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ABSTRACT

In this note we show how classical Bernstein’s theorem on minimal surfaces in the Euclidean

space can be seen as a consequence of Calabi-Bernstein’s theorem on maximal surfaces in the

Lorentz-Minkowski space (and viceversa). This follows from a simple but nice duality between

solutions to their corresponding differential equations.
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1. INTRODUCTION

A minimal surface in Euclidean spaceR
3 is a surface with zero mean curvature. Bernstein (1915-

1917) proved that the planes are the only minimal entire graphs inR
3.

Theorem 1. (Bernstein’s theorem). The only entire solutions to the minimal surface equation

Minimal[u] = Div

(
Du√

1 + |Du|2
)

= 0

are affine functions.

On the other hand, a maximal surface in the Lorentz-Minkowski spaceL
3 is a spacelike surface

with zero mean curvature. Here byspacelike we mean that the induced metric from the Lorentzian
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metric in L
3 is a Riemannian metric on the surface. Calabi (1970) obtained the corresponding

version of Bernstein’s theorem for the case of maximal surfaces.

Theorem 2. (Calabi-Bernstein’s theorem). The only entire solutions to the maximal surface

equation

Maximal[u] = Div

(
Du√

1 − |Du|2
)

= 0, |Du|2 < 1,

are affine functions.

Here the condition|Du|2 < 1 means precisely that the graph defined byu is spacelike.

In this note we show how classical Bernstein’s theorem on minimal surfaces in the Euclidean

spaceR3 can be seen as a consequence of Calabi-Bernstein’s theorem on maximal surfaces in the

Lorentz-Minkowski spaceL3 (and viceversa). This follows from the following duality between

solutions to their corresponding differential equations.

Theorem 3. Let � ⊆ R
2 be a simply connected domain. There exists a non-affine C2 solution to

the minimal surface equation on �

Minimal[u] = Div

(
Du√

1 + |Du|2
)

= 0

if and only if there exists a non-affine C2 solution to the maximal surface equation on �

Maximal[w] = Div

(
Dw√

1 − |Dw|2
)

= 0, |Dw|2 < 1.

2. PROOF OF THEOREM 3

Proof. Assume thatu is a non-affine solution of Minimal[u] = 0 on the domain�. Recall that

for a vector fieldX onR
2 it holds that

(DivX)dx ∧ dy = dωJX,

whereJ denotes the positiveπ/2-rotation in the plane andωJX denotes the 1-form onR2 which is

metrically equivalent to the fieldJX, that is,ωJX satisfies

ωJX(Y ) = 〈JX, Y 〉

for every vector fieldY on R
2. Then Minimal[u] = 0 is equivalent to the fact thatωJU is closed

on�, whereU is the field on� given by

U = Du√
1 + |Du|2 .
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Then since the domain� is simply connected, we can write

J

(
Du√

1 + |Du|2
)

= Dw (1)

for a certainC2 functionw on�. SinceJ is an isometry, there follows

|Dw|2 = |Du|2
1 + |Du|2 < 1, (2)

and also

1 + |Du|2 = 1

1 − |Dw|2 . (3)

From (2), we see thatw satisfies the spacelike condition. Besides, using thatJ 2 = −id, we

obtain from (1) and (3) that

J

(
Dw√

1 − |Dw|2
)

=
√

1 + |Du|2J (Dw) = D(−u),

and so Maximal[w] = 0 follows on�.

If w were affine, thenDw is a constant vector,|Dw|2 ≡constant, and then it follows from (3)

that |Du|2 is a constant also. It then follows from (1) thatDu is a constant vector, contradicting

the assumption thatu is non-affine.

A very similar argument, starting with a non-affine solution of Maximal[w] = 0 on� with

|Dw|2 < 1, produces a non-affine solution of Minimal[u] = 0 on�. �

In particular, when� is the whole planeR2 we obtain the following.

Corollary 4. There exists an entire, non-affine C2 solution to the minimal surface equation

Minimal[u] = Div

(
Du√

1 + |Du|2
)

= 0

on R
2 if and only if there exists an entire, non-affine C2 solution to the maximal surface equation

Maximal[w] = Div

(
Dw√

1 − |Dw|2
)

= 0, |Dw|2 < 1

on R2.
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RESUMO

Nesta nota, mostramos como o clássico teorema de Bernstein sobre as superfícies mínimas no espaço

Euclideano pode ser visto como uma consequência do teorema de Calabi-Bernstein sobre as superfícies

máximas no espaço de Lorentz-Minkowski (e vice-versa). Isto decorre de uma simples, mas elegante,

dualidade entre soluções a suas correspondentes equações diferenciais.

Palavras-chave: Equações de superfícies mínimas, Equações de superfícies máximas, teorema de Bernstein,

teorema de Calabi-Bernstein.
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