An Acad Bras Cienc
Anais da Academia Brasileira de Ciências
An. Acad. Bras. Ciênc.
0001-3765
1678-2690
Academia Brasileira de Ciências
Este artigo descreve a preparação de uma série de 16 ácidos antranílicos, em rendimentos que variaram de 51 a 97%, através do tratamento de isatinas com NaOH e H2O2. Independentemente da natureza do substituinte no anel aromático, as reações se completaram em 15 min. a temperatura ambiente, ao passo que as isatinas contendo substituinte no átomo de nitrogênio requereram um tempo maior para completar a reação (45 min.), sob as mesmas condições.
INTRODUCTION
Anthranilic acid or 2-aminobenzoic acid (1 - Fig. 1) is an intermediate metabolite for the production of the neurotransmitter serotonin (Mendoza et al. 2008). For playing a significant role in human lactation it is called vitamin L1, where the "L" stands for lactation, although it is not officially recognized as a vitamin (Wang and Okabe 2005).
Figure 1 -
Structure of anthranilic acid (1).
Anthranilic acid was first described by Carl Julius Fritzsche (1808-1871) in the early XIX century when it was accidentally obtained from the degradation of indigo. Since then anthranilic acid has been used in the textile industry as a raw material for the production of dyes (Wiklund and Bergman 2006). It is target of various chemical transformations, such as alkylation or acylation reactions at the amino group, esterification and coupling with amines at the carboxyl group and electrophilic aromatic substitution reactions (Wiklund and Bergman 2006, Naik et al. 2004, Hosangadi and Dave 1996, Mahiwal et al. 2012, Chaudhuri et al. 2007). Anthranilic acid and derivatives have applications in various sectors, including the food and perfumery industries, and are used in the syntheses of bioactive molecules (Wiklund and Bergman 2006). It is noteworthy that Ponstan(r) (mefenamic acid, used to relieve pain and inflammation) and Diurisa(r) (furosemide + amiloride hydrochloride, a diuretic association) have the anthranilic core. According to the literature, anthranilic acid exhibits anticancer, antimicrobial, insecticide, antiviral and anti-inflammatory activities (Huang et al. 2006, Lahm et al. 2007, Yadav and Krishnan 1998, Nittoli et al. 2007, Pajor and Sun 2013).
A few methods are available for the synthesis of unsubstituted anthranilic acid. Although yields are high, the reaction conditions are often severe and/or require the use of expensive reagents which need careful handling (Xu and Wolf 2009, Guin et al. 2007, Pandarus et al. 2011).
Substituted anthranilic acids can be obtained from the electrophilic aromatic substitution of anthranilic acid, or from the reaction of substituted isatins with NaOH and H2O2 (Popp 1975, Da Silva et al. 2001, Lisowski et al. 2000, Gérard et al. 2005). Although this method was described by Mayer and Schulze in 1925 (Mayer and Schulze 1925), no systematic study of this reaction has appeared in the literature. Herein we describe our studies of this reaction, starting from a number of isatins and varying the nature and position of the substituents in the aromatic ring or in the N-H group.
RESULTS AND DISCUSSION
All anthranilic acids were obtained in a single step from the reactions of substituted isatins with sodium hydroxide (NaOH 5% w/w) and hydrogen peroxide (H2O2 30% v/v). The products were isolated by filtration under vacuum after precipitation at pH between 1 and 3, as shown in Table I.
TABLE I
Anthranilic acids obtained from isatin with their respective reaction times (in min), pH and yields (%).
Entry
Substrate
Product
Reaction time
pH (pH of the reaction medium after addition of HCl)
Yield
1
15
2
75
2
15
2
69
3
15
1
75
4
15
1
74
5
15
3
78
6
15
1
67
7
15
3
51
8
15
2
95
9
15
3
69
10
15
3
97
11
15
3
80
12
45
3
68
13
45
3
74
14
45
3
91
15
45
3
78
16
45
3
91
Yields ranged from 51 to 97 %. No significant difference was observed in the yields of the products upon varying the nature of the group or atom on the isatin ring (entries 1-11). In these cases, the reactions were left for 15 min. under stirring at room temperature, whereas those of isatins containing a substituent on the nitrogen atom required longer reaction times for completion (45 min.) under the same reaction conditions. Good yields of the products were also obtained in these cases.
An advantage of this method is that it allows the synthesis of anthranilic acids containing ortho or metha substituents to the amino group (entries 7-8). Oxidation of isatin has also proven to be efficient for the preparation of disubstituted anthranilic acids (entries 9-11), prepared otherwise by electrophilic substitution on the aromatic ring. The method also allows the preparation of alkyl- (entries 13-16) or acyl- (entry 12)N-substituted anthranilic acids. It should be noted thatN-alkylation of isatins is a simple process (Wang et al. 2012, Garden et al. 1998), whereas anthranilic acidN-alkylation often requires drastic reaction conditions and the use of expensive catalysts ( Hikawa and Yokoyama 2011).
A mechanistic proposal for the isatin oxidation in the presence of H2O2 and NaOH is described in Scheme 1.
Scheme 1 -
Mechanistic proposal for the isatin oxidation in the presence of H2O2 and NaOH.
CONCLUSION
This work shows the generality of the isatin oxidation method for the preparation of anthranilic acids. The isatins used as starting materials may contain different substituents on the nitrogen atom or in the aromatic ring. This methodology offers the possibility to prepare different N-substituted anthranilic acids via simple alkylation and N-acylation reactions. Furthermore, all the products are obtained in short reaction times without catalysts and using aqueous basic solutions, featuring an environmentally friendly method.
ACKNOWLEDGMENTS
The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for supporting the research.
REFERENCES
CHAUDHURI SK, ROY S, SAHA M AND BHAR S. 2007. Regioselective aromatic electrophilic bromination with dioxane dibromide under solvent-free conditions. Synth Commun 37: 579-583.
CHAUDHURI
SK
ROY
S
SAHA
M
BHAR
S
2007
Regioselective aromatic electrophilic bromination with dioxane dibromide under solvent-free conditions
Synth Commun
37
579
583
DA SILVA JM, GARDEN SJ AND PINTO AC. 2001. The Chemistry of isatins: a review from 1975 to 1999. J Braz Chem Soc 12: 273-324.
DA
SILVA JM
GARDEN
SJ
PINTO
AC
2001
The Chemistry of isatins: a review from 1975 to 1999
J Braz Chem Soc
12
273
324
GARDEN SJ, TORRES JC, SILVA LE AND PINTO AC. 1998. A convenient methodology for the N-alkylation of isatin compounds. Synth Commun 28: 1679-1689.
GARDEN
SJ
TORRES
JC
SILVA
LE
PINTO
AC
1998
A convenient methodology for the N -alkylation of isatin compounds
Synth Commun
28
1679
1689
GÉRARD AL, LISOWSKI V AND RAULT S. 2005. Direct synthesis of new arylanthranilic acids via a Suzuki cross-coupling reaction from iodoisatins . Tetrahedron 61: 6082-6087.
GÉRARD
AL
LISOWSKI
V
RAULT
S
2005
Direct synthesis of new arylanthranilic acids via a Suzuki cross-coupling reaction from iodoisatins
Tetrahedron
61
6082
6087
GUIN D, BARUWATI B AND MANORAMA SV. 2007. Pd on amine-terminated ferrite nanoparticles: a complete magnetically recoverable facile catalyst for hydrogenation reactions. Org Lett 9: 1419-1421.
GUIN
D
BARUWATI
B
MANORAMA
SV
2007
Pd on amine-terminated ferrite nanoparticles: a complete magnetically recoverable facile catalyst for hydrogenation reactions
Org Lett
9
1419
1421
HIKAWA H AND YOKOYAMA Y. 2011. Palladium-catalyzed mono-N-allylation of unprotected anthranilic acids with allylic alcohols in aqueous media. J Org Chem 76: 8433-8439.
HIKAWA
H
YOKOYAMA
Y
2011
Palladium-catalyzed mono- N -allylation of unprotected anthranilic acids with allylic alcohols in aqueous media
J Org Chem
76
8433
8439
HOSANGADI BD AND DAVE RH. 1996. An efficient general method for esterification of aromatic carboxylic acids . Tetrahedron Lett 37: 6375-6378.
HOSANGADI
BD
DAVE
RH
1996
An efficient general method for esterification of aromatic carboxylic acids
Tetrahedron Lett
37
6375
6378
HUANG ST, HSEI IJ AND CHEN C. 2006. Synthesis and anticancer evaluation of bis(benzimidazoles), bis(benzoxazoles), and benzothiazoles . Bioorg Med Chem 14: 6106-6119.
HUANG
ST
HSEI
IJ
CHEN
C
2006
Synthesis and anticancer evaluation of bis(benzimidazoles), bis(benzoxazoles), and benzothiazoles
Bioorg Med Chem
14
6106
6119
LAHM GP ET AL. 2007. RynaxypyrTM: A new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator . Bioorg Med Chem Lett 17: 6274-6279.
LAHM
GP
2007
RynaxypyrTM: A new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator
Bioorg Med Chem Lett
17
6274
6279
LISOWSKI V, ROBBA M AND RAULT S. 2000. Efficient synthesis of novel 3-(het)arylanthranilic acids via a Suzuki cross-coupling reaction of 7-iodoisatin with (het)arylboronic acids in water. J Org Chem 65: 4193-4194.
LISOWSKI
V
ROBBA
M
RAULT
S
2000
Efficient synthesis of novel 3-(het)arylanthranilic acids via a Suzuki cross-coupling reaction of 7-iodoisatin with (het)arylboronic acids in water
J Org Chem
65
4193
4194
MAHIWAL K, KUMAR P AND NARASIMHAN B. 2012. Synthesis, antimicrobial evaluation, ot-QSAR and mt-QSAR studies of 2-amino benzoic acid derivatives . Med Chem Res 21: 293-307.
MAHIWAL
K
KUMAR
P
NARASIMHAN
B
2012
Synthesis, antimicrobial evaluation, ot-QSAR and mt-QSAR studies of 2-amino benzoic acid derivatives
Med Chem Res
21
293
307
MAYER F AND SCHULZE R. 1925. Über das 4- und 6-Methyl-isatin. Ber Dtsch Chem Ges 58: 1465-1469.
MAYER
F
SCHULZE
R
1925
Über das 4- und 6-Methyl-isatin
Ber Dtsch Chem Ges
58
1465
1469
MENDOZA JLH, VELÁSQUEZ JDQ, MEDINA VRM AND PERÉZ NM. 2008. Biosíntesis de ácido antranílico y ácido indolacético a partir de triptófano en una cepa de Azospirillum brasilense nativa de Tamaulipas. Avances en Investigación Agropecuária 12: 57-67.
MENDOZA
JLH
VELÁSQUEZ
JDQ
MEDINA
VRM
PERÉZ
NM
2008
Biosíntesis de ácido antranílico y ácido indolacético a partir de triptófano en una cepa de Azospirillum brasilense nativa de Tamaulipas
Avances en Investigación Agropecuária
12
57
67
NAIK S, BHATTACHARJYA G, TALUKDAR B AND PATEL BK. 2004. Chemoselective acylation of amines in aqueous media. Eur J Org Chem 2004: 1254-1260.
NAIK
S
BHATTACHARJYA
G
TALUKDAR
B
PATEL
BK
2004
Chemoselective acylation of amines in aqueous media
Eur J Org Chem
2004
1254
1260
NITTOLI T ET AL. 2007. Identification of anthranilicacid derivatives as a novel class of allosteric inhibitors of hepatitis C NS5B polymerase. J Med Chem 50: 2108-2116.
NITTOLI
T
2007
Identification of anthranilicacid derivatives as a novel class of allosteric inhibitors of hepatitis C NS5B polymerase
J Med Chem
50
2108
2116
PAJOR M AND SUN NN. 2013. Nonsteroidal anti-inflammatory drugs and other anthranilic acids inhibit the Na+/dicarboxylate symporter from Staphylococcus aureus. Biochemistry 52: 2924-2932.
PAJOR
M
SUN
NN
2013
Nonsteroidal anti-inflammatory drugs and other anthranilic acids inhibit the Na+/dicarboxylate symporter from Staphylococcus aureus
Biochemistry
52
2924
2932
PANDARUS V, CIRIMINNA R, BÉLAND F AND PAGLIARO M. 2011. Selective hydrogenation of functionalized nitroarenes under mild conditions . Catal Sci Technol 1: 1616-1623.
PANDARUS
V
CIRIMINNA
R
BÉLAND
F
PAGLIARO
M
2011
Selective hydrogenation of functionalized nitroarenes under mild conditions
Catal Sci Technol
1
1616
1623
POPP PD. 1975. The chemistry of isatin . Adv Heterocycl Chem 18: 1-58.
POPP
PD
1975
The chemistry of isatin
Adv Heterocycl Chem
18
1
58
WANG Y AND OKABE N. 2005. Crystal structures and spectroscopic properties of zinc (II) ternary. Chem Pharm Bull 53: 645-652.
WANG
Y
OKABE
N
2005
Crystal structures and spectroscopic properties of zinc (II) ternary
Chem Pharm Bull
53
645
652
WANG Y, ZHANG M, CAO S, LIN H, GAO M AND LI Z. 2012. Synthesis of 1-substituted 4(1H)-quinazolinones under solvent-free conditions . Synth Commun 42: 2715-2727.
WANG
Y
ZHANG
M
CAO
S
LIN
H
GAO
M
LI
Z
2012
Synthesis of 1-substituted 4(1H)-quinazolinones under solvent-free conditions
Synth Commun
42
2715
2727
WIKLUND P AND BERGMAN J. 2004. Alkylation and acylation of basic salts of anthranilic acid . Tetrahedron Lett 45: 969-972.
WIKLUND
P
BERGMAN
J
2004
Alkylation and acylation of basic salts of anthranilic acid
Tetrahedron Lett
45
969
972
WIKLUND P AND BERGMAN J. 2006. The chemistry of anthranilic acid . Curr Org Synth 3: 379-402.
WIKLUND
P
BERGMAN
J
2006
The chemistry of anthranilic acid
Curr Org Synth
3
379
402
XU H AND WOLF C. 2009. Efficient copper-catalyzed coupling of aryl chlorides, bromides and iodides with aqueous ammonia . Chem Commun 21: 3035-3037.
XU
H
WOLF
C
2009
Efficient copper-catalyzed coupling of aryl chlorides, bromides and iodides with aqueous ammonia
Chem Commun
21
3035
3037
YADAV GD AND KRISHNAN MS. 1998. An ecofriendly catalytic route for the preparation of perfumery grade methyl anthranilate from anthranilic acid and methanol . Org Proc Res Dev 2: 86-95.
YADAV
GD
KRISHNAN
MS
1998
An ecofriendly catalytic route for the preparation of perfumery grade methyl anthranilate from anthranilic acid and methanol
Org Proc Res Dev
2
86
95
SUPPLEMENTARY MATERIAL
- NMR spectra (1H and 13C), infrared and the typical procedure for preparation of the compounds (Experimental section). - Figures 1-48.
Autoria
GABRIEL F. RIO
Instituto de Química-CT, Universidade Federal do Rio de Janeiro/UFRJ, Avenida Athos da Silveira Ramos, 149, Bloco A, 7º andar, Cidade Universitária, 21941-909 Rio de Janeiro, RJ, BrasilUniversidade Federal do Rio de JaneiroBrasilRio de Janeiro, RJ, BrasilInstituto de Química-CT, Universidade Federal do Rio de Janeiro/UFRJ, Avenida Athos da Silveira Ramos, 149, Bloco A, 7º andar, Cidade Universitária, 21941-909 Rio de Janeiro, RJ, Brasil
BÁRBARA V. SILVA
Instituto de Química-CT, Universidade Federal do Rio de Janeiro/UFRJ, Avenida Athos da Silveira Ramos, 149, Bloco A, 7º andar, Cidade Universitária, 21941-909 Rio de Janeiro, RJ, BrasilUniversidade Federal do Rio de JaneiroBrasilRio de Janeiro, RJ, BrasilInstituto de Química-CT, Universidade Federal do Rio de Janeiro/UFRJ, Avenida Athos da Silveira Ramos, 149, Bloco A, 7º andar, Cidade Universitária, 21941-909 Rio de Janeiro, RJ, Brasil
SABRINA T. MARTINEZ
Instituto de Química-CT, Universidade Federal do Rio de Janeiro/UFRJ, Avenida Athos da Silveira Ramos, 149, Bloco A, 7º andar, Cidade Universitária, 21941-909 Rio de Janeiro, RJ, BrasilUniversidade Federal do Rio de JaneiroBrasilRio de Janeiro, RJ, BrasilInstituto de Química-CT, Universidade Federal do Rio de Janeiro/UFRJ, Avenida Athos da Silveira Ramos, 149, Bloco A, 7º andar, Cidade Universitária, 21941-909 Rio de Janeiro, RJ, Brasil
ANGELO C. PINTO
Instituto de Química-CT, Universidade Federal do Rio de Janeiro/UFRJ, Avenida Athos da Silveira Ramos, 149, Bloco A, 7º andar, Cidade Universitária, 21941-909 Rio de Janeiro, RJ, BrasilUniversidade Federal do Rio de JaneiroBrasilRio de Janeiro, RJ, BrasilInstituto de Química-CT, Universidade Federal do Rio de Janeiro/UFRJ, Avenida Athos da Silveira Ramos, 149, Bloco A, 7º andar, Cidade Universitária, 21941-909 Rio de Janeiro, RJ, Brasil
Instituto de Química-CT, Universidade Federal do Rio de Janeiro/UFRJ, Avenida Athos da Silveira Ramos, 149, Bloco A, 7º andar, Cidade Universitária, 21941-909 Rio de Janeiro, RJ, BrasilUniversidade Federal do Rio de JaneiroBrasilRio de Janeiro, RJ, BrasilInstituto de Química-CT, Universidade Federal do Rio de Janeiro/UFRJ, Avenida Athos da Silveira Ramos, 149, Bloco A, 7º andar, Cidade Universitária, 21941-909 Rio de Janeiro, RJ, Brasil
Academia Brasileira de CiênciasRua Anfilófio de Carvalho, 29, 3º andar, 20030-060 Rio de Janeiro RJ Brasil, Tel: +55 21 3907-8100 -
Rio de Janeiro -
RJ -
Brazil E-mail: aabc@abc.org.br
rss_feed
Stay informed of issues for this journal through your RSS reader