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The Asymmetric Power-Student-t Model for
Censored and Truncated Data

ROGER TOVAR-FALÓN, HELENO BOLFARINE & GUILLERMO MARTÍNEZ-FLÓREZ

Abstract: In this paper, we propose the power Student-t regression model for censored
(limited) observations which extends the Student-t censored regression model. This
extension is based on the asymmetric and heavy-tailed power Student-t distribution.
The score functions and expected information matrix are given as well as the process for
estimating the parameters in the model is discussed by using the likelihood approach.
Two simulation studies are conducted to evaluate parameter recovery and properties of
the model and finally, two applications to a real data set are reported to demonstrate
the usefulness of this new methodology.

Key words: Censored regression model, Fisher information matrix, maximum likelihood
estimation, power Student-t distribution.

INTRODUCTION

Regression models where the response variable is censored or limited are common in different fields:
clinical essays, econometric analysis, social phenomena, engineering studies, among others. In clinical
essays for example, in the first phases of development of the new vaccines, the determination of
antibody concentration values often are left-censored due to detection limit by lack of sensitivity of
the essay when the concentrations are near zero, see Moulton & Halsey (1995). In social phenomena,
the study on extramarital behavior where the variable of interest is the number of extramarital affairs
in the previous year, for example, it can result in a left-censored variable (Fair 1978). In econometrics
analysis, the ordinary Tobit model (Tobin 1958) is commonly used to conduct studies of the labor
force participation of married women. In this case, the observed response is the wage rate, which
is typically considered as censored below zero, i.e., for working women, positive values for the wage
rates are registered, whereas for the non-working women the observed wage rates are zero; see Mroz
(1987).

In situations such as previously discussed, where censored regression (CR) models are proposed,
it is common to assume a normal distribution for the error term, however, this assumption can not be
suitable and it can be unrealistic due to the presence of atypical observations or high (or low) degree
of skewness and kurtosis of the response variable, which the normal model is unable to capture, so
considerable interest has centered on relaxing the assumption of normality of the errors in CRmodels.
In this context, some authors have proposed a wide range of alternatives to the normal censored
regression (NCR) model which is widely known in the literature as the Tobit model. Arellano-Valle et al.
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(2012) for example, extend the classical Tobit model by introducing the Student-t censored regression
(TCR) model that can be suitable when the response variable has heavy-tails and the kurtosis is greater
than the usual normal model. Another extension of the Tobit model was proposed by Martínez-Flórez
et al. (2013) by considering that random errors follow a power-normal (PN) distribution (Gupta & Gupta
2008). The novelty of this proposal is the incorporation of a shape parameter which gives flexibility
to the assumption of the symmetric errors (normality assumption) and it allows to accommodating
skewed forms to the left and the right for the error term in CR models. Recently Garay et al. (2017)
proposed a family of censored regression models based on the family of symmetric distributions
commonly known as the scale mixture of normal (SMN) distributions, which includes the TCR model
proposed by Arellano-Valle et al. (2012). This family also includes Pearson type VII (PVII), slash (SL),
power exponential (PE), contaminated normal (CN) and normal (N) distributions. In addition to being
robust, these models have shown to be useful in detecting atypical observations in CR models.

Although some proposals that take into account the problem of atypical observations in censored
regression models, most of them are based on the assumption of symmetry of the error and few
studies that capture departure from symmetry in the distribution of errors as in Martínez-Flórez et al.
(2013), for example, who support their work in the great virtues of the alpha-power models to fit data
where distribution presents high or low asymmetry and/or kurtosis.

Within this class of alpha-powermodels Zhao & Kim (2016) proposed an extension of the Student-t
model by defining the power-Student-t (PT) distribution as an alternative to the skew-t model by
Azzalini & Capitanio (2003) for fitting skewed and heavy-tailed data. The PT model, which extends
the power-normal model by Gupta & Gupta (2008) seems to be useful in situations where the data
present higher degree of skewness and kurtosis than PN model in presence of atypical observations.

In this paper, we propose a censored regression model under the assumption that errors follow
a PT distribution (hereafter we will call it the PTCR model). The assumption of PT distribution gives
flexibility for accommodating skew forms to the left and the right, and kurtosis greater or smaller than
the Student t-distribution can be also accommodated, hence, PTCR model extends the TCR model. The
process of inference in the model is conducted by using the maximum likelihood (ML) approach and
its large sample properties. Application is implemented to real data set where it is demonstrated that
the proposed model can be very useful in fitting real data sets.

The rest of this paper is organized as follows: Section “The Power Student-t Distribution” presents
a brief review of the main properties of the PT distribution. In Section “Power-Student-t Model for
Censored and Truncated Data”, we introduce the censored and truncated PTmodels. Section “Censored
Power-Student-t Regression Model” introduces the PTCR model. Here, ML equation and the observed
and expected information matrices are given. Section “Simulation Study” presents the results of a
simulation study which reveals the good performance of the estimation approach. The PTCR model
is fitted to a data set of housewives wages in Section “Real Data Application”, revealing that the data
set in question can be fitted by PTCR as well as by a CR model where the observational errors have a
SMN distribution (SMNCR model).
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Figure 1. Density function of PT(α, 10) for α = 5 (solid line), α = 2 (dashed line), α = 1 (dotted line), α = 0.5
(dotted-dashed line).

THE POWER STUDENT-T DISTRIBUTION

In this section, we present the PT distribution and review some of its main characteristics and
properties. The PT model was introduced by Zhao & Kim (2016) and it is an alternative to skew-t
model for fitting data with high indices of asymmetry and kurtosis in addition to heavy tails.

Definition 1. The random variable X is said to have a PT distribution with parameter α and degree of
freedom ν, if X has probability density function (PDF) given by

fPT(x; α, ν) = αfT(x; ν)
[
FT (x; ν)

]α–1, (1)

for x ∈ R and α > 0. Functions fT(·; ν) and FT(·; ν) are the PDF and cumulative distribution function
(CDF) of the standard Student-t distribution.

Random variable having fPT(x; α, ν) distribution is denoted shortly by X ∼ PT(α, ν). Figure 1
displays some forms of the PDF of the PN distribution for selected values of α. Note from figure that
parameter α controls the skewness and kurtosis of the distribution. The CDF of the PT model is given
by

FPT(x; α, ν) =
[
FT (x; ν)

]α, (2)

for x ∈ R. Some properties of the PT distribution can be proven as result of Definition 1.

Proposition 1. Let X ∼ PT(α, ν), then
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(i) if α = 1, X follows Student-t distribution and we write X ∼ T(ν),

(ii) if ν→ ∞, X converges to power-normal (PN) model with parameter α. The PDF is given by

fPN(x; α) = αφ(x)
[
Φ(x)

]α–1, x ∈ R. (3)

More details of PN distribution can be found in Gupta & Gupta (2008) and Pewsey et al. (2012).

(iii) if α = 1 and ν→ ∞, X converges to standard normal distribution.

Proof. Proof of (i)-(iii) are directly obtained from definition of PT distribution

Proposition 2. Let X ∼ PT(α, ν), then for k ∈ N

E
[
Xk
]
= E

[(
F–1T (Y; ν)

)k], (4)

where Y has a beta distribution, and F–1T (·; ν) denotes the inverse of the function FT(·; ν) .

Proof. We have by definition that

E
[
Xk
]
=

∫
R
xkαfT(x; ν)

[
FT (x; ν)

]α–1dx
thus, letting y = FT(x; ν), then x = F–1T (y; ν), it follows that

E
[
Xk
]
=

∫ 1

0

(
F–1T (y; ν)

)k
αyα–1dy

which is the expected value of the function
(
F–1T (Y; ν)

)k, where Y follows a beta distribution with
parameter α and 1.

The expected value, variance, indices of asymmetry and kurtosis of the PT model can be found by
using the expressions

(i) E[X] = μ1

(ii) V[X] = μ2 – μ21

(iii) γ1 =
μ3 – 3μ1μ2 + 2μ31

(μ2 – μ21)3/2

(iv) γ2 =
μ
′
4

(μ′2)
2

where μr = E[Xr] and μ′r = E[X – E(X)]r . Table I presents the values of the asymmetry coefficient of the
PT model for some values of the ν parameter and for values of α in the range of 0.1 to 100000.

Definition 2. Let X ∼ PT(α, ν). The PT density of location and scale is defined as the distribution of
Z = ξ+ ηX, for ξ ∈ R and η > 0. The corresponding PDF is given by

fPT(z; ξ, η, α, ν) = αfT
(
z – ξ
η

; ν

)[
FT
(
z – ξ
η

; ν

)]α–1
, (5)

for z ∈ R. We denote this extension as Z ∼ PT(ξ, η, α, ν), and we have that PT(0, 1, α, ν) ≡ PT(α, ν).
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Table I. Skewness of the PT(α, ν)model. Values of α ranging of 0.1 to 100000.

ν min max

4 -9.3423 5.5913

5 -7.5147 3.5101

6 -7.3825 2.7668

7 -4.6073 2.3721

8 -4.1468 2.1228

9 -3.8410 1.9490

10 -3.4826 1.8202

12 -2.2654 1.6409

15 -2.0131 1.4752

20 -1.8802 1.3208

25 -1.8245 1.2329

30 -1.6372 1.1760

50 -1.1158 1.0664

100 -1.0401 0.9864

500 -0.9390 0.9264

The kth moment of the random variable Z is given by

E
[
Zk
]
=

k∑
j=0

(
k
j

)
ξ
j
η
k–j
μk–j, (6)

where μj is the jth moment of a random variable X ∼ PT(α, ν). Zhao & Kim (2016) derived the
information matrix for the location-scale version and showed that it is non-singular when α = 1 for
small values of the parameter ν (i.e., ν� 30). When ν tends to +∞, then PT distribution converges to
PN model and here, we recall Pewsey et al. (2012) showed that PN model has non-singular information
matrix. This result guarantees that regularity conditions are satisfied for the likelihood approach,
hence, with PT model, symmetry can be tested by using ordinary large sample properties of the
likelihood ratio statistics.

POWER-STUDENT-T MODEL FOR CENSORED AND TRUNCATED DATA

Based on the goodness of the PT distribution to fit data with high indices of asymmetry and kurtosis,
in this section, we introduce the censored PT and the truncated PT models which we will be denoted
by CPT and TPT, respectively.

Definition 3 (Censored PT Model). Suppose that random variable Y follows a PT(ξ, η, α, ν) distribution.
Let Y1, . . . , Yn a random sample of size n of Y , where only those values of Yi greater than constant ki
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are recorded; and for values Yi ≤ ki only the value ki is registered. The observed values Yoi can be
written as

Yoi =

ki, if Yi ≤ ki,

Yi, if Yi > ki,

for i = 1, . . . ,n. The resulting sample is said to be a censored power-Student-t (CPT).

From Definition 3 it follows that P(Yoi = ki) = P(Yi ≤ ki) =
{
FT
(ki–ξ
η

; ν
)}α

, and for the
observations Yoi = Yi the distribution of Yoi is the same of Yi, i.e., Y

o
i ∼ PT(ξ, η, α, ν). For convenience,

we choose to work with the case of left-censored data, however, the followings results can be extended
to other types of censorship.

Maximum Likelihood Estimation for CPT Model

Let Yo1 , . . . , Y
o
n be a random sample of the censored PT(ξ, η, α, ν) distribution (censored in ki). To

perform statistical inference for parameter vector θ = (ξ, η, α, ν)> by using the ML method, we use
the reparameterization in Olsen (1978). Thus, let γ = σξ and ς = 1/η, the log-likelihood function for
the new vector ϕ = (γ, σ, α, ν)>, given the observed sample Yo can be written as

`(ϕ;Yo) = α
n∑
i=1

(1 – di) log{FT(ci; ν)}

+
n∑
i=1

di{log α+ log σ+ log fT(zi; ν) + (α – 1) log FT(zi; ν)} (7)

where ci = ςki – γ, zi = ςyi – γ, and di is an indicator variable defined as di = 1 if Yoi = Yi; and
di = 0 if Yoi = ki. The components of the score function U(ϕ) are obtained by deriving partially the
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log-likelihood function given in (7) with regard to components γ, ς, α and ν, we obtain the following
equations

U(γ) = –α
n∑
i=1

(1 – di)r(ci; ν)

+
n∑
i=1

di


(
ν+ 1

ν

)(
1 +

z2i
ν

)–1
zi – (α – 1)r(zi; ν)


U(σ) = α

n∑
i=1

(1 – di)r(ci; ν)ki

+
n∑
i=1

di

1

σ
–
(
ν+ 1

ν

)(
1 +

z2i
ν

)–1
ziyi + (α – 1)r(zi; ν)yi


U(α) =

n∑
i=1

(1 – di) log{FT(ci; ν)}+
n∑
i=1

di
{
1

α
+ log FT(zi; ν)

}

U(ν) =
α

2

n∑
i=1

(1 – di)
{
ψ

(
ν+ 1

2

)
– ψ
(
ν

2

)
– b01(ci; ν) –

cir(ci; ν)
ν

}

+
1

2

n∑
i=1

di
{
ψ

(
ν+ 1

2

)
– ψ
(
ν

2

)
–
1

ν

– log

(
1 +

z2i
ν

)
+

(
ν+ 1

ν

)(
1 +

z2i
ν

)–1 z2i
ν


+
α – 1
2

n∑
i=1

di
{
ψ

(
ν+ 1

2

)
– ψ
(
ν

2

)
– b01(zi; ν) –

zir(zi; ν)
ν

}
where r(x; ν) = fT(x; ν)/FT(x; ν), ψ(x) = d

dx logΓ(x) is the digamma function and bmn(cm; ν + m) is
the truncated moment defined as

bmn(cm; ν+m) =

∫ cm

–∞
sm
{
log

(
1 +

s2

ν+m

)}n
fT(s; ν+m)

FT(cm; ν+m)
ds, (8)

with cm =
√
ν+m
ν

c and c0 = c. The moments bmn in (8) are obtained by numerical integration, for
example, by using integrate function of R Development Core Team (2018). The ML estimates of the
parameters ξ, η, α and ν in censored PT model are obtained using iterative algorithms based on the
score functions and by applying the inverse transformation ξ = γ/ς and η = 1/ς. For obtaining the
standard errors of the ML estimates one should compute the information matrix Iϕ. It is well known
that the elements of Iϕ are given by

Iϕ(i, k) = –E

[
∂2`(ϕ;Yo)
∂ϕi∂ϕk

]
, i, k = 1, . . . , 4

where ϕ = (γ, σ, α, ν)>. Since expectation over PT distribution and second-order derivatives are
not straightforward, numerical methods should be performed to obtain the explicit form of the
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information matrix Iϕ. Thus, we use the observed information matrix for calculating the standard
errors in the rest of the paper. To recover the information matrix Iθ of the original parameterization
θ = (ξ, η, α, ν)>, we use

Iθ = (∂ϕ/∂θ)>Iϕ(∂ϕ/∂θ),

where the Jacobian matrix is

∂ϕ

∂θ
=



1
η

– 1
η2

0 0

0 – 1
η2

0 0

0 0 1 0

0 0 0 1


(9)

Definition 4 (Truncated PT Model). Let X be a random variable with distribution X ∼ PT(ξ, η, α, ν).
Let a, b ∈ R with a < b, such that P(a < X < b) > 0. It is said that random variable Y has a truncated
power-Student-t (TPT) distribution in the interval (a, b), if Y has the same distribution as X | X ∈ (a, b).
In this case, we write Y ∼ TPT(a,b)(ξ, η, α, ν).

As a consequence of the Definition 4, the PDF of TPT distribution can be obtained as

fPT(y | (a, b)) =
α

η
fT
(
y – ξ
η

; ν

)[
FT
(
y – ξ
η

; ν

)]α–1
×
{[
FT
(
b – ξ
η

)]α
–
[
FT
(
a – ξ
η

)]α}–1
if a < y < b, and fPT(y | (a, b)) = 0 in otherwise. Now, we consider that before the sample to be
selected, the distribution of Y is truncated at the value k, so that we can only choose observations
such that Y ≤ k. Then, random variable Y has PDF given by

fPT(y | y ≤ k) =
α

η
fT
(
y – ξ
η

; ν

)[
FT
(
y – ξ
η

; ν

)]α–1 [
FT
(
k – ξ
η

; ν

)]–α
(10)

for –∞ < y ≤ k.

Maximum Likelihood Estimation for TPT Model

Given a sample Y = (Y1, . . . , Yn)> of the TPT distribution in the value k, the log-likelihood function
for vector ϕ = (γ, σ, α, ν)>, where γ = σξ and ς = 1/η, is given by

`(ϕ;Y) = –n1α log{FT(c; ν)}

+
n∑

yi≤k
{log α+ log σ+ log fT(zi; ν) + (α – 1) log FT(zi; ν)} (11)
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where c = ςk–γ, zi = ςyi–γ, and n1 is the number of observations in the sample such that –∞ < y ≤ k.
Deriving partially the log-likelihood function (11) with respect to the components of the vector ϕ the
following elements of the score function are obtained

U(γ) = n1αr(c; ν) +
∑
yi≤k


(
ν+ 1

ν

)(
1 +

z2i
ν

)–1
zi – (α – 1)r(zi; ν)


U(σ) = –n1αr(c; ν)k+

∑
yi≤k

1

σ
–
(
ν+ 1

ν

)(
1 +

z2i
ν

)–1
zi + (α – 1)r(zi; ν)


U(α) = –n1 log{FT(c; ν)}+

∑
yi≤k

{
1

α
+ log FT(zi; ν)

}

U(ν) = –
n1α
2

{
ψ

(
ν+ 1

2

)
– ψ
(
ν

2

)
– b01(c; ν) –

cr(c; ν)
ν

}
+

1

2

∑
yi≤k

{
ψ

(
ν+ 1

2

)
– ψ
(
ν

2

)
–
1

ν

– log

(
1 +

z2i
ν

)
+

(
ν+ 1

ν

)(
1 +

z2i
ν

)–1 z2i
ν


+
α – 1
2

∑
yi≤k

{
ψ

(
ν+ 1

2

)
– ψ
(
ν

2

)
– b01(zi; ν) –

zir(zi; ν)
ν

}

where r(x; ν) = fT(x; ν)/FT(x; ν), ψ(x) = d
dx logΓ(x) is the digamma function and bmn(cm; ν + m) is

given by (8). To obtain the ML estimates of the parameters ξ, η, α and ν in the TPT model, we proceed
in a similar way to the CPT model, and iterative methods based on the Newton-Rapshon algorithm are
used with the score functions. We use the observed information matrix for calculating the standard
errors and to recover the information matrix Iθ of the original parameterization θ = (ξ, η, α, ν)>, we
use Iθ = (∂ϕ/∂θ)>Iϕ(∂ϕ/∂θ), where ∂ϕ/∂θ is given in (9).

CENSORED POWER-STUDENT-T REGRESSION MODEL

In this section, we introduce the censored power-Student-t regression model, which is denoted by
PTCR. This model results from the consideration of the observed random variable Yoi = DiYi, where

Di = I(0,+∞)(Yi) and Yi = x>i β+ εi, with εi
iid∼ PT(0, η, α, ν), for i = 1, . . . ,n; i.e.,

Yoi =

x>i β+ εi, if Yi > 0,

0, if Yi ≤ 0,
(12)

where β is a vector of dimension p of unknown parameters, xi = (xi1, . . . , xip)>, for i = 1, . . . ,n,
are vectors of known covariates, and εi, for i = 1, . . . ,n, are independent random variables with
PT distribution with location parameter 0, scale parameter η, shape parameter α, and degrees of
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freedom ν. This assumption is equivalent to considering that unobserved random variables Y1, . . . , Yn
are independent with Yi ∼ PT(x>i β, η, α, ν), that is, with PDF given by

g(yi; θ) =
α

η
fT

(
yi – x>i β
η

; ν

)[
FT

(
yi – x>i β
η

; ν

)]α–1

for i = 1, . . . ,n, where θ = (β>, η, α, ν)>. The contribution to likelihood function for observations
Yoi = 0 is given by

P(Yoi = 0) =

{
FT

(
–
x>i β
η

; ν

)}α
,

and for observations Yoi ≥ 0, we have that Yoi ∼ PT(x>i β, η, α, ν). Therefore, the likelihood function of
the PTCR model based on the observed sample Yo = (Yo1 , . . . , Y

o
n)

> is given by

L(θ;Yo) =
n∏
i=1

{
FT

(
–
x>i β
η

; ν

)}α(1–di){
α

η
fT

(
yi – x>i β
η

; ν

)

×
[
FT

(
yi – x>i β
η

; ν

)]α–1}di
(13)

where

di =

1, if Yoi > 0,

0, if Yoi = 0,

Model (12) can be extended to the situation where the value of the censorship associated with
the observation i is replaced by the value ki (a known value), i.e.,

Yoi =

x>i β+ εi, if Yi > ki,

ki, if Yi ≤ ki,
(14)

for i = 1, . . . ,n. Note that, by making Yo∗i = Yoi – ki, x
∗
i = (x>i , ki)

> and β∗ = (β>, –1)>, we have the
previous model in (12), hence, the results of the inference based on the ML method can be used to fit
the more general model in (14).

Proposition 3. Consider the model (12) with assumption εi
iid∼ PT(0, η, α, ν), for i = 1, . . . ,n, then

(i) if α = 1, model (12) is reduced to t-Student censored regression (TCR) model

(ii) if ν → ∞, model (12) converges to power-normal censored regression (PNCR) model (see
Martínez-Flórez et al. 2013)

(iii) if α = 1 and ν → ∞, model (12) converges to usual normal censored regression (NCR) model,
that is, Tobit model.

Proof. Proof of (i)-(iii) are directly obtained from definition of PTCR model.
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Moments

Proposition 4. The mean and variance for the ith observed response in PTCR model are given by

E[Yoi ] = η
(
ci +m1(ci; ν)

)(
1 –
[
FT(–ci; ν)

]α) (15)

and

Var[Yoi ] = η
2
(
c2i + 2cim1(ci; ν)

)([
FT(–ci; ν)

]α)(
1 –
[
FT(–ci; ν)

]α)
+ η2

(
m2(ci; ν) – [m1(ci; ν)]

2 (1 – [FT(–ci; ν)]α))(1 – [FT(–ci; ν)]α) (16)

respectively, where ci = μi/η with μi = x>i β and

mr(c; ν) =
1

1 – {FT(–c; ν)}α

∫ 1

FT(–c;ν)
[F–1T (u; ν)]rαuα–1du, r = 1, 2.

Note thatmr(c; ν) is themoment E[(F–1T (U; ν))r] of a random variableUwith distributionBeta(α, 1),
truncated in the interval (FT(–c; ν), 1).

Proof. The mean and variance for the ith observed response in PTCR model can be obtained by noting
that Yoi = DiYi, where Di = I(0,+∞)(Yi) and Yi = μi + ηZi, with μi = x>i β and Zi

iid∼ PT(α, ν), i = 1, . . . ,n.
We have

E[Yoi ] = E[Yi | Yi > 0]P(Yi > 0)

= E[μi + ηZi | μi + ηZi > 0]P(μi + ηZi > 0)

=
(
μi + ηE

[
Zi | Zi > –

μi
η

])
P
(
Zi > –

μi
η

)
= η

(
μi
η
+ E
[
Zi | Zi +

μi
η
> 0
])(

1 – P
(
Zi ≤ –

μi
η

))
= η

(
ci + E[Zi | Zi + ci > 0]

)(
1 –
[
FT(–ci; ν)

]α)
By Lemma 1 in Appendix A, we have

E[Yoi ] = η
(
ci +m1(ci; ν)

)(
1 –
[
FT(–ci; ν)

]α)
To obtain the variance of Yoi , note that

E
[
(Yoi )

2] = E[Y2i | Yi > 0]P(Yi > 0)

= E
[
(μi + ηZi)

2 | μi + ηZi > 0
]
P(μi + ηZi > 0)

=
(
μ
2
i + 2ημiE

[
Zi | Zi > –

μi
η

]
+ η2E

[
Z2i | Zi > –

μi
η

])
P
(
Zi > –

μi
η

)
= η2

(μ2i
η2

+ 2
μi
η
E
[
Zi | Zi > –

μi
η

]
+ E
[
Z2i | Zi > –

μi
η

])(
1 – P

(
Zi ≤ –

μi
η

))
= η2

(
c2i + 2ciE[Zi | Zi + ci > 0] + E[Z2i | Zi + ci > 0]

)(
1 –
[
FT(–ci; ν)

]α)

An Acad Bras Cienc (2021) 93(4) e20190920 11 | 33



ROGER TOVAR-FALÓN et al. CENSORED POWER-STUDENT-T REGRESSION MODEL

Using Lemma 1 in Appendix, it follows that

E
[
(Yoi )

2] = η2(c2i + 2cim1(ci; ν) +m2(ci; ν)
)(

1 –
[
FT(–ci; ν)

]α)
thus, by calculating Var[Yoi ] = E

[
(Yoi )

2
]
–
(
E[Yoi ]

)2 and after some algebraic manipulations, we obtain
Var[Yoi ] = η

2
(
c2i + 2cim1(ci; ν)

)([
FT(–ci; ν)

]α)(
1 –
[
FT(–ci; ν)

]α)
+ η2

(
m2(ci; ν) – [m1(ci; ν)]

2 (1 – [FT(–ci; ν)]α))(1 – [FT(–ci; ν)]α)

It is important to note that, if ν tends to infinity, then (15) and (16) converge to the mean and
variance of the PNCR model (Martínez-Flórez et al. 2013), i.e., when ν→ ∞

E[Yoi ] = η
(
ci +m1(ci)

)(
1 – [Φ(–ci)]

α
)

Var[Yoi ] = η
2
(
c2i + 2cim1(ci)

)(
[Φ(–ci)]

α
)(

1 – [Φ(–ci)]
α
)

+ η2
(
m2(ci) – [m1(ci)]

2 (1 – {Φ(–ci)}
α)
)(

1 – [Φ(–ci)]
α
)

where

mr(c) =
1

1 – {Φ(–c)}α

∫ 1

Φ(–c)
[Φ–1(u)]rαuα–1du.

with Φ(·) the CDF of the standard normal distribution, and Φ–1(·) the inverse function of Φ(·). Also,
worth noting that, if α = 1 and ν → ∞, we have m1(ci; ν) −→ φ(ci)/Φ(ci) and m2(ci; ν) −→ (Φ(ci) –
ciφ(ci))/Φ(ci), thus

E[Yoi ] = η
(
ciΦ(ci) + φ(ci)

)
Var[Yoi ] = η

2
(
c2i Φ(ci) + 2ciφ(ci)

)(
1 – Φ(ci)

)
+ η2

(
Φ(ci) – φ(ci)[ci + φ(ci)]

)
which are the mean and variance, respectively, of the Tobit model (Tobin 1958).

Maximum Likelihood Estimation

The ML method is considered by using the reparameterization of Olsen (1978). Let γ = ςβ, ς = 1/η and

di =

 1, if Yoi > ki,

0, if Yoi = ki,

the log-likelihood function for ϕ = (γ>, σ, α, ν)> obtained from (13) under the new parameterization
is given by

`(ϕ;Yo) = α
n∑
i=1

(1 – di) log
{
1 – FT(ci; ν)

}
+

n∑
i=1

di
{
log α+ log σ+ log fT(zi; ν) + (α – 1) log FT(zi; ν)

}
(17)
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where zi = ςyi–ci, with ci = x>i γ. The components of the score function U(ϕ) are obtained by deriving
`(ϕ;Yo) partially in relation to the components γ, η, α and ν. After some algebraic manipulations the
following components of the score function are obtained

U(γ) = –α
n∑
i=1

(1 – di)r(–ci; ν)xi

+
n∑
i=1

di


(
ν+ 1

ν

)(
1 +

z2i
ν

)–1
zi – (α – 1)r(zi; ν)

 xi (18)

U(σ) =
n∑
i=1

di

1

σ
–
(
ν+ 1

ν

)(
1 +

z2i
ν

)–1
ziyi + (α – 1)r(zi; ν)yi

 (19)

U(α) =
n∑
i=1

(1 – di) log{1 – FT(ci; ν)}+
n∑
i=1

di
{
1

α
+ log FT(zi; ν)

}
(20)

U(ν) = –
α

2

n∑
i=1

(1 – di)
{
ψ

(
ν+ 1

2

)
– ψ
(
ν

2

)
– b01(ci; ν) –

cir(ci; ν)
ν

}
R(ci; ν)

+
1

2

n∑
i=1

di

{
ψ

(
ν+ 1

2

)
– ψ
(
ν

2

)
–
1

ν
– log

(
1 +

z2i
ν

)}

+
1

2

n∑
i=1

di


(
ν+ 1

ν

)(
1 +

z2i
ν

)–1 z2i
ν


+
α – 1
2

n∑
i=1

di
{
ψ

(
ν+ 1

2

)
– ψ
(
ν

2

)
– b01(zi; ν) –

zir(zi; ν)
ν

}
(21)

where r(x; ν) = fT(x; ν)/FT(x; ν), R(x; ν) = FT(x; ν)/(1 – FT(x; ν)), ψ(x) = d
dx logΓ(x) is the digamma

function and bmn(cm; ν+m) is the truncated moment defined by (8). Note that, if α = 1 the equations
(18)-(21) are reduced to the functions of the TCR model (Arellano-Valle et al. 2012), while, if α = 1 and
ν → ∞, then r(c; ν) → r(c) = φ(c)/Φ(c), R(c; ν) → R(c) = Φ(c)/(1 – Φ(c)), and U(ν) → 0, therefore,
the equations (18) and (19) are reduced to score functions of the Tobit model.

The elements of the observed information matrix Jϕ for PTCR model, which are denoted by jϕiϕj ,
can be obtained by calculating the second partial derivative of the log-likelihood function (17), i.e.,
jϕiϕj = –∂2`(ϕ;Yo)/∂ϕi∂ϕj, while the expected information matrix is obtained as Iϕ = E[Jϕ], which
involves the calculation of truncated expected values that have no closed form and must be obtained
numerically. The Appendix B presents the expressions for the elements of the matrices Iϕ and Jϕ. The
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expected information matrix Iθ of the original parameterization θ = (β, η, α, ν)> can be recovered by
using Iθ = (∂ϕ/∂θ)>Iϕ(∂ϕ/∂θ), where

∂ϕ

∂θ
=



1
η
Ip – 1

η2
β 0 0

0 – 1
η2

0 0

0 0 1 0

0 0 0 1


Finally, the ML estimates for θ = (β, η, α, ν)> can be obtained using iterative methods based on the

Newton-Rapshon algorithm from the score function (18) - (21) and applying the inverse transformation
β = γ/ς and η = 1/ς. Estimates of the variances of the estimator can be obtained by evaluating the
inverse of the observed information matrix J–1ϕ at the ML estimators ϕ̂ = (γ̂, σ̂, α̂, ν̂)> and by using the
previous result.

Model Selection and Residual Analysis

In this section some criteria for the selection of the best-fitted model and a methodology for residual
analysis are proposed.

Model Selection

Many model selection tools are generally used, such as the Akaike information criteria (AIC), (Akaike
1974), Bayesian information criterion (BIC) (Schwarz 1978), and the AIC corrected (AICc) (Sugiura 1978),
which are defined by

–2`(θ | y) + c(k,n)

where the term c(k,n) is a quantity that depends on the number of free parameters that are estimated
in the model k, and the number of observations in the sample n. For the AIC one has c(k,n) = 2k, for
BIC c(k,n) = k log(n) and for AICc, c(k,n) = 2k(k+ 1)/(n – (k+ 1)). To choose the best-fitted model,
the criteria AIC, BIC and AICc are used.

Residual Analysis

The residual analysis has the purpose of detecting the presence of atypical observations and to
evaluate the assumptions of the model, being able to include formal tests to detect departures from
the assumptions of the consideredmodel, as well as informal graphs to present general characteristics
of the residuals.

Following Garay et al. (2017) and Arellano-Valle et al. (2012), in this work we considered the
transformed martingal residuals rMTi proposed by Barros et al. (2010) as diagnostic tool to evaluate
deviations from the postulated model for the response variable, as well as to detect the presence of
atypical observations. The residuals are defined as

rMTi = sign(rMi)
√
–2[rMi + δi log(δi – rMi)], i = 1, . . . ,n
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where rMi = δi+ log S(yi; θ̂) is the martingal residual proposed by Ortega et al. (2003), where δi = 0, 1
indicates whether the ith observation is censored or not, respectively, sign(rMi) denotes the sign of
rMi and S(yi; θ̂) = P

θ̂
(Yi > yi) represents the survival function evaluated at yi, where θ̂ are the MLE for

θ.
As suggested by Garay et al. (2017), this type of standardized residuals is used due to the fact that

they are symmetrically distributed around zero, which facilitates the construction of the simulated
envelopes with little computational effort and will be useful to detect an incorrect specification of the
model, as well as the presence of observations atypical.

SIMULATIONS STUDIES

Simulation Study 1: Robustness of the Maximum Likelihood Estimates

In this section, we compare the performance of the estimates for PTCR model in the presence of
outliers on the response variable. Following Garay et al. (2017) and Mattos et al. (2018) we performed
a simulation study based on the NCR model. Specifically, we considered (12) with x>i = (1, xi) and
εi ∼ N(0, η2) for i = 1, . . . ,n. As in Garay et al. (2017) we generated 1000 artificial samples of size
n = 300, considering β = (β1, β2)> = (2, 3.5)>, η = 2 and fixing the left censoring level at p = 10, 20
and 30% (that is, 10, 20 and 30% of the observations in each data set were left censored, respectively).
We generated independently the values xi, for i = 1, . . . ,n, from a uniform distribution on the interval
(2, 20). These values were fixed throughout the simulations.

To assess how much the ML estimates are influenced by the presence of outliers, we replaced the
observation y150 by y150(δ) = y150 + δ, with δ = 1, 2, . . . , 10. Let β̂i(δ) and β̂i be the ML estimates of
βi with and without contamination, respectively, i = 1, 2. We are particularly interested in the relative
changes

RC
(
β̂i(δ)

)
= |(β̂i(δ) – β̂i)/β̂i|

We define the relative changes for η analogously. For each replication we obtained the parameter
estimates with and without outliers, under the PTCR model. Table II and Figure 2 depict the average
values of the relative changes across all samples and different censoring levels.

We observe that influence increases dramatically when δ increases for p = 10%, specially for the
parameter. However, for the p = 20 and 30%, these measures vary little, which indicates that PTCR
model is more robust in these cases in the presence of discrepant observations.

Simulation Study 2: Asymptotic properties

To study the performance of the ML estimator θ̂ = (β̂
>, η̂, α̂, ν̂)>, a Monte Carlo simulation study

with sample sizes n =150, 300, 750, and 1000 is presented. We considered the PTCR model defined in
Section “Censored Power-Student-t RegressionModel” with x>i = (1, xi) for i = 1, . . . ,n. The true values
of the parameters were taken as β =(2,1.5)>, η =1.5, α = 0.4, 2.5 and ν = 3.0. We also consider levels of
censorship equal to p = 0, 10, 25 and 45%. The covariate xi was generated from a uniform distribution
U(0.1,20) as considered in Garay et al. (2017). For each combination of parameters, sample sizes and
censorship levels, 2000 samples of the PTCR model were generated with errors εi ∼ PT(0, η, α, ν). To
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Table
II.Average

relative
changes

on
estim

ates
fordifferentcontam

inations
δ
and

censoring
levelp.

Cens.
RC

(·)
δ

Level
1

2
3

4
5

6
7

8
9

10

RC
(
β
1 )

0.00194
0.02610

0.01427
0.05336

0.08081
0.09474

0.12469
0.15654

0.15260
0.15643

10%
RC

(
β
2 )

0.00010
0.00004

0.00009
0.00022

0.00024
0.00032

0.00045
0.00060

0.00064
0.00080

RC
(
η
)

0.00046
0.01137

0.00780
0.02271

0.03341
0.03780

0.04594
0.05558

0.05101
0.04596

RC
(
β
1 )

0.01337
0.01963

0.00945
0.06445

0.12935
0.10080

0.09735
0.07929

0.04515
0.03117

20%
RC

(
β
2 )

0.00010
0.00008

0.00030
0.00031

0.00002
0.00018

0.00040
0.00075

0.00124
0.00157

RC
(
η
)

0.00219
0.00020

0.00160
0.00849

0.00984
0.00615

0.00417
0.00024

0.00910
0.01333

RC
(
β
1 )

0.02466
0.00670

0.10623
0.06087

0.09179
0.15043

0.05653
0.19465

0.03994
0.16353

30%
RC

(
β
2 )

0.00062
0.00190

0.00016
0.00109

0.00006
0.00066

0.00019
0.00015

0.00012
0.00123

RC
(
η
)

0.00176
0.00860

0.01234
0.00391

0.00881
0.01215

0.00324
0.01675

0.00467
0.01425
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Figure 2. Simulation study 1. Average relative changes on estimates for different contaminations δ and censoring
level.

evaluate the performance of the estimators, the absolute value of the relative bias (RB) and the mean
square error (MSE) were considered, they are given by

RB(θ̂i) =
1

2000

2000∑
j=1

 θ̂(j)i
θi

– 1

 , MSE(θ̂i) =
1

2000

2000∑
j=1

(
θ̂
(j)
i – θi

)2
,

respectively, where θ̂(j)i is the estimator of θi for the jth sample, for θi ∈ θ = (β>, η, α, ν)>. The ML
estimates of the parameters were calculated by using the optim function of R Development Core
Team (2018). The optimization of the likelihood function was done using iterative methods based on
the Newton-Rapshon algorithm by using the score functions.

It can be seen from the Table III that RB and MSE tend to decrease when the value of n increases,
indicating that estimates based on the ML method have good asymptotic properties. That pattern is
the same for the different levels of censorship of p under consideration. Note that, when the sample
sizes is n = 150, the estimates for the β0 parameter are unstable (in terms of MSE) because it is
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affected by the bias of the asymmetry parameter α, however, when the sample size increases, the
estimates become more stable. In general, this problem is very common in these types of models, see
for example, Martínez-Flórez et al. (2013), so we recommend moderate and large sample sizes in these
types of models

REAL DATA APPLICATIONS

Application 1: Wage rate

To illustrate the proposedmodel, we consider a data set described by Mroz (1987). The data set consists
of 753 married white women with ages between 30 and 60 years old in 1975, with 428 women that
worked at some point during that year. The response variable used in this application is the wage
rate, which represents a measure of the wage of the housewife known as the average hourly earnings.
In data set, we have that if the wage rates are set equal to zero, these wives did not work in 1975.
Therefore, these observations are considered left-censored at zero.

The considerated covariates were the wife’s age (X1), years of schooling (X2), the number of
children younger than six years old in the household (X3), and the number of children between six
and nineteen years old (X4). These data were analyzed previously by Arellano-Valle et al. (2012) using
a TCR model and later by Garay et al. (2017) using the Scale Mixture of Normal Censored Regression
(SMNCR) models. We analyzed the data set by fitting a PTCR model and we compare our proposal with
SMNCR models by Garay et al. (2017): Student-t censored regression model (TCR) (Arellano-Valle et al.
2012), Slash censored regression model (SLCR), and normal censored regression model (NCR), that is,
the usual tobit model. Table IV shows skewness and kurtosis index for complete data and also for
uncensored observations. Notice that values for the skewness and kurtosis indexes justify using the
PTCR.

Table IV. Statistical summary for wage rate data.

n Mean SE Skewness Kurtosis

Complete Data 753 2.3746 3.2418 2.7778 15.7967

Non Censored Data 428 4.1777 3.3103 3.0801 16.8212

Table V presents parameter estimates together with their corresponding standard errors (SE) for
the PTCR, TCR, SLCR and NCR models. To fit model of the PTCM, we use the R code in the Appendix
C. Table VI presents some model selection criteria, together with the values of the log-likelihood.
According to the AIC, BIC and AICc criteria, the PTCR model seems to yield a better fit to the Mroz’s data
than the SMNCR models (TCR and SLCR models) and the usual Tobit model (NCR model), supporting
the contention of a departure from symmetry of the errors. Also, the SE of the PTCR model are smaller
than SE of the SMNCR and NCR models.

A more emphatic indication that an asymmetric model should be considered comes from testing
the hypothesis a TCR model against an asymmetric (PTCR model), that is,

H0 : α = 1 versus H1 : α 6= 1,
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Figure 3.Wage rate data. Envelopes of transformed martingale residuals for PTCR, TCR, SLCR and NCR models.

by using the likelihood ratio (LR) statistics, –2 log(Λ) = –2
(
`TCR(θ̂) – `PTCR(θ̂)

)
, which for the data set

under study, leads to –2 log(Λ) = 52.41, which is greater than the critical 5% value with one degree
of freedom which is given by χ21,95% = 3.84. This is an indication that the PTCR model fits Mroz’s data
better than the ordinary TCR model.

Finally, in order to verify if there is any incorrect specification in the assumptions of the fitted
model, the simulated envelope graphs for the transformed martingal residuals are shown in Figure 3.
This figure indicates that the PTCR model is, apparently, more suitable for the adjustment of this data
than the SMNCR models. It can also be observed that the SMNCR models with heavy tails fit the data
better than the NCR model, since there are few observations that are outside the envelopes.

Application 2: Stellar Abundances Data

The second censored dataset is described in Santos et al. (2002) and are available in the R package
astrodatR (Feigelson 2014) under the name Stellar abundances. These data were analyzed Mattos et al.
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Table V. Parameters and standard errors (SE) of the PTCR, TCR, SLCR and NCR models fitted to Wage rate data.

PTCR TCR SLCR NCR

θ Estimate SE Estimate SE Estimate SE Estimate SE

β0 -8.8412 0.3785 -1.0474 1.1549 -1.1445 1.4377 -2.7510 1.7334

β1 -0.1331 0.0004 -0.1108 0.0204 -0.1084 0.0232 -0.1046 0.0276

β2 0.4887 0.0050 0.6475 0.0658 0.6434 0.0635 0.7281 0.0831

β3 -3.4010 0.1869 -3.1636 0.3878 -3.0958 0.3785 -3.0264 0.4406

β4 -0.3053 0.0149 -0.2964 0.1247 -0.2946 0.1210 -0.2143 0.1527

η 4.1538 0.1320 3.2616 0.1731 2.5958 0.3071 4.5760 0.1697

ν 6.5899 0.9014 4.2000 0.8068 1.4061 0.4361 – –

α 12.8760 0.9871 – – – – – –

Table VI.Wage rate data. Model selection criteria.

Criterion PTCR TCR SLCR NCR

`(θ) –1413.942 -1440.145 -1436.286 -1481.655

AIC 2843.883 2894.291 2886.573 2975.311

AICc 2828.077 2880.441 2872.723 2963.424

BIC 2880.876 2926.659 2918.941 3003.055

(2018) by using the Scale Mixture of Skew Normal Censored Regression (SMSNCR) models. We analyzed
the data set by fitting a PTCR model and again, we compare our proposal with SMNCR models by Garay
et al. (2017).

The dataset consists of measurements for 68 solar-type stars and for our analysis we followed
Mattos et al. (2018) and consider:

� log N(Be) as the response variable, which represents the log of the abundance of beryllium
scaled to Sun’s abundance (i.e. the Sun has logN(Be) = 0.0)

� Teff/1000 as the explanatory variable, which represents the effective stellar surface temperature
(in kelvin).

In astronomical research, a previously identified sample of objects (stars, galaxies, quasars, X-ray
sources, etc.) is observed at some new wavebands. According to Feigelson (2014), due to limited
sensitivities, some objects may be undetected, leading to upper limits in their derived luminosities.
For this dataset we have 12 left-censored data points, i.e. 12 undetected beryllium measurement, that
represents 19.35% of observations.

Table VII presents the ML estimates for the parameters of the four models, i.e. PTCR, TCR, SLCR
and NCR models, together with their corresponding standard errors. Table VIII compares the fit of the
four models using the model selection criteria (AIC, AICc and BIC). Note that again the PTCR model

An Acad Bras Cienc (2021) 93(4) e20190920 21 | 33



ROGER TOVAR-FALÓN et al. CENSORED POWER-STUDENT-T REGRESSION MODEL

Table VII. Parameters and standard errors (SE) of the PTCR, TCR, SLCR and NCR models fitted to stellar abundances
data.

PTCR TCR SLCR NCR

θ Estimate SE Estimate SE Estimate SE Estimate SE

β0 -1.9692 0.0658 -1.8923 0.1482 -0.5441 0.8733 -1.6478 0.5941

β1 0.5353 0.0021 0.5091 0.0046 0.2719 0.0262 0.4372 0.0180

η 0.0608 0.0002 0.0873 0.0004 0.1987 0.0254 0.3843 0.0014

ν 2.0891 0.4530 0.8335 0.0419 1.0567 0.1652 – –

α 0.3265 0.0084 – – – – – –

with heavy tails have better fit than the TCR, SLCR and NCR models. The QQ-plots and envelopes for
the martingale residuals are shown in Figure 4. This figure clearly indicates that the PTCR, TCR and
SLCR models are more suitable for modeling the current data than the NCR model, since there are not
observations falling outside the envelope.

Table VIII. Stellar abundances data. Model selection criteria.

Criterion PTCR TCR SLCR NCR

`(θ) 3.688 -6.635 -25.096 -38.281

AIC 2.624 21.269 58.192 82.562

AICc -6.408 13.905 50.827 76.937

BIC 13.722 30.148 67.069 89.220

CONCLUSIONS

In this paper, an asymmetric alternative for the Student-t censored regression model by Arellano-Valle
et al. (2012) and SMNCR by Garay et al. (2017) has been developed. It is based on the new family of
asymmetric and heavy-tailed power-t distribution (Zhao & Kim 2016). Moreover, it follows that the
ordinary tobit model and the Student-t censored regression models are special cases. The observed
and expected information matrix is analytically obtained, allowing for the direct implementation of
the inference on this type of models. The problem of estimating the parameters in the model is dealt
by using the maximum likelihood approach which is also used for developing large sample properties
for the estimators. The likelihood ratio statistics can be used for testing the PTCR null hypothesis since
the TCR model is special case of the model entertained. Applications to Wage rate data and Stellar
Abundances Data indicate that the PTCR model can be a useful alternative to the TCR and SMNCR
models.

The proposed PT distribution can be considered in the statistical models based on the scale
mixtures of normal family to improve the fit the models such as Maleki & Nematollahi (2017).
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Figure 4. Stellar abundances data. Envelopes of transformed martingale residuals for PTCR, TCR, SLCR and NCR
models.

Also, the methodology of constructing the asymmetric distribution on the symmetric version of the
Skew-Reflected-Gompertz distribution which recently introduced by Hosseinzadeh et al. (2019), can
be considered as a future work for researchers.

REFERENCES

AKAIKE H. 1974. A new look at statistical model
identification. IEEE Trans Automat Contr AU-19(4): 716-722.

ARELLANO-VALLE RB, CASTRO LM, GONZÁLEZ-FARÍAS G &
MUNÕZ GAJARDO KA. 2012. Student-t censored regression

model: properties and inference. Stat Methods Appt 21(4):
453-473. doi:10.1007/s10260-012-0199-y.

AZZALINI A & CAPITANIO A. 2003. Distributions generated
by perturbation of symmetry with emphasis on a
multivariate skew t-distribution. J R Stat Soc Series B Stat
Methodol 65(2): 367-389.

An Acad Bras Cienc (2021) 93(4) e20190920 23 | 33



ROGER TOVAR-FALÓN et al. CENSORED POWER-STUDENT-T REGRESSION MODEL

BARROS M, GALEA M, GONZÁLEZ M & LEIVA V.
2010. Influence diagnostics in the tobit censored
response model. Stat Methods Appt 19(3): 379-397.
doi:10.1007/s10260-010-0135-y.

FAIR RC. 1978. A theory of extramarital affairs. J Polit Econ
86(1): 45-61.

FEIGELSON ED. 2014. astrodatR: Astronomical Data.
Available at. URL https://cran.r-project.org/web/
packages/astrodatR/. R package v. 0.1.

GARAY AM, LACHOS VH, BOLFARINE H & CABRAL CRB.
2017. Linear censored regression models with scale
mixtures of normal distributions. Stat Pap 58(1): 247-278.
doi:10.1007/s00362-015-0696-9.

GUPTA RD & GUPTA RC. 2008. Analyzing skewed data by
power–normal model. Test 17: 197-210.

HOSSEINZADEH A, MALEKI M, KHODADADI
Z & CONTRERAS-REYES JE. 2019. The
Skew-Reflected-Gompertz distribution for analyzing
the symmetric and asymmetric data. J Comput Appl Math
349: 132-141.

MALEKI M & NEMATOLLAHI AR. 2017. Autoregressive
Models with Mixture of Scale Mixtures of Gaussian
innovations. Iran J Sci Technol Trans A Sci 41(4): 1099-1107.

MARTÍNEZ-FLÓREZ G, BOLFARINE H&GÓMEZ HW. 2013. The
alpha–power tobit model. Commun Stat Theory Methods
42(4): 633-643.

MATTOS T, GARAY AM & LACHOS VH. 2018.
Likelihood-based inference for censored linear
regression models with scale mixtures of skew-normal
distributions. J Appl Stat 45(11): 2039-2066.

MOULTON LH & HALSEY NA. 1995. A Mixture Model With
Detection Limits for Regression Analyses of Antibody
Response to Vaccine. Biometrics 51: 1570-1578.

MROZ TA. 1987. The sensitivity of an empirical model
of married women’s hours of work to economic and
statistical assumptions. Econometrica 55(4): 765-799.
doi:10.2307/1911029.

OLSEN RJ. 1978. Note on the Uniqueness of the Maximum
Likelihood Estimator for the Tobit Model. Econometrica
46(5): 1211-1215.

ORTEGA EM, BOLFARINE H & PAULA GA. 2003. Influence
diagnostics in generalized log-gamma regression
models. Comput Stat Data Anal 42: 165-186.

PEWSEY A, GÓMEZ HW & BOLFARINE H. 2012.
Likelihood–based inference for power distributions.
Test 21(4): 775-789.

R DEVELOPMENT CORE TEAM. 2018. R: A Language and
Environment for Statistical Computing. R Foundation for
Statistical Computing. Vienna, Austria. URL http://www.
R-project.org. ISBN 3-900051-07-0.

SANTOS N, LÓPEZ RG, ISRAELIAN G, MAYOR M, REBOLO
R, GARCÍA-GIL A, DE TAORO MP & RANDICH S. 2002.
Beryllium abundances in stars hosting giant planets.
Astron Astrophys 386: 1028-1038.

SCHWARZ G. 1978. Estimating the dimension of a model.
Ann Stat 6(2): 461-464.

SUGIURA N. 1978. Further analysis of the data
by akaike’s information criterion and the finite
corrections. Commun Stat Theory Methods 7(1): 13-26.
doi:10.1080/03610927808827599.

TOBIN J. 1958. Estimation of relationship for limited
dependent variables. Econometrica 26(1): 24-36.

ZHAO J & KIM HM. 2016. Power t distribution. ommun Stat
Appl Methods 23(4): 321-334.

An Acad Bras Cienc (2021) 93(4) e20190920 24 | 33



ROGER TOVAR-FALÓN et al. CENSORED POWER-STUDENT-T REGRESSION MODEL

How to cite
TOVAR-FALÓN R, BOLFARINE H & MARTÍNEZ-FLÓREZ G. 2021. The
Asymmetric Power-Student-t Model for Censored and Truncated Data.
An Acad Bras Cienc 93: e20190920. DOI 10.1590/0001-3765202120190920.

Manuscript received on August 11, 2019;
accepted for publication on October 22, 2019

ROGER TOVAR-FALÓN1
https://orcid.org/0000-0001-5649-532X

HELENO BOLFARINE2
https://orcid.org/0000-0001-9195-3672

GUILLERMO MARTÍNEZ-FLÓREZ1
https://orcid.org/0000-0001-6441-5377

1Departamento de Matemáticas y Estadística, Facultad de
Ciencias Básicas, Universidad de Córdoba, Cra. 6a , No. 77-306,
Montería, Colombia
2Departamento de Estatística, IME, Universidade de São Paulo,
Cidade Universitária, Rua da Matão, 1010, 05508-090 São Paulo,
SP, Brazil

Correspondence to: Roger Tovar-Falón

E-mail: rjtovar@correo.unicordoba.edu.co

Author contributions
The findings in this paper are part of the first author’s
(Roger Tovar-Falón) doctoral thesis, which was supervised
by the second author (Heleno Bolfarine) and the third
author (Guillermo Matínez-Flórez). The participation of the
authors in the production of the manuscript is as follows:
Roger Tovar-Falón - conceptualization, characterization of the
new model, mathematical properties and implementation of
computational routines. Guillermo Matínez-Flórez - application,
simulation studies, writing the original draft, and computational
routines. Heleno Bolfarine - review and general correction of the
paper.

An Acad Bras Cienc (2021) 93(4) e20190920 25 | 33



ROGER TOVAR-FALÓN et al. CENSORED POWER-STUDENT-T REGRESSION MODEL

APPENDIX A: LEMMAS

Lemma 1. Let Z ∼ PT(α, ν), then E[Zk | Z + c > 0] = mk(c; ν), with

mk(c; ν) =
1

1 – {FT(–c; ν)}α

∫ 1

FT(–c;ν)
[F–1T (u; ν)]kαuα–1du.

where F–1T (·; ν) is the inverse of FT(·; ν).

Lemma 2. Let Z ∼ PT(α, ν), and define r(Z; ν) = fT(Z; ν)/FT(Z; ν). Then

(i) E
{
[r(Z; ν)]k

(
1 + Z2

ν

)–m/2
Zn | Z + c > 0

}
=

[fT(0; ν)]
k

1 – {FT(–c; ν)}
αakmn(–c; ν), where

akmn(–c; ν) =
∫ 1

FT(–c;ν)

[
F–1T (u; ν)

]n1 +

[
F–1T (u; ν)

]2
ν


– k(ν+1)+m

2

αuα–k–1du

(ii) E
{
[r(Z; ν)]k log

(
1 + Z2

ν

)
Zn | Z + c > 0

}
=

[fT(0; ν)]
k

1 – {FT(–c; ν)}
αakn(–c; ν), where

akn(–c; ν) =
∫ 1

FT(–c;ν)
log

1 +

[
F–1T (u; ν)

]2
ν


[
F–1T (u; ν)

]n
αuα–k–1du

(iii) E
{
[r(Z; ν)]k[b01(Z; ν)]mZn | Z + c > 0

}
=

[fT(0; ν)]
k

1 – {FT(–c; ν)}
αbkmn(–c; ν), where

bkmn(–c; ν) =
∫ 1

FT(–c;ν)
[b01(F–1T (u; ν))]m

[
F–1T (u; ν)

]n
αuα–k–1du

con b01(c; ν) =
∫ c
–∞
{
log
(
1 + s2

ν

)}
fT(s;ν)
FT(c;ν)

ds.

The proof of the Lemmas 1 and 2 are straightforward and they follow directly for the definition of
expected value.
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APPENDIX B: INFORMATION MATRICES FOR PTCR MODEL

Observed Information Matrix

The elements of the observed information matrix J(ϕ) for the PTCR model are given by

jγγ> = α
n∑
i=1

(1 – di)

r(–ci; ν) –
(
ν+ 1

ν

)(
1 +

c2i
ν

)–1
ci

 r(–ci; ν)xix
>
i

+

(
ν+ 1

ν

) n∑
i=1

di


(
1 +

z2i
ν

)–1
–
2

ν

(
1 +

z2i
ν

)–2
z2i

 xix
>
i

+ (α – 1)
n∑
i=1

di

r(zi; ν) +
(
ν+ 1

ν

)(
1 +

z2i
ν

)–1
zi

 r(zi; ν)xix
>
i

jγσ = –
(
ν+ 1

ν

) n∑
i=1

di


(
1 +

z2i
ν

)–1
–
2

ν

(
1 +

z2i
ν

)–2
z2i

 yixi

– (α – 1)
n∑
i=1

di

r(zi; ν) +
(
ν+ 1

ν

)(
1 +

z2i
ν

)–1
zi


× r(zi; ν)yixi

jγν =
α

2

n∑
i=1

(1 – di)
{(
ψ

(
ν+ 1

2

)
– ψ
(
ν

2

))
(1 + R(ci; ν))

–
1

ν
(1 + cir(ci; ν)R(ci; ν)) – R(ci; ν)b01(ci; ν) – log

(
1 +

c2i
ν

)

+

(
ν+ 1

ν

)(
1 +

c2i
ν

)–1 c2i
ν

 r(–ci; ν)xi

+
1

ν2

n∑
i=1

di


(
1 +

z2i
ν

)–1
zi –

(
ν+ 1

ν

)(
1 +

z2i
ν

)–2
z3i

 xi

+
α – 1
2

n∑
i=1

di


(
ν+ 1

ν

)(
1 +

z2i
ν

)–1 z2i
ν

+ b01(zi; ν)

– log

(
1 +

z2i
ν

)
–
1

ν
(1 – zir(zi; ν))

}
r(zi; ν)xi
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jγα =
n∑
i=1

(1 – di)r(–ci; ν)xi +
n∑
i=1

dir(zi; ν)xi

jσσ =
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i=1

di

 1
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jσα = –
n∑
i=1

dir(zi; ν)yi

jνα = –
1

2

n∑
i=1

(1 – di)
{
ψ

(
ν+ 1

2

)
– ψ
(
ν

2

)
– b01(ci; ν) –

ci
ν
r(ci; ν)

}

× R(ci; ν) +
1

2

n∑
i=1

di
{
ψ

(
ν+ 1

2

)
– ψ
(
ν

2

)
– b01(zi; ν)

–
zi
ν
r(zi; ν)

}
jαα = –

n∑
i=1

di
α2
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jνν = +
α

4

n∑
i=1

(1 – di)
{
ψ

(
ν+ 1

2

)
– ψ
(
ν

2

)
– b01(ci; ν)

–
ci
ν
r(ci | ν)

}2
R(ci; ν) (1 + R(ci; ν))

–
α

4

n∑
i=1

(1 – di)
{
ψ1

(
ν

2

)
– ψ1

(
ν+ 1

2

)
–

2

ν(ν+ 1)
+ b201(ci; ν)

–
1

ν
b01(ci; ν) +

1

ν

(
2b01(ci; ν) –

ν+ 3

ν(ν+ 1)

)
cir(ci; ν)

+
1

ν+ 2

FT(c2i; ν+ 2)

FT(ci; ν)
b21(c2i; ν+ 2) – b02(ci; ν)

+
1

ν

(ν+ 1

ν

)(
1 +

c2i
ν

)–1 c2i
ν
– log

(
1 +

c2i
ν

)
+
ci
ν
r(ci; ν)


× cir(ci; ν)}R(ci; ν)

–
1

4

n∑
i=1

di

ψ1
(
ν+ 1

2

)
– ψ1

(
ν

2

)
+

2

ν2
–

4

ν3

(
1 +

z2i
ν

)–1
z2i

+
2

ν3

(
ν+ 1

ν

)(
1 +

z2i
ν

)–2
z4i


+
α – 1
4

n∑
i=1

di
{
ψ1

(
ν

2

)
– ψ1

(
ν+ 1

2

)
–

2

ν(ν+ 1)
+ b201(zi; ν)

–
1

ν
b01(zi; ν) +

1

ν

(
2b01(zi; ν) –

ν+ 3

ν(ν+ 1)

)
zir(zi; ν)

+
1

ν+ 2

FT(z2i; ν+ 2)

FT(zi; ν)
b21(z2i; ν+ 2) – b02(zi; ν)

+
1

ν

(ν+ 1

ν

)(
1 +

z2i
ν

)–1 z2i
ν

– log

(
1 +

z2i
ν

)
+
zi
ν
r(zi; ν)

]
zir(zi; ν)

}
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Expected Information Matrix

The expected information matrix Iϕ is obtained by taking Iϕ = E[Jϕ], which involves the calculation of
truncated moments that have no closed form and must be obtained numerically. The elements Iϕiϕj
of the expected information matrix are given by

Iγγ =
n∑
i=1

{
r(–ci; ν) –

(
ν+ 1

ν

)(
1 +

ci
ν

)–1
ci
}
fPT(–ci; α, ν)xix

>
i

+

(
ν+ 1

ν

) n∑
i=1

{
a020(–ci; ν) –

2

ν
a042(–ci; ν)

}
xix

>
i

+ (α – 1)fT(0; ν)
n∑
i=1

{(
ν+ 1

ν

)
a121(–ci; ν) + fT(0; ν)a200(–ci; ν)

}
xix

>
i

Iγσ = –
1

σ

(
ν+ 1

ν

) n∑
i=1

{a021(–ci; ν) + cia020(–ci; ν)} xi

+
2

σ

(
ν+ 1

ν2

) n∑
i=1

{a043(–ci; ν) + cia042(–ci; ν)} xi

– (fT(0; ν))2
(
α – 1
σ

) n∑
i=1

{a201(–ci; ν) + cia200(–ci; ν)} xi

– fT(0; ν)
(
α – 1
σ

)(
ν+ 1

ν

) n∑
i=1

{a122(–ci; dν) + cia121(–ci; ν)} xi

Iγν =
α

2

n∑
i=1

{(
ψ

(
ν+ 1

2

)
– ψ
(
ν

2

))
(1 + R(ci; ν))

–
1

ν
(1 + cir(ci; ν)R(ci; ν)) – R(ci; ν)b01(ci; ν) – log

(
1 +

c2i
ν

)

+

(
ν+ 1

ν

)(
1 +

c2i
ν

)–1 c2i
ν

 fPT(–ci; α, ν)xi

+
1

ν2

n∑
i=1

{
a021(–ci; ν) –

(
ν+ 1

ν

)
a043(–ci; ν)

}
xi

+ fT(0; ν)
(
α – 1
2

) n∑
i=1

{(
ν+ 1

ν

)
a122(–ci; ν) – a10(–ci; ν)

+b110(–ci; ν) –
1

ν
(a100(–ci; ν) – fT(0; ν)a201(–ci; ν))

}
xi
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Iγα =
1

α

n∑
i=1

fPT(–ci; α, ν)xi + fT(0; ν)
n∑
i=1

a100(–ci; ν)xi

Iσσ =
1

σ2

n∑
i=1

{
1 +

(
ν+ 1

ν

)
[a022(–ci; ν) + 2cia021(–ci; ν)

+c2i a020(–ci; ν) –
2

ν
(a044(–ci; ν) + 2cia043(–ci; ν)

+c2i a042(–ci; ν)
)]}

+ fT(0; ν)
(
α – 1
σ2

) n∑
i=1

{(
ν+ 1

ν

)
[a123(–ci; ν) + 2cia122(–ci; ν)

+c2i a121(–ci; ν)
]
+ fT(0; dν) [a202(–ci; ν) + 2cia201(–ci; ν)

+c2i a200(–ci; ν)
]}

Iσα = –
fT(0; ν)
σ

n∑
i=1

{a101(–ci ν) + cia100(–ci; ν)}

Iαα =
1

α2

n∑
i=1

(1 – {FT(–ci; ν)}
α)

Iσν = –
1

σν2

n∑
i=1

{a022(–ci; ν) + cia021(–ci; ν)

–
(
ν+ 1

ν

)
[a044(–ci; ν) + cia043(–ci; ν)]

}
{FT(–ci; ν)}

α

– fT(0; ν)
(
α – 1
2σ

) n∑
i=1

{(
ν+ 1

ν2

)
[a123(–ci; ν) + cia122(–ci; ν)]

– a11(–ci; ν) – cia10(–ci; ν) + b111(–ci; ν) + cib110(–ci; ν)

–
1

ν
[a101(–ci; ν) + cia100(–ci; ν)]

+
1

ν
[fT(0; ν)a202(–ci; ν) + cifT(0; ν)a201(–ci; ν)]

}
Iνα =

1

2α

n∑
i=1

{
ψ

(
ν+ 1

2

)
– ψ
(
ν

2

)
– b01(ci; ν) –

ci
ν
r(ci; ν)

}
× (r(–ci; ν))

–1 fPT(–ci; α, ν)

–
1

2

n∑
i=1

{
ψ

(
ν+ 1

2

)
– ψ
(
ν

2

)
–

b010(–ci; ν)
1 – {FT(–ci; ν)}

α

–
fT(0; ν)a101(–ci; ν)
ν(1 – {FT(–ci; ν)}

α)

}
(1 – {FT(–ci; ν)}

α)

An Acad Bras Cienc (2021) 93(4) e20190920 31 | 33



ROGER TOVAR-FALÓN et al. CENSORED POWER-STUDENT-T REGRESSION MODEL

Iνν =
α

4

n∑
i=1

{
ψ

(
ν+ 1

2

)
– ψ
(
ν

2

)
– b01(ci; ν) –

ci
ν
r(ci; ν)

}2

× R(ci; ν)(1 + R(ci; ν)) {FT(–ci; ν)}
α

–
α

4

n∑
i=1

{
ψ1

(
ν

2

)
– ψ1

(
ν+ 1

2

)
–

2

ν(ν+ 1)
+ b201(ci; ν)

–
1

ν
b01(ci; ν) +

1

ν

(
2b01(ci; ν) –

ν+ 3

ν(ν+ 1)

)
cir(ci; ν)

– b02(ci; ν) +
FT(c2i; ν+ 2)b21(c2i; ν+ 2)

(ν+ 2)FT(c2i; ν)

+
1

ν

(ν+ 1

ν

)(
1 +

c2i
ν

)–1 c2i
ν

– log

(
1 +

c2i
ν

)
+
ci
ν
r(ci; ν)

]
cir(ci; ν)

}
R(ci; ν) {FT(–ci; ν)}

α

–
1

4

n∑
i=1

{
ψ1

(
ν+ 1

2

)
– ψ1

(
ν

2

)
+

2

ν2
–

4a022(–ci; ν)
ν3(1 – {FT(–ci; ν)}

α)

+
2

ν3

(
ν+ 1

ν

)
a044(–ci; ν)

(1 – {FT(–ci; ν)}
α)

}
(1 – {FT(–ci; ν)}

α)

+
α – 1
4

n∑
i=1

{
ψ1

(
ν

2

)
– ψ1

(
ν+ 1

2

)
–

2

ν(ν+ 1)

+
b020(–ci; ν)

1 – {FT(–ci; ν)}
α –

b010(–ci; ν)
ν(1 – {FT(–ci; ν)}

α)

+
1

ν

[
2fT(0; ν)b111(–ci; ν)
1 –
{
FT(–ci | ν)

}α –
ν+ 3

ν(ν+ 1)

fT(0; ν)a101(–ci; ν)
(1 – {FT(–ci; ν)}

α)

]

– E[b02(zi; ν)] +
(

1

ν+ 2

)
E
[
FT(z2i; ν+ 2)

FT(zi; ν)
b21(z2i; ν+ 2)

]
+

fT(0; ν)
ν(1 – {FT(–ci; ν)}

α)

[(
ν+ 1

ν2

)
a123(–ci; ν) – a11(–ci; ν)

+
1

ν
fT(0; ν)a202(–ci; ν)

]}
(1 – {FT(–ci; ν)}

α)

where b01, b02 and b21 are given by (8) and must be obtained numerically. The components akmn, akn
and bkmn, are given in the Lemman 2.
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APPENDIX C: R CODE TO FIT THE PTCR MODEL

data( "Mroz87", package = "sampleSelection" )
require(censReg) # This function fit the NCR model
estResult <- censReg( wage ~ age + educ + kids5 + kids618, data = Mroz87 )
summary(estResult)

reg <- lm(wage ~ age + educ + kids5 + kids618, data = Mroz87)
X <- model.matrix(reg)
Y <- Mroz87$wage

# This is the log-likelihod function for PTCR model
loglik.pt <- function(param,Y,X){
p <- ncol(X)
beta<- param[1:p]
eta <- param[p+1]
alp <- param[p+2]
nu <- param[p+3]
x.beta <- X%*%beta
z <- (Y-x.beta)/eta
ll <- vector(mode = "numeric", length = length(z))
di <- vector(mode = "numeric", length = length(z))
for (i in 1:length(z))
{
di[i] <- ifelse(Y[i]==0,0,1)
ll[i] <- (1-di[i]) * alp* pt(z[i],df=nu,log.p=TRUE) +
di[i]*(log(alp) - log(eta) + dt(z[i],df=nu,log=TRUE) + (alp-1)*pt(z[i],df=nu,log.p=TRUE))
}
return(-sum(ll))
}

# Initial values
betas <- as.vector(coef(estResult)[1:ncol(X)],mode="numeric")
sig <- sqrt(sum((Y-X%*%betas)^2)/(nrow(X)-(ncol(X)-1)))
asy = sum((Y-mean(Y))^3/length(Y))/(sum((Y-mean(Y))^2/length(Y)))^(3/2)
kur = sum((Y-mean(Y))^4/length(Y))/(sum((Y-mean(Y))^2/length(Y)))^(4/2)

# Optimitation of log-likelihood function
param=c(betas,sig,asy,kur)
fit.pt = optim(param, loglik.pt, Y=Y,X=X, hessian=TRUE,method='BFGS')
coef <- c(fit.pt$par)
sds <- diag(solve(fit.pt$hessian))
Est <- round(cbind(coef,sds),4)
colnames(Est)= c('Estimates','SE')
rownames(Est)= c('b0','b1','b2','b3','b4','eta','alp','nu')
Est
-fit.pt$value
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