
An Acad Bras Cienc (2022) 94(3): e20211267 DOI 10.1590/0001-3765202220211267
Anais da Academia Brasileira de Ciências  |  Annals of the Brazilian Academy of Sciences
Printed ISSN 0001-3765 I Online ISSN 1678-2690
www.scielo.br/aabc  |  www.fb.com/aabcjournal

An Acad Bras Cienc (2022) 94(3)

Running title: HYDROLYSIS OF 
MACAUBA KERNEL OIL

Academy Section: CHEMICAL 

SCIENCES

e20211267

2022
94 
(3)
94(3)

DOI
10.1590/0001-3765202220211267

CHEMICAL SCIENCES

 Hydrolysis of macauba kernel oil: ultrasound 
application in the substrates pre-emulsion 
step and effect of the process variables

HELOÍSA DA SILVA, MIRIAN FEITEN, DJÉSSICA RASPE & CAMILA DA SILVA

Abstract: The main goal of the present work was to evaluate the application of ultrasound 
as a previous step to promote the substrates pre-emulsion in the hydrolysis reaction of 
macauba kernel oil (MKO). The ultrasound effect on the substrates pre-emulsion was 
evaluated on the free fatty acid (FFA) content, as well as the process variables (reaction 
time, percentage of catalyst Lipozyme® RM IM, and buffer solution). Reactions carried 
out with the substrates pre-emulsion presented higher FFA production, up to a 40 wt% 
increase in 1 hour of reaction, yielding 80 wt% of FFAs in 8 hours. The use of catalyst 
in the reaction medium, from 5 to 15 wt%, favored the FFAs production in 2 hours of 
reaction. Addition of 25 to 100 wt% of buffer solution led to 86 wt% of FFAs in 4 hours 
of reaction. Enzyme recycling resulted in a slight decrease in the FFA content, although 
the catalyst had maintained 85% of its initial activity after 30 h of use. Therefore, the 
ultrasound pre-emulsion previous step allowed a more effi cient hydrolysis reaction of 
MKO, leading to an increase of up to 40 wt% on the FFA content, when compared to the 
hydrolysis without such step.

Key words: enzymatic catalysis, free fatty acid, hydrolysis, ultrasound.

INTRODUCTION
Fatty acids are important raw materials for 
oleochemical industries due to their high 
demands for diverse applications. Vegetable 
oils conversion into high value-added products, 
such as free fatty acids (FFAs) and derivatives, 
has been of great commercial interest, as in the 
industries of soap, surfactant, lubricant, plastic, 
ink, coating, cosmetic, self-care, food, biodiesel, 
among others (Huang  et al. 2010, Satyarthi et 
al. 2011, Pinyaphong et al. 2012, Avelar et al. 
2013, Takisawa et al. 2013, Aguieiras et al. 2014, 
Wancura et al. 2019a, b), besides being used as 
substrates for other reactions of interest. The 
industrial production of monoacylglycerols 
(MAG) and diacylglycerols (DAG), for example, 
emulsifi ers widely applied in the food, cosmetic 
and pharmaceutical industries, can occur 

through the partial esterifi cation of glycerol and 
FFAs (Watan abe et al. 2005, Fregolente et al. 2009, 
Wang et al. 2011, Fiametti et al. 2011, 2012). Also, 
fatty acid esters can be produced from FFAs such 
as stearic, oleic and linoleic, and carbohydrates 
(glucose, fructose, sucrose and sorbitol), which 
have wide application as emulsifi ers, in addition 
to having a preservative effect, and having been 
associated as anti-tumor agents and plant 
growth inhibitors (Castro et al. 2004). Fatty acids 
can also be esterifi ed with methanol or ethanol, 
obtaining high-purity methyl or ethyl esters 
(biodiesel) (Arand a et al. 2008, M.M.R. Gomes, 
unpublished data, Feiten et al. 2014, Zaher & 
Soliman 2015, Wancura et al. 2018, Rosset et al. 
2019).

Fatty acids production occurs mainly 
through hydrolysis of oils or fats (Babic z et 
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al. 2010, Awadallak et al. 2013). Hydrolysis of 
triacylglycerols occurs at the oil and water 
interface, since these substrates are immiscible 
with each other. The contact and mixture of oil 
and water phases are commonly promoted by 
mechanical agitation, but recently there has 
been an attempt to reduce the mass transfer 
limitations through the application of ultrasound 
(Feiten et al. 2014, Michelin et al. 2015, Ramón 
et al. 2015, Remonatto et al. 2015, Awadallak et 
al. 2016, Zenevicz et al. 2016, 2018, Dal Prá et al. 
2019). The cavitation (bubble formation, growth 
and implosive collapse in the reaction medium) 
generated in these reactions act through three 
main mechanisms, in combination or isolated. 
The first mechanism involved is the thermal 
effect, due to the high heat generation during 
cavitation which increases the temperature; 
the second is the free radicals formation by 
sonolysis of water; and the third is due to the 
mechanical forces (shear stress) generated 
due to the shock waves produced by cavitation 
(Sinisterra 1992, Mason et al. 2005, Mason 2007, 
Liu et al. 2008, Waghmare & Rathod 2016). 
Collapse of cavitation bubbles breaks the 
phase partition and promotes emulsification 
by ultrasonic jets. Thus, there is an increase in 
the reaction rates and, consequently, high yields 
are achieved applying only a small amount of 
catalyst, resulting in lower energy consumption 
when compared to the mechanical agitation 
process (Gasparotto et al. 2015, Luft et al. 2019).

The ultrasound system has been considered 
an eco-friendly green technology due to 
its high efficiency, reduction or absence of 
organic solvents use in several reactions, 
and possibility of reducing the amount of 
reagents added. Besides the significant 
decrease in reaction or processing times 
compared to other conventional techniques 
and its low instrumental requirements, the 
ultrasound system presents an economically 

viable performance, with increased yield and 
selectivity, favoring reactions that normally do 
not occur under normal conditions (Martines et 
al. 2000, Li et al. 2005, Mason 2007, Silva et al. 
2013, 2014, Feiten et al. 2014, Remonatto et al. 
2015, Dal Prá et al. 2019).

Ultrasound systems have been satisfactorily 
applied to various biochemical and enzymatic 
reactions (Batistella et al. 2011, Silva et al. 2013, 
2014, 2015, Balen et al. 2015, Trentin et al. 2014, 
2015, Awadallak et al. 2016, Santin et al. 2017, 
Zenevicz et al. 2016, 2018, Coppini et al. 2019). 
Lipase-catalyzed hydrolysis of triacylglycerols 
may be performed under mild conditions 
(Lerin et al. 2011, Feiten et al. 2014, Kabbashi et 
al. 2015, Gasparotto et al. 2015, Luft et al. 2019), 
allowing the development of a more efficient, 
economical and ecologically correct process for 
hydrolysis of vegetable oils or fats, which can be 
conducted at milder temperatures, and reach 
higher hydrolysis yields (Awadallak et al. 2013, 
2016, Coppini et al. 2019). 

The main features of immobilized enzymes 
are the ease in separating the catalyst from the 
reaction medium, non-generation of effluents, 
purity of the glycerol generated as a by-
product, in addition to the possibility of reuse 
(Ranganathan et al. 2008, Jerbaek et al. 2009, 
Santin et al. 2014, Fernandez-Lafuente 2014, 
Facin et al. 2019). They perform satisfactorily 
at mild temperatures (Feiten et al. 2014, 
Kabbashi et al. 2015, Santin et al. 2017), therefore 
preventing product degradation and reducing 
energy costs (Antczak et al. 2009, Wancura et al. 
2020). However, utilization of these immobilized 
catalysts presents the mass transfer limitation 
as inconvenient, since the supports can hinder 
the substrates access to its catalytic site (Jerbaek 
et al. 2009, Santos et al. 2015, Facin et al. 2019), 
which may be solved by ultrasound application 
(Leaes et al. 2013, Lerin et al. 2014, Trentin et al. 
2015).
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The ultrasound utilization in enzymatic 
reactions may be a simple and important tool 
to control the aggregation and/or dispersion 
of particles in heterogeneous systems and 
to increase the solubility of homogeneous 
mixtures without the need to add organic 
solvents or surfactants, hence reducing the 
substrate-enzyme mass transfer limitations 
without waste generation. Furthermore, the 
ultrasound system is an interesting tool to be 
applied in order to disturb weak bonds and 
induce favorable conformational changes in the 
structure of proteins, increasing their catalytic 
activity (Babicz et al. 2010, Fiametti et al. 2012, 
Leaes et al. 2013, Silva et al. 2013, Michelin et al. 
2015, Ramón et al. 2015, Feiten et al. 2016, Santin 
et al. 2017). Nevertheless, the application of 
ultrasound during the reaction can weaken the 
enzyme’s conformation (Bezbradica et al. 2006, 
Feiten et al. 2016), reducing its reuse. Therefore, 
ultrasound may be applied as a step prior to the 
reaction.

Macauba (Acrocomia aculeata) is a palm 
species native to subtropical regions, distributed 
among Latin American countries and abundantly 
found in the Brazilian Cerrado (Berton et al. 2013, 
Lopes et al. 2013, Evaristo et al. 2016). Macauba 
fruits have great potential for obtaining oil (Silva 
& Andrade 2013, Michelin et al. 2015, César et 
al. 2015, Colonelli et al. 2017). Such species has 
oleaginous fruits in huge bunches that can weigh 
more than 90 kg under natural conditions (Pires 
et al. 2013, M.A. Lopes & S.P. Favaro, unpublished 
data). Currently, there is a growing interest in 
macauba oil production, because it is able to 
produce 10 times more oil per hectare when 
compared to soybeans (Roscoe et al. 2007). It is 
estimated that, under proper agronomic care, 
a commercial plantation can yield 16000-25000 
kg ha-1 of fruit, and production of up to 6200 
kg ha-1 of oil (Pires et al. 2013, Colombo et al. 
2018). Researches indicate that macauba can 

annually produce around 4.5 tons of pulp oil 
and more than 600 kg of almond oil, surpassing 
the average of 3.5 tons of palm oil yield (M.A. 
Lopes & S.P. Favaro, unpublished data). Macauba 
kernel offers oil in excellent nutritional quality, 
referenced as a source of fatty acids, such as 
oleic and lauric (César et al. 2015, Colombo et 
al. 2018). 

With that in mind, the present work aimed 
to perform the hydrolysis of macauba kernel oil, 
in order to evaluate the effect of the substrates 
pre-emulsion step, the effect of process variables 
(percentage of catalyst and buffer solution), the 
kinetics of free fatty acids production (FFAs) and 
the catalyst reuse.

MATERIALS AND METHODS
Materials
Macauba kernel oil was purchased from 
Cocal Brasil, which chemical composition was 
reported by Raspe et al. (2013). Immobilized 
enzyme Lipozyme® RM IM was employed as 
catalyst, provided by LNF Latin American. 
Sodium phosphate buffer solution pH 8.2 
(Neon) was prepared according to Gomori (1955) 
and added to the reactions; n-hexane (Anidrol) 
and isopropyl alcohol (Anidrol) were applied to 
the catalyst washing step. For sample titration, 
ethyl ether (Anidrol), ethyl alcohol (Anidrol, 
95%), sodium hydroxide (Anidrol, 97%) and 
phenolphthalein (Nuclear) were used.

Enzymatic hydrolysis of macauba oil after 
ultrasound pre-emulsification 
Pre-emulsion was conducted in an experimental 
apparatus consisting of an ultrasound bath of 
operating frequency of 37 kHz and maximum 
rated electrical power output of 132 W 
(Ultronique, Q5.9/40A), a mechanical agitator 
(IKA®, RW20) and a three-neck flat-bottom flask. 
The reaction mixture pre-emulsion was carried 
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out at a temperature of 55 °C, applying the 
ultrasound maximum electrical power and a 
mechanical agitation rate of 700 rpm for 1 hour.

Experiments without the pre-emulsion step 
were carried out in order to investigate its effect 
on the FFAs production. Prior to the reaction, the 
enzyme was kept at 40 °C for 1 h for activation 
and, after the pre-emulsion step, was added 
to the reaction mixture. The reaction was then 
carried out employing a hot plate with magnetic 
agitator (IKA®, RCT) at a constant agitation rate of 
400 rpm. Buffer solution pH 8.2 and temperature 
of 55 °C were determined in a previous work 
(Raspe et al. 2013).

Reaction time started with the catalyst 
addition to the reaction medium. At the end 
of the reaction time, the enzyme was removed 
by filtration, with successive washings using 
n-hexane. The fi ltrate was centrifuged (Quimis, 
Q222TM1) at 3500 rpm for 10 minutes and 
the solvent present in the supernatant was 
eliminated in an oven with air circulation 
(Marconi, MA035) at 80 °C. 

The free fatty acids (FFAs) content was 
determined following the Ca 5a-40 method (AOCS 
1990), which i s based on acid-base titration using 
an ethanol solution, and potassium hydroxide 
(KOH) previously standardized as the titrant. 
Each sample was titrated in duplicate, and the 
FFA content was calculated from the Equation 1:

(1)

where  C is the concentration of sodium 
hydroxide (mol  L−1) used as titrant, MM 
corresponds to the average molar mass of FFA 
of macauba kernel oil (Raspe et al. 2013), v is the 
volume required for the titration (ml) and m is 
the mass of sample (g).

Catalyst reuse
For enzyme (Lipozyme® RM IM) recycling studies, 
fixed conditions were established for the 
hydrolysis reaction: time of 6 hours, temperature 
of 55 °C, stirring rate of 400 rpm, 75% buffer 
solution (based on the oil mass), and enzyme 
concentration of 10% (based on the substrates 
mass). Enzyme was then recovered by washing 
it with isopropyl alcohol (approximately 110 ml) 
and separated using fi lter paper. After fi ltering, 
the enzyme was taken to an oven at 40 °C for 
1 hour. Then, it was left in a desiccator for 24 
hours. After that, the enzyme was reused.

Data analysis
To verify the influence of the parameters 
evaluated in each step on the results obtained, 
analysis of variance (ANOVA; Excel® 2010 
software) and the Tukey test were carried out 
with a 95% confi dence interval. The evaluation 
was performed from data obtained in triplicates, 
and the results were presented by the mean ± 
standard deviation.

RESULTS AND DISCUSSION
Ultrasound pre-emulsion effect
The effect of the reaction mixture pre-emulsion 
on the production of FFAs is shown in Figure 1, 
in which it is possible to observe that in only 
1 hour of reaction a 40% increase in the FFA 
content was obtained in the hydrolysate, and 
25% in 8 hours, when ultrasound was applied 
for the reaction mixture pre-emulsification. 
Ultrasound application promotes greater 
dispersion of oil in water, leading to a larger 
interfacial area and smaller droplet size, thus 
favoring the hydrolysis initial rate (Huang et 
al. 2010). Ultras ound treatment promotes an 
increase in the microscopic droplet formation 
speed, an increase in the contact surface and in 
the cohesive forces, resulting in the formation 
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of microemulsions (Martines et al. 2000, Dal Prá 
et al. 2019). 

Several authors argue that the use of 
ultrasound technology in chemical and 
biochemical reactions outlines advantages over 
conventional methods, including the reduction 
in reaction time, reduction in the amount of 
reagents added, and increased yields (Liu et al. 
2008, Yu et al. 2010, Lerin et al. 2011, Feiten et al. 
2014, Santin et al. 2014, 2017, Zenevicz et al. 2016, 
2018, Coppini et al. 2019). It is well known in the 
literature that the enzymatic hydrolysis reaction 
takes place at the interface between oil and 
water (or buffer solution) (Pourzolfaghar et al. 
2016). Therefore, the application of ultrasound 
promotes greater contact between the 
substrates molecules through their dissolution 
and homogeneity, allowing an increase in the 
interfacial area for the enzyme action (Bansode 
& Rathod 2017), enabling an increase in the 
hydrolysis rate. Higher yields, promoted by 
ultrasonic technology, have been attributed 
to its emulsification capacity, provided by the 

cavitations generated in the system (Waghmare 
& Rathod 2016). These findings were evidenced 
by Feiten et al. (2014) when investigating the 
soybean oil hydrolysis catalyzed by Lipozyme® 
TL IM in the presence and absence of ultrasound, 
showing a 50% reduction in the process time 
by means of ultrasonic irradiation, compared to 
simple mechanical agitation.

Effect of enzyme loading
Figure 2 presents the effect of the catalyst 
percentage evaluated using 5, 10 and 15 wt% 
of enzyme (based on the substrates mass) in 
the pre-emulsified reaction mixture. It can be 
seen in Figure 2 that the increase in the catalyst 
percentage from 5 to 10 wt% led to an increase in 
the FFA production during the evaluated reaction 
time (10 h). However, when the percentage of 
catalyst increased from 10 to 15 wt%, there was 
no increase in the process yield at most of 
the time, assuming that the use of excessive 
enzyme concentration in the reaction medium 
promoted saturation at the substrate interface, 
directly affecting the reaction rate. Rusli et al. 

Figure 1. FFA content obtained in the reactions carried 
out at 55 °C, 5 wt% Lipozyme® RM IM, 50 wt% buffer 
solution, and stirring rate of 400 rpm  with 
substrates pre-emulsion and  without substrates 
pre-emulsion. Means followed by the same letter, 
for the same reaction time, do not statistically differ 
(p<0.05).

Figure 2. Effect of catalyst percentage (  5 
wt%,  10 wt% and  15 wt% based on the 
substrates mass) on the FFA content (reactions 
performed at 55 °C, 50 wt% buffer solution, and 
stirring rate of 400 rpm). Means followed by the same 
letter, for the same reaction time, do not statistically 
differ (p<0.05).
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(2020) explain that once saturation has been 
reached and the interface is completely covered 
by enzyme molecules, additional enzymes do 
not have access to the substrates and, therefore, 
there is no increase in the reaction rate. In 
addition, the feasibility of the process in high 
amounts of catalyst becomes questionable 
(Waghmare & Rathod 2016).

Similar to this work, Chen et al. (2014) found 
that the increase in the concentration of Candida 
rugosa catalyst in the hydrolysis of linseed 
oil system did not influence the production of 
FFAs, reporting hydrolysis ratio of linseed oil 
in the order of ~95% with sufficient 1.0 wt% of 
catalyst. Using the Lipozyme® TL, Mello et al. 
(2015) reported that an increase in the catalyst 
percentage from 7.5 to 15 wt% did not increase 
the hydrolysis yield of crambe oil during 4 
hours of reaction. Likewise, addition from 1.25 
to 1.50 wt% in the concentration of Novozyme® 
435 catalyst in the hydrolysis of residual frying 
oil, investigated by Waghmare & Rathod (2016), 
had no influence on the yield of ~75% of FFAs, 
after 180 min of reaction. When investigating the 
hydrolysis of virgin coconut oil, Nguyen et al. 
(2017) found that increasing the concentration 
of Candida rugosa catalyst from 1.5 to 2.5 wt% 
did not increase the ~60% of FFAs produced in 
the reaction. 

It is noteworthy to point out that the use of 
ultrasonic irradiation influences the reactions 
catalyzed by enzymes, due to the intensification 
promoted in the substrates contact, because of 
the cavitation process (Bansode & Rathod 2017). 
This allows the enzymatic load to be used in the 
reaction not to be excessive, due to the fact that 
the mechanical shock waves and liquid jets of 
the process renew the catalyst contact surface, 
increasing the substrates diffusion to the 
enzyme active sites (Waghmare & Rathod 2016). 
As a result, high reaction yields at low catalyst 
concentration and without loss to the protein 

structure are verified (Zenevicz et al. 2016, Feiten 
et al. 2016), in addition to the possibility of its 
reuse (Facin et al. 2019).

Effect of buffer percentage
Figure 3 shows the FFA content as a function 
of the buffer solution percentage of 25, 50, 75, 
and 100 wt% (based on the substrates mass) 
investigated in the hydrolysis reaction. The 
buffer solution addition in the reaction mixture, 
25 wt% to 75 wt%, favored an increase in the 
FFAs formation of ~17% in 2 and 6 h of reaction. 
However, the increase in the buffer solution 
concentration from 75 to 100 wt% does not 
seem to have influenced the process. In such 
reaction system, water (or buffer solution) 
acts helping to increase the enzyme’s catalytic 
activity and contributes to the hydrolysis 
process as a reagent (Waghmare & Rathod 2016). 
On one hand, when an excess of buffer solution 
is added to the system, the thickness of the 
substrates layer formed around the enzyme can 
increase, causing reagents and products with 
low solubility in aqueous media to diffuse with 

Figure 3. Effect of the buffer solution percentage (  
25 wt%,  50 wt%,  75 wt% and  100 wt% 
based on the oil mass) on the FFA content (hydrolysis 
carried out at 55 °C, stirring rate of 400 rpm, and 10 
wt% Lipozyme® RM IM). Means followed by the same 
letter, for the same reaction time, do not statistically 
differ (p<0.05).
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difficulty to the active site of the enzyme (Yadav 
& Devi 2004). On the other hand, at low buffer 
concentrations, excess of oil in the system 
increases the viscosity of the reaction medium, 
leading to mass transfer limitations (Awadallak 
et al. 2013), also causing the catalyst surface 
coating, making it unavailable to react with the 
substrates (Waghmare & Rathod 2016).

Within the proposed process (in the 
range of variables evaluated), 75 wt% of buffer 
solution was the most suitable in the reaction 
medium. For Matuoog et al. (2017), the excess 
of water (70 wt%) in the fish oil hydrolysis 
reaction medium, catalyzed by lipase from 
Thermomyces lanuginosus, promoted lower 
yields than the percentage of 50% (based on 
the mass of oil), which resulted in a maximum 
of ~40% FFAs. Pongket et al. (2015) highlight 
that the relationship between oil and buffer 
is one of the parameters that most affect the 
hydrolysis degree, as it promotes limitations to 
the substrates interfacial area and ionization of 
the protein structure, reflecting on the enzyme 
catalytic capacity. In the hydrolysis of mustard oil 
catalyzed by porcine pancreas lipase, Goswami 
et al. (2012) found that when an excess of water 
is added to the process, a drastic reduction (over 
100%) in yields is verified.

It is also noteworthy to point out that 
environmental conditions, such as pH and 
ionic strength (salt ions), affect the enzyme 
activity by their interaction with the enzyme 
residues or the support of immobilized enzymes 
(Lima et al. 2001, Feiten et al. 2016). Low salt 
concentrations may promote ions binding to 
some residues, improving the enzyme catalytic 
activity and stability in aqueous solutions 
by stabilizing its structure, effect so-called 
salting-in. Nevertheless, during the salting-out 
phenomenon, high salt concentrations may 
negatively affect the enzyme’s activity, blocking 
the enzyme active site to access the substrates, or 

destabilizing the charged groups on its structure 
to the point that enzymes solubility substantially 
decreases (Dixon & Webb 1979, W.F. Azevedo 
Junior, unpublished data). Hence, addition of 25 
wt% to 75 wt% of sodium phosphate buffer may 
have stabilized the catalyst in solution, favoring 
an improvement on its catalytic activity, whereas 
the increase from 75 to 100 wt% does not seem 
to have affected its behavior.

Enzyme recycle effect 
The reuse of immobilized enzymatic catalyst 
is one of the factors that most attracts its 
applicability, being determined by its stability 
and maintenance of catalytic activity (Souza 
et al. 2020). Therefore, in this study, enzyme 
recycling was investigated under fixed reaction 
conditions: 75 wt% buffer solution (based on 
the oil mass), 10 wt% Lipozyme® RM IM catalyst 
(based on the substrates mass), for 6 hours at 
55°C and mechanical agitation rate of 400 rpm 
which was evaluated for 5 cycles (Figure 4). It is 
possible to verify in Figure 4 that the catalyst 
maintained 85% of its initial activity after 30 h 
of use.

Figure 4. Effect of Lipozyme® RM IM recycling, in 6 
hours of reaction, temperature of 55 °C, stirring rate of 
400 rpm, 75% buffer solution (based on the oil mass), 
and an enzyme concentration of 10% (based on the 
substrates mass).
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The catalytic activity maintenance after 
successive reuses suggests that the process 
follows the principles of green chemistry and 
sustainable development, enabling the catalyst 
reuse and providing better process performance 
and commercial viability (Sheldon & Woodley 
2018), highlighting the relevance of its 
investigation. Hence, Phuah et al. (2016), when 
investigating the operational stability of the 
Lipozyme® RM IM catalyst in the partial hydrolysis 
of palm oil, verified the total maintenance of the 
catalytic activity for 10 consecutive cycles of 1 hour 
each. When evaluating the reuse of Lipozyme® 
RM IM catalyst combined with Novozym® 435 (in 
proportion of 80 and 20%, respectively), Alves et 
al. (2014) verified maintenance of about ~90% of 
the catalysts initial activity after 15 reuse steps 
of 4 hours each.

It is noteworthy that the catalytic activity 
loss of ~15% of Lipozyme® RM IM in this work 
may be attributed to the desorption of the 
enzyme from the support, linked to inactivation 
through its reuse (Kabbashi et al. 2015). Some 
reports highlight that Lipozyme® RM IM has 
low operational stability due to fractures in the 
acrylic resin in which it is immobilized, which may 
expose the enzyme structure to denaturation 
and conformational changes (Souza et al. 2020). 
Such evidence was verified in Souza et al. (2020) 
work, in which a ~50% reduction on the catalytic 
activity of a lipases cocktail (75% Lipozyme® RM 
IM and 25% Novozym® 435) was reported after 
4 consecutive reactions of 3 hours each in the 
hydrolysis of coconut oil applying an ultrasound 
bath at low and high power (37 kHz and 300 W, 
respectively).

CONCLUSIONS
Hydrolysis of vegetable oils is the main reaction 
to produce FFAs. In this study, application 
of ultrasonic irradiation as a previous step 

for the substrates emulsification favored 
the FFAs production, pointing the promising 
use of an eco-friendly, green technique to 
overcome mass transfer limitations in water–oil 
mixtures. After substrates emulsification under 
ultrasound, great conversions where found in 
MKO hydrolysis, up to ~89 wt% of FFAs, when 
utilizing 10 wt% Lipozyme® RM IM, in 10 hours 
of reaction.  The catalyst maintained 85% of 
its initial activity after 30 h of use. Therefore, 
ultrasonic irradiation is an interesting strategy 
to enhance the substrates miscibility prior to 
the reaction itself and, consequently, increase 
hydrolysis yields of vegetable oils compared to 
simple mechanical agitation.
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