which might well be true. During the metastable state, the one-particle

distribution of velocities is clearly non Gaussian, and in fact it seems to approach the distribution

of velocities typical of nonextensive statistical mechanics forq > 1. This anomalous behavior

reflects on the sensitivity to the initial conditions. The maximal Lyapunov exponentλ̃max remains

during long time, in fact untilt ∼ τ , at a low value and then starts approaching a finite value. This

low value scales like 1/Nκ ′(α/d). The remarkable feature which has been observed [38,39] for the

d = 1 model is thatκ ′ = κ/3 for all values ofα. The anomalies above and below the critical point

become thus intimately related.

The whole scenario is expected to hold for large classes of models, including the classical

n-vector ferromagnetic-like two-body coupled inertial rotors (n = 2 being the present one,n = 3

the Heisenberg one,n → ∞ the spherical one, etc). For all of them, in the isolated situation,

we expect (i) at the disordered phase, that the maximal Lyapunov decreases withN with the

exponentκ(α/d, n) (it is yet unclear whether this exponent depends onn or not); (ii) at the

ordered phase, and starting from initial conditions within a finite basin including the water-bag,

that a metastable state exists with non BG (possiblyq-type) distribution associated with a maximal

Lyapunov exponent which decreases withN with the exponentκ(α/d)/3. In these circumstances,

forα/d ≤ 1 (nonextensive systems), the limN→∞ lim t→∞ ordering is expected to yield the usual BG

equilibrium, whereas the limt→∞ limN→∞ ordering yields a non BG (meta)equilibrium, possibly of

the type predicted by nonextensive statistical mechanics. This interesting phenomenon disappears

for α/d > 1 (extensive systems); indeed, both orderings lead then to the same equilibrium, namely
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the BG one, as known since long.

4 CONCLUSIONS

We have presented some of the main peculiarities associated with nonextensive systems. Most of

the paradigmatic behaviors are expected to become (or have been shown to become) power laws

instead of the usual exponentials:

(i) the sensitivity to the initial conditions is given byξ = e
λq t
q (typically q ≤ 1 at the edge of

chaos);

(ii) the finite entropy production (Kolmogorov-Sinai entropy like) occurs only forSq (with q ≤ 1,

the same as above);

(iii) the relaxation towards quasi-stationary or (metaequilibrium) states, or perhaps from these to

the terminal equilibrium states, may occur throughe
−t/τq
q (typically q ≥ 1);

(iv) the stationary, (meta)equilibrium distribution for thermodynamically large Hamiltonian sys-

tems may be given bypi ∝ e
−β ′εi
q (typically q ≥ 1, possibly the same as just above, at least

for some cases).

The two-dimensional conservative maps exhibit, in the vicinity of integrability and at inter-

mediate times, features very similar to those observed in one-dimensional dissipative maps at the

edge of chaos. The intermediate stage has a duration which diverges when the control parameters

approach values where the system is close to integrability. Isolated classical Hamiltonian sys-

tems behave similarly to low-dimensional conservative maps, 1/N playing a role analogous to the

distance of the control parameters to their values where integrability starts.

The scenario which emerges is that sensitivity and entropy production properties are related to

one and the same value ofqsen ≤ 1 (also related toαmin andαmax of some multifractal function),

whereas the relaxation and (meta)equilibrium properties are related to (possibly one and the same)

value ofqrel ≥ 1 (also related to the Hausdorff dimension of the same multifractal function).

These two sets of properties are quite distinct and generically correspond to distinct values ofq

(namely,qsen andqrel). It happens that for the usual, extensive, BG systems they coincide providing

qsen = qrel = 1, which might sometimes be at the basis of some confusion. In all cases, once the

microscopic dynamics of the systems is known, it is in principle possible to determinea priori both

qsen andqrel (as well as the connection among them and with the chosen graining, as illustrated in

Eq. (23)). We have here shown how this is done for simple systems. This type of calculation of

q from first principles has also been illustrated for a variety of other systems [40]. The quest for

such calculations for more complex systems is in progress.
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RESUMO

Revisamos sumariamente o estado presente da mecânica estatística não-extensiva. Focalizamos em (i) as

equacões centrais do formalismo; (ii) as aplicações mais recentes na física e em outras ciências, (iii) a

determinaçãoa priori (da dinâmica microscópica) do índice entrópicoq para duas classes importantes de

sistemas físicos, a saber, mapas de baixa dimensão (tanto dissipativos quanto conservativos) e sistemas

clássicos hamiltonianos de muitos corpos com interações de longo alcance.

Palavras-chave: mecânica estatística não extensiva, entropia, sistemas complexos.
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