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ABSTRACT

A new discrete distribution is introduced. The distribution involves the negative binomial and size biased

negative binomial distributions as sub-models among others and it is a weighted version of the two pa-

rameter discrete Lindley distribution. The distribution has various interesting properties, such as bathtub

shape hazard function along with increasing/decreasing hazard rate, positive skewness, symmetric behav-

ior, and over- and under-dispersion. Moreover, it is self decomposable and infinitely divisible, which makes

the proposed distribution well suited for count data modeling. Other properties are investigated, including

probability generating function, ordinary moments, factorial moments, negative moments and character-

ization. Estimation of the model parameters is investigated by the methods of moments and maximum

likelihood, and a performance of the estimators is assessed by a simulation study. The credibility of the pro-

posed distribution over the negative binomial, Poisson and generalized Poisson distributions is discussed

based on some test statistics and four real data sets.

Key words: characterization, discrete distributions, Estimation, Vuong test statistic, mixture distributions,

thunderstorms data.

INTRODUCTION

In observational studies it is observed that due to lack of well defined sampling frames for plant, human,

insect, wildlife and fish populations, the scientists/ researchers cannot select sampling units with equal prob-

ability. As a result the recorded observations on individuals in these populations are biased unless every ob-

servation is given an equal chance of being recorded. As such biased data arise in all disciplines of science,

so statisticians and researchers have done their best to find out solutions for correction of the biases. In this

regard, the weighted distribution theory gives a unified approach for modeling biased data, Fisher (1934),

later on Rao (1985) and Patil (1991) studied it in a unified manner. Those pioneers have pointed out the

situations in which the recorded observations cannot be considered as a random sample from the original

distribution like non-experimental, non-replicated and non-random categories. This may be due to one or

more reasons, such as non-observability of some events, damage caused to original observations and adop-

tion of unequal probability sampling (see Jain et al. 2014). Patil and Rao (1977) stated that ”Although the
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situations that involve weighted distributions seem to occur frequently in various fields, the underlying con-

cept of weighted distributions as a major stochastic concept does not seem to have been widely recognized”,

the same quote is applicable today but, unfortunately a rare work is seen on this topic.

In order to remove the biases and to obtain the suitable distribution, the researchers usually adopt the

approach of weighted concept of biased observation which leads towards the development of a weighted

distribution. For a non-negative integer valued random variable X , its probability mass function can be

defined as P(X = k) = p(k;θ), k ∈ N0 = {0,1, ...}, where θ is a vector parameter, and let ω(k) be a non
negative function on N0, which does not need to be zero or one and may exceed unity but it should have a

finite expectation, i.e., E(ω(X = k)) = ∑
∞
k=0 ω(k)P(X = k) < ∞. Suppose that when the event occurs, the

weight ω(k) is used to adjust the probability. Therefore, the record k is thus the realization of count random
variable Y which is a weighted version of X and its probability mass function (pmf) is given by

P(Y = k) = pY (k;θ) =
w(k;ψ)P(X = k)

E(w(X ;ψ))
,k ∈ N0, (1)

where ω(k;ψ) :≡ ω(k) can depend on a parameter ψ representing the recording mechanism, and it may

also be connected to the underlying initial vector parameter θ . A detailed account of weight functions is

available in Patil and Rao (1986). Some particular cases of the weight functions are the standard distributions

with ω(k;ψ) =Constant, ∀ k ∈ N0, the size-biased distributions with weight ω(k;ψ) = k, ∀k ∈ N0, the

popular COM-Poisson with weight ω(k;ψ) = (k!)1−ψ , ∀k ∈N0 (see Balakrishnan 2014, pp. 511-512), Neel

and Schull (1966) proposed the weighted Poisson distribution with a weight as Poisson distribution, i.e.,

ω(k;ψ) =
ψke−ψ

k!
,ψ > 0, ∀ k ∈ N0 and binomial distribution with weight function ω(k;ψ) = 1−(1−ψ)k,

0 < ψ < 1, ∀ k ∈ N0 (see Kokonendji and Casany 2012).

In this paper, we construct a weighted version of the two parameter discrete Lindley distribution intro-

duced by Hussain et al. (2016) by making use of the weight function ω(k;β ) =
(

β+k−1
k

)
. Construction and

motivations of the introduced distribution are outlined in the section below. Rest of the paper is organized

as follows. The section ’Statistical Properties Of The WNBL Distribution’ gives several properties of the

proposed distribution, such as probability generating function, moments, factorial moments, recurrence re-

lation between moments and negative moments. In the section ’Parameter Estimation and Inference’, the

estimation of the model parameters is investigated by the methods of moments and maximum likelihood,

and performance of the estimators is assessed by a simulation study. A characterization for the distribution

via the probability generating function is investigated with a discussion to self decomposability and infinite

divisibility. Credibility of the proposed distribution over the negative binomial, Poisson and generalized

Poisson distributions is also discussed based on some evaluation statistics and four real data sets. The last

section gives the drawn conclusion.

THE PROPOSED DISTRIBUTIONWITH MOTIVATIONS

Hussain et al. (2016) developed the two parameter discrete Lindley distribution with the pmf

P(X = k) =
(1− p)2(1+βk)pk

(1+β p− p)
, (2)

k ∈ N0, p ∈ (0,1) and β ≥ 0.
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Considering the weight function ω(k;β ) =
(

β+k−1
k

)
and substituting it along with equation (2) into equation

(1), we get

P(Y = k) = pk =
1

q+β 2 p

(
β + k−1

k

)
(1+βk)pkqβ+1, (3)

k ∈ N0, q = 1− p, p ∈ (0,1) and β ≥ 0.

Hereafter, the weighted version of the two parameter discrete Lindley distribution shall be denoted by the

weighted negative binomial Lindley (WNBL) distribution. Now, we give some motivations for the proposed

distribution.

Motivation 1. The pmf of the negative binomial (NB) distribution is given as

P(Y = k) =
(

β + k−1
k

)
pk (1− p)β

k, β ∈ N0 and p ∈ (0,1) ,

or equivalently

P(Y = k) =C
(

β + k−1
k

)
pk,

where k denotes the number of failures/success before the β th failure/success, p is the probability of success
and C is the normalization constant which equals (1− p)β

. In the NB distribution, we repeat the number

of Bernoulli trials in order to obtain a fixed number of successes, while if the number of failures/successes

increases linearly on each trial then the probability of exactly k failures/successes can be expressed as

P(Y = k) = A
(

β + k−1
k

)
(1+βk)pk,

where A= qβ+1

q+β 2 p , β ∈ N0 ⊆(0,∞) , which is the pmf of the WNBL distribution.

Moreover, it can be noted that the probability function given by (2) is a generalized form of the NB

with vector parameter (2, p) and also the discrete Lindley with vector parameter (1, p).
Motivation 2.

The binomial coefficient
(

β+k−1
k

)
in the equation (3) represents the number of ways in which the fixed

number of failures/successes are obtained when these failures/successes increase linearly on each trial.

Motivation 3.

It is also worth mentioning that the model given in equation (3) is recognized as a mixture of the NB

distribution and the size biased negative binomial distribution (SBNB), that is,

pk =
q

q+ pβ 2 NB(k; p,β )+
pβ 2

q+ pβ 2 SBNB(k−1; p,β ).

Motivation 4.

The model given by (3) can describe the thunderstorm activities as shall be outlined in the application

section using two real data sets from such area. Thunderstorms activities often affect the planning of space

missions and launch operations at different launching stations because of unstable meteorological norms as-

sociated with them. For this purpose several statistical distributions are used to represent the variation of the

thunderstorms activities and search out that negative binomial and its modified forms are usually preferred
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for such activities (see Sakamoto 1973). Therefore, we model such activities by introducing a weighted and

mixed version of the negative binomial and Lindley distributions. The weighted distributions are important

for the adjustment of probability of occurrences and removal of biasedness from the data, while the mixed

distributions are usually used in heterogeneous and over-dispersed data sets. The proposed model not only

overcomes the heterogeneity issue but also handles the over-dispersion because of its mixture representation

which makes it better than the negative binomial, Poisson and generalized Poisson distributions.

Further motivations for the WNBL distribution are given in the next notes.

Figure 1 - Probability Graphs for the Indicated Values of p and β of WNBL.

Figure 1 portrays that the WNBL distribution shows symmetrical behavior when p < 0.20 and β in-

creases. Whereas, for smaller β and higher p, the distribution becomes positively skewed. The distribution
also exhibits bimodal and reverse J shapes.

Now, we give two prime measures of the distribution.

The survival and hazard rate functions of the WNBL distribution are

Sk =
(1− p)β+1 pk(β )k

(1+ p(β 2 −1))xk!

×
{
(1+βk)2F1(β + k,1; k+1; p)+

β p(β + k)2F1(β + k+1,2; k+2; p)
(k+1)

}
, (4)

and

hk =
(1+βk)(k+1)

(1+βk)(k+1)2F1(β + k,1; k+1; p)+β p(β + k)2F1(β + k+1,2; k+2; p)
, (5)
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respectively. Where

2F1(a,b; c; z) =
∞

∑
n=0

(a)n(b)nzn

(c)nn!
,

and (a)n = a(a+ 1)(a+ 2) . . .(a+ n− 1), are the hypergeometric series function and the Pochhammer’s

symbol, respectively, the series converges for a,b,c ≥ 0 and |z| ≤ 1.
Clearly

limk−→∞hk = (1− p)2,

therefore, the hazard rate function of the WNBL distribution is bounded above, which is an important

property for the lifetime models.

Figure 2 - Hazard Function Graphs for the Indicated Values of p and β of WNBL.

Figure 2 displays increasing, decreasing and bathtub shape (BTS) hazard functions. It is observed that

the traditional statistical distributions, such as the Poisson, generalized Poisson and NB distributions, cannot

be used efficiently in models of count data with many zeros. The Poisson distribution tends to under-estimate

the number of zeros, while the NB may over-estimate zeros (see Saengthong and Bodhisuwan 2013). Al-

though the traditional count models have generally increasing or decreasing failure rates yet unable to exhibit

BTS hazard rates.

In view of the discussion above, some other motivational factors of the proposedmodel shall be outlined

later and they are: i) Possessing BTS hazard function along with increasing/decreasing hazard rate charac-

teristics which are seldom observed in discrete distributions. ii) Possessing bounded hazard function. iii)
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Being an over- and under-dispersed statistical model. iv) Being a self decomposable and infinitely divisible

model. v) Being a characterizable function which is a milestone in model selection.

STATISTICAL PROPERTIES OF THEWNBL DISTRIBUTION

The recognition of any discrete probability distribution is usually based on its probability generating function

(pgf). The following theorem gives the pgf of the WNBL distribution.

Proposition1: If Y ∼WNBL (p,β ), then the pgf of the random variable Y is expressed as

GY (t) =
(1+ pt(β 2 −1))qβ+1

(1+ p(β 2 −1))(1− pt)β+1 , (6)

where p ∈ (0,1) and β ≥ 0.
Proof: The pgf from the definition is expressed as GY (t) = ∑

∞
x=0 txP(Y = x). Using equation (3), we have

GY (t) =
qβ+1

1+ p(β 2 −1)

∞

∑
x=0

(
β + x−1

x

)
(pt)x(1+βx),

which by simplification, equation (6) is obtained, which completes the proof.

Corollary 1: In equation (6), if t is replaced by et , we get the moment generating function (mgf) of the

WNBL distribution as

MY (t) =
(1+ pet(β 2 −1))qβ+1

(1+ p(β 2 −1))(1− pet)β+1 , (7)

where 0 < pet < 1.
The rth derivatives of equation (7) with respect to t at t = 0 yield the moments. In particular, for r = 1,

we have

µ
′
1 =

β p(1+β + p(β 2 −1))
(1− p)(1+ p(β 2 −1))

,

for r = 2, we have

µ
′
2 =

β (1+β )p(1− p(1−3β − (β −1)β p))
(1− p)2(1+ p(β 2 −1))

,

for r = 3, we have

µ
′
3 =

β (1+β )p(1+ p(−p+β (7+ p(−1+6β +(−1+β )β p))))
(1− p)3(1+ p(β 2 −1))

and for r = 4, we have

µ
′
4 =

1
(1− p)4(1+ p(β 2 −1))

×

{β (1+β )p(1+ p(3+15β +(−3+β (11+25β ))p

+(−1+β (−2+β +10β
2))p2 +(−1+β )β 3 p3))}.

Moreover, by definition, the rth non central moment can be expressed as

µ
′
r =

(1− p)β+1

1+ p(β 2 −1)

∞

∑
x=0

xr
(

β + x−1
x

)
(1+βx)px.
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Differentiating the equation above with respect to p, we get

dµ ′
r

d p
= −

∞

∑
x=0

xr
(

β + x−1
x

)
(1+βx)px{(β

2 −1)(1− p)β+1

(1+ p(β 2 −1))2 +
(β +1)(1− p)β

(1+ p(β 2 −1))
}

+
(1− p)β+1

1+ p(β 2 −1)

∞

∑
x=0

xr+1
(

β + x−1
x

)
(1+βx)px−1,

which by simplification yields the recurrence relation

µ
′
r+1 = p

dµ ′
r

d p
+

p(β +1)((β −1)(1− p)+1+ p(β 2 −1))
(1− p)(1+ p(β 2 −1))2 µ

′
r,

r = 0,1, . . . , µ ′
0 = 1.

Similarly, by definition, the rth central moment can be expressed as

µr =
(1− p)β+1

1+ p(β 2 −1)

∞

∑
x=0

(x− β p(1+β + p(β 2 −1))
(1− p)(1+ p(β 2 −1))

)r
(

β + x−1
x

)
(1+βx)px.

Differentiating the above equation with respect to p and simplifying it, we get

µr+1 +µ
′
1µr = p

dµr

d p
+

pβ (β +1)(1− p)β (1+ p(β −1))
(1+ p(β 2 −1))2 µr

+
r(β +1)((1+ p(β 2 −1))2 +(β −1)(1− p)2)

(1− p)2(1+ p(β 2 −1))2 µr−1,

r = 1,2, . . . ,µ ′
0 = 1.

OVER-AND UNDER-DISPERSION

In statistics, the phenomenon of over- and under-dispersion relative to the Poisson distribution is generally

observed in count data and well known in statistical literature. There are various causes of such phenomenon,

like heterogeneity and aggregation for over-dispersion and repulsion for under-dispersion although less fre-

quent (see Kokonendji and Mizre 2005). In order to see the reflection of over- and under-dispersion pattern,

the researchers usually take the support of the index of dispersion (ID) which is defined as variance-to-mean

ratio, which indicates the suitability of distribution in, under- or over-dispersed data sets. If ID > 1(< 1) the
distribution is over-dispersed (under-dispersed). The index of dispersion for the WNBL distribution is

ID =
1

1− p
− 1

1− p+β p
+

1
1+ p(β 2 −1)

.

For indicating the dispersion pattern we first consider that β < 1 which implies that β 2 − 1 ≤ β − 1. If
β 2 −1 =−C and β −1 =−D then ID can be re expressed as

ID =
1

1− p
− 1

1− pD
+

1
1− pC

,

sinceC > D, then 1− pC < 1− pD or 1
1−pC − 1

1−pD > 0. Therefore, the WNBL is an over-dispersed model

for all values of p. However, if β > 1 this implies that β 2 −1 > β −1. Let β 2 −1 = L and β −1 = S, then
ID can be rewritten as

ID =
1

1− p
− 1

1+ pS
+

1
1+ pL

.

As it is evident that L > S, then 1
1+pL < 1

1+pS or 0 < 1
1+pS −

1
1+pL < 1. Hence, ID < 1, if p → 0 and β → ∞.
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OTHER MOMENTS MEASURES

The following theorems gives factorial moments and negative moments.

Theorem 1: If Y ∼WNBL(p,β ), then the rth descending factorial moment of Y is given by

µ
′
(r) =

(β )r pr(1− p)−r(1+β r+(β 2 −1)p)
(1+ p(β 2 −1))

, (8)

where p ∈ (0,1) , β ≥ 0, r = 0,1, . . . ,(a)n = a(a+1)(a+2) . . .(a+n−1) and µ ′
(0) = 1.

Proof: The rth descending factorial moment for Y can be defined as µ ′
(r) = E(Y (r)) = ∑

∞
x=0 x(r)P(Y = x).

Using the expression x(r) = x(x−1) . . .(x− r+1) = x!
(x−r)! , we have

µ
′
(r) =

(1− p)β+1

(1+ p(β 2 −1))

∞

∑
x=r

x!
(x− r)!

(
β + x−1

x

)
(1+βx)px.

By using the binomial series (1− z)−a = ∑
∞
x=0

(a)nzn

n! , we obtain

µ
′
(r) =

(1− p)β+1(β + r−1)!pr

(β −1)!(1+ p(β 2 −1))
{(1− p)−(β+r)+β (r+(r+1)(β + r)p+(β + r)2(r+2)

p2

2!
. . .)},

hence, we get

µ
′
(r) =

(1− p)−r(β + r−1)!pr

(β −1)!(1+ p(β 2 −1))
{(1− p)−(β+r)+(1− p)−(β+r+1)

β (r+β p)}.

After some algebraic manipulation, the equation (8) is attained and it generates a recursive relation between

r and (r−1) descending factorial moments as

µ
′
(r){(1− p)(1+β (r−1)+(β 2 −1)p)}= {(β + r−1)p(1+β r+(β 2 −1)p)}µ

′
(r−1), (9)

where r = 1,2, . . . ,which completes the proof.
Theorem 2: If Y ∼WNBL (p,β ), the rth ascending factorial moment of Y is given by

µ
′
[r] =

β pr!(1− p)β+1

(1+ p(β 2 −1))
{2F1(r+1,β +1; 2; p)+β 2F1(r+1,β +1; 1; p)}, (10)

where p ∈ (0,1) , β ≥ 0, r = 0,1, ..., µ ′
[0] = 1− (1−p)β+1

(1+p(β 2−1)) .

Proof: The rth ascending factorial moment is defined as µ ′
[r] = E((Y )r) = ∑

∞
x=0(x)rP(Y = x), this implies

that

µ
′
[r] =

(1− p)β+1

(1+ p(β 2 −1))

{
∞

∑
x=0

(
β + x−1

x

)
(x)r px +β

∞

∑
x=0

(
β + x−1

x

)
x(x)r px

}
.

By using the hypergeometric series function 2F1(a,b; c; z) = ∑
∞
n=0

(a)n(b)nzn

(c)nn! , we get the equation (10), where

∞

∑
x=0

(
β + x−1

x

)
(x)r px = β r!p2F1(r+1,β +1; 2; p)

and

β

∞

∑
x=0

(
β + x−1

x

)
x(x)r px = β

2r!p2F1(r+1,β +1; 1; p).
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Thus the theorem is proved.

As it is known, the ordinary moments are generally helpful in estimating the unknown parameters.

However, due to recent developments in inverse theory of the random variables, the negative moments are

gaining momentum in life testing phenomena, estimation purposes and identifying the models. The negative

moments are being used in irreversible damage to manufacturing materials due to damage process such as

creep, corrosion, creep fracture, wear, shrinkage, aging and cracking (seeAhmad 2007). Therefore, the next

theorem deals with the negative moments of the WNBL distribution.

Theorem 3: If Y ∼WNBL(p,β ), the first order negative moment of Y is given by

E
(
(Y +a)−1)= (1− p)β+1

(1+ p(β 2 −1))
{1

a 2F1(a,β ; a+1; p)+
β 2 p
a+1 2F1(a+1,β +1; a+2; p)}, (11)

where p ∈ (0,1) , β ≥ 0, a > 0 and 2F1(a,b; c; z) = ∑
∞
n=0

(a)n(b)nzn

(c)nn! .

Proof: By definition, E( 1
Y+a) = ∑

∞
x=0

P(Y=x)
x+a , we have

E(
1

Y +a
) =

(1− p)β+1

(1+ p(β 2 −1))

∞

∑
x=0

(
β + x−1

x

)
(x+a)−1 px(1+βx).

By simplification, we get the equation (11) where

∞

∑
x=0

(
β + x−1

x

)
px

x+a
=

1
a 2F1(a,β ; a+1; p)

and
∞

∑
x=0

(
β + x−1

x

)
xpx

x+a
=

β p
(a+1)2F1(a+1,β +1; a+2; p).

This completes the proof.

Corollary 2: The sth order negative moment of Y ∼WNBL(p,β ) can be expressed as

E
(
(Y +a)−s) =

(1− p)β+1

(1+ p(β 2 −1))
{ 1

as s+1Fs(a, ...,a,β ;a+1, ...,a+1; p)

+
β 2 p

(a+1)s s+1Fs(a+1, ...,a+1,β +1;a+2, ...,a+2; p)},

where

sFu(a1, ...,as;b1, ...,bu; z) =
∞

∑
n=0

(a1)n, ...,(as)nzn

(b1)n, ...,(bu)nn!
,

the series converges for s = u+1 and |z|< 1.

PARAMETER ESTIMATIONAND INFERENCE

In this section, estimation of parameters of the distribution is investigated by the methods of moments (MM)

and maximum likelihood (ML), and a performance of the estimators is assessed by a simulation study.
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MOMENTS METHOD

Let Y1,Y2, . . . ,Yn be a random sample drawn from the WNBL distribution with the observed values

x1,x2, . . . ,xn. Equating the first two sample moments, m′
1 = x̄ = 1

n ∑
n
i=1 xi and m′

2 = 1
n ∑

n
i=1 x2

i , with their

associated population moments

µ
′
1 =

(β +1)p
1− p

+
(β 2 −1)p

1+ p(β 2 −1)
and

µ
′
2 = µ

′
1 +

((β +1)(β +2)p2)

(1− p)2 +
2(β +1)(β 2 −1)p2

(1− p)(1+ p(β 2 −1))
,

then the MM estimators of the WNBL are obtained.

Alternatively, the MM estimators can also be obtained using the suggested approach by Khan et al.

(1989) via minimizing the expression

S= (µ ′
1 −m′

1)
2 +(µ ′

2 −m′
2)

2,

with respect to p and β . Hence,

S = (
(β +1)p

1− p
+

(β 2 −1)p
1+ p(β 2 −1)

−m′
1)

2

+(m′
1 +

((β +1)(β +2)p2)

(1− p)2 +
2(β +1)(β 2 −1)p2

(1− p)(1+ p(β 2 −1))
−m′

2)
2,

yields two equations which are not in closed form, so parameters are estimated using numerical optimization

techniques via Mathematica 8 computational packages.

MAXIMUM LIKELIHOODMETHOD

IfY1,Y2, . . . ,Yn is a random sample drawn from theWNBLdistributionwith the observed values x1,x2, . . . ,xn,

then we get the log-likelihood function

κp,β = ln(L(p;β )) = (β +1)nln(1− p)−nln((1+ p(β 2 −1)))+
n

∑
i=1

xilnp

+
n

∑
i=1

ln
(

β + xi −1
xi

)
+

n

∑
i=1

ln(1+βxi).

By partially differentiating both sides of the equation above with respect to p and β and equating them to

zero, we get the MLEs of p and β , respectively, as

n(β +1)
1− p

+
n(β 2 −1)

1+ p(β 2 −1)
=

x̄
p

(12)

and

nln(1− p)− 2npβ

1+ p(β 2 −1)
+

n

∑
i=1

xi

1+βxi
+

n

∑
i=1

{ψ
(0)(β + xi)−ψ

(0)(β )}= 0. (13)

Similarly, the second derivatives of the equations (12) and (13) with respect to p and β , respectively, are

∂ 2κp,β

∂ p2 =−n(β +1)
(1− p)2 +

n(β 2 −1)2

1+ p(β 2 −1)
− ∑

n
i=1 xi

p2
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and

∂ 2κp,β

∂β 2 =
4np2β 2

(1+ p(β 2 −1))2 −
n

∑
i=1

x2
i

(1+βxi)2 −
2np

1+ p(β 2 −1)
+

n

∑
i=1

{
ψ

(1)(β + xi)−ψ
(1)(β )

}
.

Also, the second derivative of equation (12) with respect to β or equation (13) with respect to p yields

∂ 2κp,β

∂β∂ p
=

2β (β 2 −1)np
(1+ p(β 2 −1))2 −

n
1− p

− 2βn
1+ p(β 2 −1)

,

where ψ(n)(z) =
dnψ(z)

dzn is the logarithmic derivative of the gamma function. The MLEs are computed

using computational packages, such as Mathematica 7. In view of the regularity conditions (see Rohatgi and

Saleh 2002, pp. 419), we observed that the MLEs of WNBL parameters satisfy such conditions, where i)

The parameters p ∈ (0,1),β ∈ (0,∞) are subset of the real line, ii)
∂κp,β

∂ p
,
∂κp,β

∂β
,
∂ 2κp,β

∂ p2 ,
∂ 2κp,β

∂β 2 ,
∂ 2κp,β

∂ p∂β

exist for all values of p and β , iii) E
(

∂κp,β

∂ p

)
= 0,E

(
∂κp,β

∂β

)
= 0, iv) −∞ ≤ E

(
∂ 2κp,β

∂ p2

)
≤ 0,−∞ ≤

E

(
∂ 2κp,β

∂β 2

)
≤ 0 for all values of p and β .

Moreover, theMLEs p̂ and β̂ of theWNBLdistribution have an asymptotic bivariate normal distribution

with vector mean (p,β ) and variance-covariance matrix (I(p,β ))−1, where I(p,β ) denotes the information
matrix given by

I((p,β )|p=p̂,β=β̂
) =


E(−∂ 2κp,β

∂ p2 ) E(−∂ 2κp,β
∂ p∂β

)

E(−∂ 2κp,β
∂ p∂β

) E(−∂ 2κp,β
∂β 2 )

,

where

E(
−∂ 2κp,β

∂ p2 ) =
n(β̂ +1)
(1− p̂)2 − n(β̂ 2 −1)2

1+ p̂(β̂ 2 −1)
+

nE(Y )
p̂2 ,

E(
−∂ 2κp,β

∂ p∂β
) =− 2β̂ (β̂ 2 −1)np̂

(1+ p̂(β̂ 2 −1))2
+

n
1− p̂

− 2β̂n

1+ p̂(β̂ 2 −1)
,

E(
−∂ 2κp,β

∂β 2 ) =− 4np̂2β̂ 2

(1+ p̂(β̂ 2 −1))2
+nE

(
Y 2

(1+ β̂Y )2

)
+

2np̂

1+ p̂(β̂ 2 −1)
−nE{ψ

(1)(β̂ +Y )−ψ
(1)(β̂ )}.

The expectations above can be obtained numerically.

SIMULATION SCHEME

As it is mentioned in the introduction that the WNBL(p,β ) distribution can be viewed as a mixture of the
negative binomial, NB(p,β ), and size biased negative binomial, SBNB(p,β ), distributions. So, in order to
generate random data ki, i = 1,2, ...n, from the WNBL we used the following algorithm.
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Algorithm: i) GenerateUi, i= 1,2, ...,n, from the uniform distribution on the interval (0,1). ii) Generate
NBi, i = 1,2, ...,n, from the negative binomial distribution NB(p,β ) with support k = 0,1, . . .. iii)Set Y1 =

NBi. iv) Generate SBNBi, i = 1,2, ...,n, from the size biased negative binomial distribution SBNB(p,β )

with support k = 1,2, . . .. v) SetY2 = SBNBi. IfUi ≤
1− p

(1+ p(β 2 −1))
, then set ki =Y1, otherwise set ki =Y2,

i = 1,2, ...,n.

SIMULATION STUDY

In this section, we perform some numerical experiments to see how the estimates studied by using the above

listed methods (MM and ML) as well as their asymptotic results for finite samples. All the numerical results

are performed via Mathematica 8 using the random numbers generator code. We consider the following

different model parameters. Model-I: β = 0.0542, p = 0.7487, Model-II: β = 30.4389, p = 0.0157 and

Model-III: β = 5.2856, p = 0.6398 for both MMEs and MLEs. We consider the following sample sizes

n = 20 (small), 50 (moderate), and 100,200,500 (large). For each set of the model parameters and for each

sample size, we compute the MMEs and MLEs of each β and p. We repeat this process 1000 times and

compute the average bias and mean square error (MSE) for all replications in the relevant sample sizes. The

results are reported in Tables I and II.

Discussion: Some notes are very clear from the simulation studies, such as the bias decreases as sample

size increases for both MLEs and MMEs. Moreover, we conclude that the bias takes negative and positive

signs, and it approaches to the value zero for both signs while theMSE decreases as the sample size increases.

CHARACTERIZATION

Characterization of probability functions is of importance to determine the exact probability distribution,

which means that under certain conditions a family of distributions is the only one possessing a desig-

nated property which will resolve the problem of model identification. Therefore, the next theorem gives

characterization of the WNBL distribution.

Theorem 4: If GY (t) =∑
∞
x=0 xtP(Y = x) is the pgf of a certain distribution defined on the support {0,1,2, . . .}

with parameters p ∈ (0,1) , β ≥ 0, then

µ
′
(r){(1− p)(1+β (r−1)+(β 2 −1)p)}= {(β + r−1)p(1+β r+(β 2 −1)p)}µ

′
(r−1), (14)

for r = 1,2, . . .with µ
′
(0) = 1, holds if and only ifY has theWNBL distribution with pmf defined by equation

(3).

Proof: If Y has the WNBL distribution given by (3), then the equation (14) is satisfied.

On the other side, suppose the equation (9) holds, which yields descending factorial moments, hence

for r = 1 and µ
′
(0) = 1, we have

µ
′
(1) =

(β )p(1− p)−1(1+β +(β 2 −1)p)
(1+ p(β 2 −1))

.

For r = 2 and µ
′
(1) expressed in the above equation, we get

µ
′
(2) =

(β )2 p2(1− p)−2(1+2β +(β 2 −1)p)
(1+ p(β 2 −1))

.
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TABLE I

Average Bias and MSE values of the MMEs from simulation of the WNBL distribution.

Parameter Sample Size Bias(β̂ ) Bias( p̂) MSE(β̂ ) MSE( p̂)

β = 0.0542, p = 0.7487

n = 20 26.6700 -0.7485 742.1 0.5603

n = 50 14.5694 -0.6458 411.023 0.4276

n = 100 1.1141 -0.6022 1.4983 0.4265

n = 200 0.9135 -0.5743 0.9130 0.3924

n = 500 0.8783 -0.5517 0.8940 0.3822

β = 30.4389, p = 0.0157

n = 20 139.4975 -0.7418 37071.8 0.5502

n = 50 4.7926 -0.7071 23.0087 0.5001

n = 100 4.4596 -0.6744 19.4900 0.4995

n = 200 3.8780 -0.6688 18.8034 0.4872

n = 500 2.8913 -0.6217 15.8204 0.4644

β = 5.2856, p = 0.6398

n = 20 4.0410 -0.0942 12.6543 0.0125

n = 50 3.6904 -0.0907 12.1628 0.0063

n = 100 3.6522 -0.0890 9.8270 0.0058

n = 200 3.3172 -0.0836 8.5084 0.0056

n = 500 2.6516 -0.0798 8.2922 0.0047

Also, for r = 3 and µ
′
(2) expressed in the equation above, we obtain

µ
′
(3) =

(β )3 p3(1− p)−3(1+3β +(β 2 −1)p)
(1+ p(β 2 −1))

,

and so on. Since, factorial moment generating function is defined as

GY (1+ t) =
∞

∑
r=0

µ
′
(r)

tr

r!
, (15)

by substituting µ ′
(0),µ

′
(1),µ

′
(2),µ

′
(3) and so on in equation (15) we get

GY (1+ t) = 1+
β pt

(1− p)1!
+

β 2 pt
(1− p)(1+ p(β 2 −1))1!

+
β (β +1)p2t2

(1− p)22!
+

β 2(β +1)p2t2

(1− p)2(1+ p(β 2 −1))2!

+
β (β +1)(β +2)p3t3

(1− p)33!
+

β 2(β +1)(β +2)p3t3

(1− p)3(1+ p(β 2 −1))3!
+ . . . .
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TABLE II

Average Bias and MSE values of the MLEs from simulation of the WNBL distribution.

Parameter Sample Size Bias(β̂ ) Bias( p̂) MSE(β̂ ) MSE( p̂)

β = 0.0542, p = 0.7487

n = 20 32.0968 -0.7486 1030.22 0.5604

n = 50 14.498 -0.6101 410.9645 0.3914

n = 100 0.9708 -0.5826 1.1641 0.3570

n = 200 0.7625 -0.5720 0.6627 0.3545

n = 500 0.6575 -0.5606 0.6321 0.3532

β = 30.4389, p = 0.0157

n = 20 138.775 -0.7417 36685.5 0.5502

n = 50 4.1503 -0.6758 18.827 0.4968

n = 100 3.6311 -0.6408 17.574 0.4888

n = 200 3.3901 -0.6212 16.8538 0.4837

n = 500 2.3361 -0.5537 14.3888 0.4327

β = 5.2856, p = 0.6398

n = 20 3.3960 -0.0869 11.5333 0.0075

n = 50 3.0078 -0.0866 11.3053 0.0055

n = 100 2.5571 -0.0866 10.3211 0.0052

n = 200 2.4807 -0.0752 7.7243 0.0045

n = 500 1.6978 -0.0728 5.1232 0.0042

Hence,

GY (1+ t) = 1+
β pt

(1− p)1!
+

(β )2 p2t2

(1− p)22!
+

(β )3 p3t3

(1− p)33!
+ . . .

+
β 2 pt

(1− p)(1+ p(β 2 −1))

{
1+

(β +1)pt
(1− p)1!

+
(β +1)2 p2t2

(1− p)22!
+ . . .

}
.

After some algebra, we get

GY (1+ t) =
(1− p)β+1(1+ p(1+ t)(β 2 −1))
(1− p(1+ t))β+1(1+ p(β 2 −1))

.

Replacing (1+ t) by t we have

GY (t) =
(1− p)β+1(1+ pt(β 2 −1))
(1− pt)β+1(1+ p(β 2 −1))

.

By calculating the xth derivative of GY (t) at t = 0,

P(Y = x) =
∂ xGY (t)

∂ tx |t=0

x!
,x = 0,1, . . . ,

yields equation (3). This completes the proof.
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DISCRETEANALOGUES OF SELF-DECOMPOSABILITY

Definition 5.1 (α-thinning) Let X be a non-negative integer-valued random variable and let α ∈ [0,1], then
the α-thinning of X using the Steutel and van Harn operator is defined by

α ◦X :≡
X

∑
i=1

Zi,

where Zi (i = 1,2, ...,X) are mutually independent Bernoulli random variables with P(Zi = 1) = α and

P(Zi = 0) = 1−α . Additionally, the random variables Zi are independent of X . The pgf Gα◦X(s) of the
random variable α ◦X is

Gα◦X(s) = GX(1−α +αs).

Definition 5.2 (Discrete Infinite divisibility) Let X be a non-negative integer-valued random variable, then

X is said to be infinitely-divisible, for every non negative integer n, if X can be represented as a sum of n
independent and identically distributed (i.i.d.) non-negative random variables Xn;i (i = 1,2, ...,n), that is,

X ≡ Xn,1 +Xn,2 + ...+Xn,n, n = 1,2,3, ... .

Note that the distributions of X and Xn;i do not necessarily have to be of the same family. Moreover, a random

variableX is said to be discrete infinitely-divisible if the random variablesXn;i only take non-negative integer

values. A necessary condition for such random variable X to be well defined is P(X = 0) > 0 (to exclude

the trivial case we assume P(X = 0)< 1), see Steutal and van Harn (1979).
Definition 5.3 (Discrete self-decomposability)A non-negative integer-valued random variable X is said to be

discrete self-decomposable if for every α ∈ [0,1], the random variable X can be written as X ≡ α ◦X +Xα ,

where the random variables α ◦X and Xα are independent, which in terms of the pgf can be expressed as

GX(s) = GX(1−α +αs)GXα
(s),

whereGXα
(s) is the pgf of Xα .We have noted that the distribution of Xα uniquely determines the distribution

of X . Moreover, a discrete infinitely-divisible distribution is discrete self-decomposable.

By using the definitions above, the following propositions show that the WNBL distribution is a self

decomposable and infinitely-divisible distribution.

Proposition 2: If X1,X2 and X3 are independent random variables such that X1 ∼ Bernoulli( p(β 2−1)
1+p(β 2−1)),

X2 ∼NB(p,β ) and X3 ∼Geo(1− p), then Y = X1 +X2 +X3 has the WNBL (p,β ) distribution.

Proof: Since X1 ∼ Bernoulli( p(β 2−1)
1+p(β 2−1)), its mgf is expressed as MX1(t) =

1+pet(β 2−1)
1+p(β 2−1) . Similarly, X2 and X3

having the mgfs MX2(t) =
(1−p)β

(1−pet)β
and MX3(t) =

1−p
1−pet , respectively. SinceY = X1+X2+X3, hence the mgf

of Y is

MY (t) =
1+ pet(β 2 −1)
1+ p(β 2 −1)

(1− p)β

(1− pet)β

1− p
1− pet ,

which is the mgf of the WNBL distribution. This completes the proof.

Proposition 3: If Yi ∼WNBL (p,β ) for i = 1,2, ...n, are independent random variables, then Z = Y1 +Y2 +

Y3 . . .+Yn, and having the WNBL(n, p,β ) distribution.
Proof:As Yi ∼WNBL (p,β ) for i = 1,2, ...n, hence the mgf of Z = Y1 +Y2 +Y3 . . .+Yn is

MZ(t) =
n

∏
i=1

MYi(t) =
(1+ pet(β 2 −1))n(1− p)n(β+1)

(1+ p(β 2 −1))n(1− pet)n(β+1) ,
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which gives the required proof.

Note in the expression above

MZ(t) = MXB(t)MXNB(t),

where XB ∼ Binomial(
p(β 2−1)

1+p(β 2−1) ,n) and XNB ∼ NB(p,n(β + 1)), which shows the discrete self-

decomposability.

TEST STATISTICSWITH DATAAPPLICATIONS

In this section, the credibility of the proposed model is checked via over- and under-dispersed count data

sets. In this regard, for modeling over-dispersion phenomena, we have used three data sets: (i) The counts

of European red mites on apple leaves, (ii) Accidents of 647 women working on H.E. shells during five

weeks, (iii) The thunder storm activity at Cape Kennedy. While, for under-dispersion case the number of

outbreaks of strikes inUK coalmining industries is used.All the data sets aremodeled via the four probability

models:WNBL, NB, Poisson (Poi) and Generalized Poisson (GP) distributions. Since NB distribution is the

compounded mixture of gamma and Poisson distributions, so it is usually recommended for heterogeneity

and over-dispersion, while the generalized Poisson distribution is a mixed and weighted version as well as

a generalized form of Poisson distribution, therefore it is used to model over- and under-dispersed data sets.

The probability functions of these models are given in the next table

The distribution formula Domain

PGP(Y = k) =
(β (β + pk)k−1e−β−pk)

k!
k ∈ N0, p >

−1
β

and β > 0

PNB(Y = k) = ((1− p)k pβ
(

β+k−1
−1+β

)
) k ∈ N0, 0 < p < 1 and β > 0

PP(Y = k) =
β ke−β

k!
k ∈ N0 and β > 0

For comparison purposes, we have used seven goodness-of-fit statistics. The computation of these statis-

tics is based on the MLEs which are computed by using Mathematica 7 computational package. These

statistics include Log-Likelihood (l), Akaike information criterion (AIC), Bayesian information criterion

(BIC) and correctedAkaike information criterion (AICc), Kolmogrov Smirnov (KS) statistics and χ2 statis-

tics with p− values. The formulae of such statistics are AIC = −2l(θ̂)+ 2m, BIC = −2l(θ̂)+m ln(n),

AICc = AIC +
2m(m+1)
n−m−1

, KS = Max{ i
g
− zi,zi −

i−1
g

} and χ2 = ∑
g
i=1

(oi − ei)
2

ei
, where m denotes the

number of parameters, l(θ̂) denotes the log-likelihood function evaluated at the MLEs, n denotes the num-

ber of observations in a sample, g denotes the number of classes and oi, ei and zi denote the observed

frequencies, expected frequencies and cumulative distribution function of the ith class, respectively.
Vuong Test: The chi-square approximation to the distribution of the likelihood ratio test statistic is valid

only for testing restrictions on the parameters of a statistical model, i.e., H0 and H1 are nested hypotheses.

With non-nested models, we cannot make use of likelihood ratio tests for model comparison. In this case,
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information criteria, like AIC and BIC as well as the Vuong test for non-nested models are useful. Vuong

(1989) proposed a likelihood ratio-based statistic for testing the null hypothesis that the competing models

are equally close to the true data generating process against the alternative that one model is closer. Let us

consider two statistical models based on the probability mass functions fA(x;ξ ) and fB(x;ζ ) posses equal

number of parameters. Define the likelihood ratio statistic for the model fA(x;ξ ) against fB(x;ζ ) as

LR(ξ̂n, ζ̂n) =
G

∑
g=1

fg ln

(
fA(x; ξ̂n)

fB(x; ζ̂n)

)
,

where ξ̂n and ζ̂n are themaximum likelihood estimators in eachmodel based on n number of observations(see
Denuit et al. 2007), fg denotes the observed frequency of the gth class and G total number of classes . If both

models are strictly non-nested then under H0 we have the test statistics Z = LR(ξ̂n,ζ̂n)√
nω̂n

∼ N (0,1), where

ω̂n =
1
G

G

∑
g=1

(
ln

fA(xg; ξ̂n)

fB(xg; ζ̂n)

)2

−

(
1
G

G

∑
g=1

ln
fA(xg; ξ̂n)

fB(xg; ζ̂n)

)2

.

In order to select an appropriate model, we usually construct the following hypothesis

H0;KL( fA(x;ξ )) = KL( fB(x;ζ )),

against

H1A;KL( fA(x;ξ ))< KL( fB(x;ζ )),

i.e., the model A is defined to be better than model B if model A’s KL distance to the truth is smaller than

that of model B, or

H1B;KL( fA(x;ξ ))> KL( fB(x;ζ )).

That is, the model B is defined to be better than model A if model B’s KL distance to the truth is smaller

than that of modelA, whereKL denotes the Kullback−Leibler distance measure, with corresponding critical
values. The decision is as follows. i) Reject H0 when Z > Zε in favor ofA and ii) Reject H0 when Z <−Zε

in favor of B, where ε denotes the level of significance.

DESCRIPTION OF THE DATA SETS WITH THEIR FITTING

In biological research, researchers are often concerned with animals and plants counts for each of set of equal

units space and time. Among these sets of counts, some counts may perhaps be well fitted by the Poisson

distribution where the equi-dispersion phenomenon in the data is observed. But in discrete data sets the two

other dispersion cases are also observed. The over-dispersion generally arises when the events or organisms

are aggregated, clustered or clumped in time and space, while the under-dispersion is due to more regular

positioning than that produced by a Poisson mechanism (see Ross and Preece 1985). So, in the coming data

applications we have also used the Vuong test for selecting a model which possesses the same number of

parameters at significance level 0.08, for this purpose we have compared the proposed model with the NB
and GP, not with the Poisson distribution because the latter one is unsuitable for over- and under-dispersed

data.

The counts of European red mites on apple leaves (Data I): Garman (1951) of the Connecticut Agri-

cultural Experiment Station selected 25 leaves at random from each of six McIntosh trees in a single orchard
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receiving the same spray treatment and the number of adult females counted on each leaf. These observa-

tions given in Table III of the Appendix and were first recorded by Bliss and Fisher (1953), and later on

were mentioned by Jain and Consul (1971). The summary statistics of these observations is provided in

Table IV as given in Appendix which clearly indicates the over-dispersed nature of the data. In order to fit

the competing models to this data set we have used the MLE estimates. The summary of test statistics is

provided in Table V which depicts that the proposed model is the most suitable choice of such data with least

loss of information. Moreover, the selection of a suitable non-nested model is also checked via Vuong test.

The Vuong test statistics values along with p− value for comparison between WNBL-GP and WNBL-NB

are given as i) Z =−1.7548, p− value = 0.0793, and ii) Z =−1.7512, p− value = 0.0799 which clearly

indicates the suitability of the proposed model by showing minimum p-value.

Accidents to 647 women working on H. E. shells during five weeks (Data II): Miss Broughton,

Head Welfare Officer, and the various Welfare Supervisors were the first to provide this numerical data set

to Industrial Fatigue Research Board in 1919 (see Greenwood and Woods, 1919). Later on Greenwood and

Yule (1920) and Jain and Consul (1971) used it for analysis purpose. This data set is displayed at Table VI

and its descriptive statistics are provided in Table VII which shows an over-dispersed behavior. The earlier

mentioned test statistics indicate that the proposed model is the most suitable one according to all mentioned

statistics with least loss of information behavior and the results are displayed in Table VIII as given in

the Appendix. Furthermore, the Vuong test statistics values along with p− value for comparison between

WNBL-GP and WNBL-NB are given as i) Z = 11.4348, p− value = 0.0001, and ii) Z = 18.08284, p−
value = 0.0001 which clearly indicates that the proposed model is better than the competing models.

Number of outbreaks of strikes in UK coal mining industries in four successive week periods

during 1948-1959 (Data III): This data set is given by Table IX and was analyzed by Castillo and Perez-

Casany (1998), noting that they reported it from Kendall (1961). Later on a number of authors, like Ridout

and Besbeas (2004), Chakraborty and Chakravarty (2012) and Alamatsaz and Dey (2016), studied it. Ta-

ble X as given in the Appendix displays the descriptive statistics of this data set and indicates that it is

under-dispersed. Further, comparison among the competing distributions is provided in Table XI which in-

dicates that the proposed model is also an ideal model for under-dispersed data by showing not only the

least Chi-Square test statistics but also minimum AIC, BIC and AICc, thus depicting that the model is the

least loss of information model for under-dispersed data set too. Also, Vuong test statistics with p− values
for comparison between WNBL-GP and WNBL-NB are listed as i) Z = 1.8540, p− value = 0.0673, and
ii) Z = 4.4281, p− value = 0.0001 which again indicates the suitability of the proposed model.

Thunderstorm Activity at Cape Kennedy (Data IV): One of the major problem that the meteorol-

ogists usually faced is the forecasting of afternoon convective thunderstorm activity at the Cape Kennedy

Florida. Usually thunderstorms are of primary concern in the design of launch vehicles, in the planning of

space missions, and in launch operations at Cape Kennedy because of high winds, lightning hazard, and

extreme turbulence associated with this atmospheric phenomenon. In thunderstorm activity, the occurrence

of successive thunderstorm events (THEs) is often dependent process meaning that the occurrence of THEs

indicates that the atmosphere is unstable and the environmental conditions are favorable for the formation of

further thunderstorm activity. For more details on THEs, see Falls et al. (1971). Data set of thunderstorm ac-

tivity at Cape Kennedy is displayed in Table XII at theAppendix. As for thunderstorm activities the Poisson

distribution is not a proper choice, hence the proposed model is compared with the NB and GP distributions

based on the expected frequencies, l, AIC, χ2 and p− values. The expected frequencies along with the test
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statistics of this data set are provided in the Tables XIII, XIV and XV. Vuong test statistics with p− values
are displayed in Tables XVI and XVII as given inAppendix, which clearly indicate the supremacy behavior

of the proposed model over the competing distributions, except in February GP is recommended.

CONCLUSIONS

A new discrete model, named weighted negative binomial Lindley distribution, is proposed and its various

properties are obtained involving generating functions, moments, recurrence relations between moments,

random number generation, characterization, self-decomposability and infinite divisibility. Further, some

applications of the model are studied. It is found that model is not only mathematically amenable but also

recommended for many types of over- and under-dispersed count data sets. Moreover, the proposed model

is also recommended for modeling the thunderstorms data and may help the scientists for proper planning

of space missions and in launch operations at different stations in the presence of thunderstorms activities.
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APPENDIX

TABLE III

Counts of numbers of European red mites on apple leaves; data from Garman, 1951.

Count 0 1 2 3 4 5 6 7 Total

Observed frequency 70 38 17 10 9 3 2 1 150

TABLE IV

Summary Statistics of data-I.

Mean Variance ID MDµ Skewness Kurtosis

1.1466 2.2736 1.9828 1.1445 1.5291 4.9528
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TABLE V

Tests Summary for data set I.

Distribution p̂ β̂ KS - l df χ2 p-value AIC BIC AICc

WNBL( p̂,β̂ ) 0.2087(0.0154) 0.4770(0.0436) 0.5951 222.3063 3 2.3842 0.497 448.6126 454.6339 445.6926

NB(p̂,β̂ ) 0.5281(0.0275) 1.0245( 0.1051) 0.5979 222.4371 3 2.5147 0.473 448.8742 454.8955 445.9542

GP(p̂,β̂ ) 0.3209(0.0551) 0.7786(0.0796) 0.6019 222.7452 3 2.9475 0.400 449.4904 455.5117 446.5704

Pois.(β̂ ) 1.1466(0.0874) 0.6408 242.8099 2 26.6513 0.000 487.6198 490.6304 485.6465

TABLE VI

Accidents to 647 women working on H. E. shells during 5 weeks.

Count 0 1 2 3 4 5 or more Total

Observed frequency 447 132 42 21 3 2 647

TABLE VII

Summary Statistics of data-II.

Mean Variance ID MDµ Skewness Kurtosis

0.4652 0.6919 1.4872 0.6428 2.1212 7.9209

TABLE VIII

Tests Summary for data set II.

Distribution p̂ β̂ KS - l df χ2 p-value AIC BIC AICc

WNBL(p̂,β̂ ) 0.3006(0.0140) 0.6160(0.0314) 0.7295 592.0683 2 2.9852 0.225 1188.137 1197.081 1185.155

NB(p̂,β̂ ) 0.3497(0.0137) 0.8651(0.0587) 0.7309 592.2670 2 3.2742 0.195 1188.534 1197.479 1185.553

GP(p̂,β̂ ) 0.1963(0.0332) 0.3739(0.0253) 0.7328 592.6005 2 3.7961 0.150 1189.201 1198.146 1186.22

Pois.(β̂ ) 0.4652(0.0268) 0.7534 617.1843 2 65.0106 0.000 1236.369 1240.841 1234.375

TABLE IX

Number of outbreaks of strikes in UK coal mining industries.

Count 0 1 2 3 4 Total

Observed frequency 46 76 24 9 1 156

TABLE X

Summary Statistics of Data-III.

Mean Variance ID MDµ Skewness Kurtosis

0.9935 0.7419 0.7467 0.5859 0.8023 3.5038
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TABLE XI

Tests Summary for data set III.

Distribution p̂ β̂ KS - l df χ2 p-value AIC BIC AICc

WNBL( p̂,β̂ ) 0.0833(0.0077) 3.9294(0.2916) 0.5729 187.3976 1 1.1206 0.290 378.7952 384.8949 375.8721

NB(p̂,β̂ ) 0.0017(5.6903 ×10−06) 572.1488(45.9855) 0.5395 191.9723 1 9.4912 0.002 387.9446 394.0443 385.0215

GP(p̂,β̂ ) -0.1450(0.0403) 1.1376(0.0779) 0.5487 188.8228 1 4.5304 0.033 381.6456 387.7453 378.7225

Pois.(β̂ ) 0.9936(0.0798) 0.5381 191.9362 2 9.4145 0.009 385.8724 388.9223 383.898

TABLE XII

Frequencies of the observed number of days that experience x TH’s at Cape Kennedy,Fla.,for 11-year period of Record

January 1957 through December 1967.

x January February March April May June July August September October Nov. Dec. Spring Summer Fall

0 335 295 308 299 266 187 177 185 228 311 321 334 873 549 860

1 4 9 20 18 43 77 80 89 54 17 6 3 81 246 77

2 2 4 9 10 25 40 47 30 33 9 3 2 44 117 45

3 2 3 3 3 17 26 24 12 4 2 9 67 16

4 1 3 6 9 10 3 4 25 3

5 0 2 2 3 0 7

6 1 1 1 1

Total 341 310 341 330 341 330 341 341 330 341 330 341 1012 1012 1001
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TABLE XVI

Comparison via Vuong Test.

Competing Models Statistics January February March April May June

WNBL−NB
Z 83.5625 31.42032 36.5475 108.1294 7.2535 69.2805

p− value 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

WNBL−GP
Z 3.4798 1.0256 12.113 15.0277 5.5650 40.252

p− value 0.0005 0.3051 0.0001 0.0001 0.0001 0.0001

TABLE XVII

Comparison via Vuong Test.

Competing Models Statistics July August September October November December

WNBL−NB
Z 90.2142 125.0967 26.7266 183.6862 1032.339 1838.215

p− value 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

WNBL−GP
Z 69.8226 54.8183 12.113 13.5131 6.1042 3.1211

p− value 0.0005 0.0001 0.0001 0.0001 0.0001 0.0018
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