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ABSTRACT
Taper functions and volume equations are essential for estimation of the individual volume, which have 
consolidated theory. On the other hand, mathematical innovation is dynamic, and may improve the forestry 
modeling. The objective was analyzing the accuracy of machine learning (ML) techniques in relation to 
a volumetric model and a taper function for acácia negra. We used cubing data, and fit equations with 
Schumacher and Hall volumetric model and with Hradetzky taper function, compared to the algorithms: 
k nearest neighbor (k-NN), Random Forest (RF) and Artificial Neural Networks (ANN) for estimation 
of total volume and diameter to the relative height. Models were ranked according to error statistics, as 
well as their dispersion was verified. Schumacher and Hall model and ANN showed the best results for 
volume estimation as function of dap and height. Machine learning methods were more accurate than 
the Hradetzky polynomial for tree form estimations. ML models have proven to be appropriate as an 
alternative to traditional modeling applications in forestry measurement, however, its application must be 
careful because fit-based overtraining is likely.
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INTRODUCTION

Precision and accuracy in the quantitative analysis 
of measuring individual volume of forest with 
commercial purposes are crucial; and cubing 
is the most used method for this purpose.  Since 
the quantification by cubing is expensive, due to 
the time and cost spent, indirect methods such as 
sharpening functions are usually applied for its 

estimation. Functions of tapering, volume equations 
and form factor are commonly developed to assess 
the merchantable tree volumes (Clutter 1980), and 
are increasingly used in recent global studies of 
forest productivity (Liang et al. 2016).

As alternative to modeling usually applied in 
the forest area, mathematical techniques such as 
Artificial Intelligence (AI) appear as option for 
application in the field of estimates. The artificial 
intelligence has a subdivision known as machine 
learning (ML), which is based on the principle of 
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inductive reasoning, which is based on the process 
of function approximation from the knowledge 
acquired (Faceli et al. 2011).

The nearest neighbor algorithm is the 
simplest of all ML algorithms, and is based on the 
classification or estimation of a particular attribute 
considering the distance of k nearest neighbors 
(Faceli et al. 2011). It is also instrument to estimate 
non-existent values ​​in databases, besides being 
versatile, flexible, and simple and not having to 
meet the regression assumptions (Sanquetta et al. 
2015b).

The RF algorithm composes a group of 
randomly trained regression trees, dividing 
explanatory variables according to their equality 
and inequality (Wang and Witten 1996, Breiman 
2001). However, it has the disadvantage of difficult 
understanding about its predictive capacity and also 
about the impossibility of analyzing parameters 
(Moreno-Fernández et al. 2015).	

ANNs are computational models based on 
the functioning of human brain, Haykin (2001) 
defines ANN as a processor structured by parallel 
distributed and interconnected units aiming at 
archiving knowledge, and then generalizing to an 
unexplored database.

The Random Forest technique has limited 
applications in forest research, but has seen 
increased applications in recent studies (Liang et 
al. 2016). In comparison, the k-NN are mostly used 
in remote sensing studies, since ANNs are more 
widely diffused in forest modeling in comparison 
to the other algorithms cited (Tatsumi et al. 2015, 
Were et al. 2015).  

Realizing that such methods still require 
baselines and basic studies for the forest area, it is 
indispensable to evaluate them, in order to progress 
the efficiency in the forest modeling, focusing on 
the reliability of population estimators. Therefore, 
the aim of the present work is to evaluate the 
accuracy of ML, Random Forest, ANN and k 
nearest neighbor techniques and to compare them 

to a traditional volumetric model and a tapering 
function for Acacia mearnsii De Wild in order to 
evaluate the probability of predictions improvement 
through machine learning techniques.

MATERIALS AND METHODS

Acacia mearnsii De Wild., popularly known as 
acacia negra (black wattle). Plantations are located 
in the state of Rio Grande do Sul (RS), segmented 
in three regions: Piratini, Cristal and Encruzilhada 
do Sul.

The planting areas have humid subtropical Cfa 
climate classified according to Köppen. Rains are 
distributed throughout the year, but with greater 
occurrence in summer. Average temperature in the 
coldest month is less than 18 ºC and higher than 
22 ºC in the hottest month, with few frosts and hot 
summers (Brasil 1992).

We sampled four stands in each of the regions 
so as to include all crop rotation (10 years). In 
Cristal 1, 2, 5 and 10-year old stands were sampled; 
1, 2, 5 and 9-year old stands in Piratini, and 1, 3, 5 
and 10-year old stands in Encruzilhada do Sul. 

In each stand, four circular plots with 10 
m diameter were randomly installed; and tree 
diameters were measured at 1.30 m above the 
ground.

Subsequently, 683 trees were cut for rigorous 
cubing by the Huber method, measuring diameters 
relative to 5%, 15%, 25%, 35%, 45%, 55%, 65%, 
75%, and 85%. 95% total stem height, totaling 10 
sections.

We used 60% of database for training of 
algorithms and 40% for the models validation. 
This separation was elaborated by considering the 
fraction of trees by age class.

Fitting Shumacher and Hall (1933) model 
(Equation 1) was performed using model and reg 
tool in the software SAS (2002), in order to confirm 
regression assumptions.

( ) ( ) ( )0 1 2ln ln iLn v dap htβ β β ε= + + + 	 (1)
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study. We repeated this process 10 times, applying 
a different distribution at each time and fitting the 
model during the tests.

Age, dap, total height and relative height were 
used as explanatory variables for diameter estimate 
along the stem.

ML models were trained to obtain the volume 
also with the variables age, dap, total height and 
relative height, but logic of accumulated volume 
at a given relative height was used, according to 
Equation 3.

0

Nt

i i i
i

v g L
=

=∑ 	 (3)

where:
vi = stem volume at height i (m³); gi = cross-

sectional area of wood pieces measured (m²); Li = 
length of wood pieces measured in the cubing (m); 
Nt = number of wood pieces.

K NEAREST NEIGHBOR

K nearest neighbors of each instance are defined 
according to the metrics selected, Equation 4 shows 
the Euclidean distance, which is commonly used for 
the algorithm application (Witten et al. 2011). In order 
to eliminate the influence of the variables scale, they 
were normalized according to Equation 5.
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where:
d=Euclidean distance between two points 

p(p1, p2,...pn) and  q(q1, q2,...,qn) p and q = different 
individuals with n attributes or explanatory 
variables.
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where:
ai = normalized instance; vi= current value of 

instance i to be normalized; max vi and min vi = 
maximum and minimum values of attribute i.

where:
Ln = Naperian logarithm; v = stem volume 

(m3); βn = model coefficients; dap = diameter at 
1.30 m above the ground (cm); ht = total height 
(m); εi = random error inherent to the regression.

The model presented by Hradetzky (1976) 
(Equation 2) was used for fitting the tapering 
function. Thus, exponents were selected by 
stepwise procedure, considering 15% significance 
(α = 0.15) in the F test of each partial coefficient 
in the model, using Proc reg in the SAS software 
(2002). The exponents used were 0.005; 0.01; 0.02; 
0.03; 0.04; 0.05; 0.06; 0.07; 0.08; 0.09; 0.1; 0.2; 
0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1; 2; 3; 4; 5; 10; 15; 
20 and 25.
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	 (2)

where:
di = diameter i along the stem (cm); dap = 

diameter at 1.30 m above the ground (cm); hi = 
height i along the stem (m); ht = total height (m); βn 
= model coefficients; pn = exponent selected to the 
model; εi = random error inherent to the regression.

Volume was estimated by the Poly Hradetzky 
Vi formula, incorporated into Florexel (Arce et al. 
2000).

We chose stratification based on the diameter 
class. For fitting volume and tapering function, data 
were divided into 3 classes: 5 cm bellow the dap; 5 
to 10 cm and over 10 cm.

Three machine-learning algorithms were 
analyzed: k nearest neighbor (k-NN), Random 
Forest (RF) algorithm, and Artificial Neural 
Networks (ANN).

All algorithms were trained in the Weka 3.7.12 
software (Hall et al. 2009), using the 10-group 
cross-validation test, which is based on dividing 
the test set into 10 groups of approximately equal 
size. According to Faceli et al. (2011), it consists 
in the use of 9 groups in the predictor training for 
later test with the remaining group in case of this 
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Aha (1992) established the concept of attribute 
weighting, thus avoiding bias in the estimation 
that noise data can induce. Thus, the instance to be 
estimated is obtained according to its distance from 
the test examples (Equation 6).

1
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where:
qf̂(x ) = unknown value instance to be estimated; 

f(xi)= observed instances used as basis for 
estimation; wk = weighting factor or weight relative 
to the k neighbor; k = number of neighbors used in 
the prediction.

In this work, weighting of k nearest neighbors 
was standardized as the inverse of their respective 
distances (1/d). This method is recommended by 
Bradzil et al. (2003) and Sanquetta et al. (2013).

Thus, input configurations for this algorithm 
in the Weka software were: 20 near neighbors with 
activated, cross-validation weighting of distances 
by 1/d and linear search by the near neighbor using 
the Euclidean distance.

RANDOM FOREST

The RF algorithm is limited in its input parameters. 
Default settings of Weka software were maintained, 
except for the number of trees to be created, 
since the program suggests the structuring of 100 
regression trees, but Were et al. (2015) suggest that 
higher numbers may provide more stable results. 
Thus, 1,000 regression trees were constructed.

ARTIFICIAL NEURAL NETWORKS

The Weka software uses sigmoidal logistic function 
as activation (Equation 7), varying from 0 to 1, 
being then required that data to be normalized to 
that scale.

( ) -
1

1 xf x
e

=
+ 	 (7)

The following input parameters were provided 
to the Weka for ANN training: momentum 0.4 and 
number of times 1,000, all as fixed terms.

Regarding the learning rate and the number of 
neurons in the hidden layer, these were obtained 
using the CV Parameter Selection tool available in 
Weka, where it is possible to optimize parameters 
of algorithms. For some parameters, we used 
literature values due to the high computational 
demand.

We used only one hidden layer, since according 
to the Universal Approximation Theorem, only 
one hidden layer is enough for a MLP network 
to approximate any continuous function (Haykin 
2001).

MODELS EVALUATION

Results obtained by models were evaluated 
according to the Pearson correlation (r) between 
the observed and predicted values, square root of 
the mean error (SRME%) in percentage, graphical 
analysis of absolute residuals and frequency 
histogram of percentage errors by classes in order 
to ratify the ranking decision, as well as identifying 
possible trends along the estimate line.

Additional statistics were used to complement 
taper models’ accuracy test, which are based on 
tests on the residues according to the methodology 
indicated by Parresol et al. (1987) and Figueiredo 
Filho et al. (1996). 

Among them were used: deviation (D), which 
indicates the existence or not of tendencies between 
residues; Residues percentage (RP) showing the 
error amplitude; SQRR that relates the size of each 
residue to its real value, and standard deviation 
of differences (SD) that shows the homogeneity 
among residues (Parresol et al. 1987).

Based on the seven statistics cited, models 
were organized in order to determine which one 
obtained the best performance. This evaluation was 
performed by assigning scores, being the smallest 
score given to the best model of aforementioned 
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statistic. Therefore, the one with the lowest sum 
will be considered with the best performance.

RESULTS AND DISCUSSION

Table I shows coefficients fitted for Schumacher and 
Hall model, all coefficients being significant. Fit 
indicators such as the correlation between observed 
and predicted values ​​and SRME% show that models 
are indicated for application in volume estimation. 
Trees below 5 cm dap were not considered in the 
analysis because of Weka program restriction in the 
fit of AI ​​models.

Table II shows statistics for models evaluation, 
both for the test set used in training and fit, and for 
the validation set. 

All models provided timely statistics for their 
use, with correlation coefficients of observed and 
estimated values ​​above 0.99 and low SRMEs. As 
expected, test suite statistics prove more accuracy. 
As for the ranking of models for the training set, 
the three models of machine learning were more 
accurate than Schumacher and Hall. However, 
when we evaluate the validation set, we can see that 
these models show statistics more unstable, that is, 
Schumacher and Hall, and ANNs show very similar 
statistics in both groups, while the others do not.

The nearest neighbor algorithm (k-NN) was the 
best model in the test set, but it did not achieve the 
same success in the validation set, although its error 
statistics point to a technique good performance 

TABLE I
Fit statistical coefficients and indicators of volumetric models fitted by dap class.

Dap class 
(cm) β0 β1 β2 Set R SRME%

5 a 10 -9.729** 1.898** 0.941** 1 0.977 10.088
2 0.988 7.645

> 10 -9.733** 1.853** 0.985** 1 0.988 7.827
2 0.988 7.271

Sets 1 and 2 - Training (1) and validation (2) sets; ** significant at 1%; ns not significant.

TABLE II
Fit statistics for estimation of stem total volume for training (1) and validation (2) sets.

Set Model
Statistics

Ranking
r RSME RSME% D |D| SD SSRR RP

1

S & H 0.994 0.007 9.40 -7x10-5 4x10-3 3x10-4 2.22 5.65 4

k-NN 0.999 0.002 2.18 -4x10-5 10-3 7x10-5 0.24 1.82 1

RF 0.998 0.005 6.05 10-4 2x10-3 2x10-4 1.21 4.09 2

RNA 0.995 0.006 8.27 -4x10-4 4x10-3 3x10-4 2.49 6.54 3

2

S & H 0.995 0.007 8.60 3x10-4 4x10-3 3x10-4 1.10 5.34 2

k-NN 0.993 0.008 9.84 -1x10-4 5x10-3 4x10-4 1.59 6.31 3

RF 0.990 0.009 11.74 9x10-4 5x10-3 5x10-4 2.22 7.22 4

RNA 0.995 0.006 8.22 -2x10-5 4x10-3 3x10-4 1.42 6.11 1

r – correlation coefficient between observed and estimated values; RSME – Absolute Root Mean Square Error; RSME% - 
Percentual Root Mean Square Error; D – mean deviation; |D| – mean absolute deviation; SD – standart deviation of the differences; 
SSRR – Sum of the relative square residues; RP – percentual residues.
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Figure 1 - Relative residues dispersion and frequency of percentual residues by error class for estimation of total 
volume in function of dap and total height.
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(Figure 1), where bias in the test set is extremely 
subtle and very close to zero.

On the other hand, both the Schumacher and 
Hall model and ANN (when properly trained) have 
the characteristic of modeling, although ANN 
is less explicit and more flexible due to the high 
number of neurons.

Figure 1 also shows that models did not 
present extreme residues, with their respective 
error frequencies between ± 20% center classes. It 
should be noted here a slight tendency of ANN to 
underestimate volumes, especially those of smaller 
magnitude.

Silva et al. (2009) states that ANNs have similar 
or superior accuracy to the regression models and 
that it still has the advantage of generalization and 
plasticity that allows the use of only one network 
to predict the volume of trees from different sites 
and clones.

Gorgens et al. (2014) report promising results 
with the use of ANNs trained with the back 
propagation algorithm, suggesting that the network 
is constructed with more than 10 neurons in the first 
layer, as well as recommending the use of more 
than one intermediate layer. However, the network 
optimization did not obtain a complex model as 
the best result in this work, since the network 
considered as the one with the best performance 
has 3 neurons in the intermediate layer.

Özçelik et al. (2010) follow the same result line 
as the simplicity of ANN trained with intermediate 
layer and 2 or 3 neurons. They emphasize as 
advantage that ANNs can assimilate relations 
between variables through connections of their 
respective weights, enabling networks to model 
systems with complex nonlinear relationships.

Table III shows coefficients and their respective 
exponents selected by the stepwise method, all 
coefficients being significant at 95% probability. 
Fitting indicators such as the correlation between 
observed and predicted values ​​and SRME% 
demonstrate that models are suitable for use in 
estimating stem form. The model has greater 
difficulty in expressing form in individuals in the 
class of dap smaller than 5 cm.

Table IV shows evaluation statistics of models, 
both for the test group used in training and fit, as 
well as for the validation group.

All models provided favorable statistics for 
their use, with correlation coefficients higher than 
0.98 and maximum SRME of 10%. In turn, SSRR 
statistic showed greater discrepancy between 
models due to their quadratic nature. As expected, 
the test suite statistics demonstrate greater accuracy.

Figure 2 shows that models did not present 
extreme residues, with their respective frequencies 
of errors in ± 20% center classes.

TABLE III
Coefficients, exponents selected by stepwise and statistical indicators of taper functions fitted by dap class.

Dap class 
(cm) β0 β1 β2 β3 β4 Set r RSME%

< 5 30.560**
-29.421** -0.717** -0.402** - 1 0.959 25.246

0.005 1 4 2 0.950 25.964

5 - 10 18.096**
-17.256** -0.734** -0.168** - 1 0.979 9.551

0,005 2 25 2 0.982 8.992

> 10 18.382**
-17.598** -0.613** -0.374** 0.189* 1 0.988 7.565

0.005 2 10 15 2 0.987 7.656

Sets 1 and 2 - Training (1) and validation (2) sets; * significant at 5%; ** significant at 1%; ns not significant; RSME% - Percentual 
Root Mean Square Error.
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Figure 2 - Relative residues dispersion and frequency of percentual residues by error class for diameter estimation along 
the stem.
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Regarding the models ranking, as well as in 
the estimation of the volume as function of dap 
and height, it is evident that even though cross 
validation has been applied in the training of AI 
models, these models may not necessarily affect 
good fit in the validation group. Thus, repeating 
here the trend of the nearest neighbor algorithm 
(k-NN), as the best model in the test set and worst 
model in the validation set.

Leite et al. (2011) compared the performance 
of three types of ANNs: linear perceptron, multiple 
layer perceptron and radial base function, with 
the second-degree polynomial taper function, 
established as Kozak’s model (1969). Authors 
point out that ANN models showed better fit to 
the database, with low values ​​of SRME% and 
concentration of residues about ± 10%. However, 
like the present research, the models showed 
difficulties in the estimations of smaller diameters 
located in the stem’s terminal portion with strong 
tendencies to overestimate.

Soares et al. (2011) reported ANNs’ good 
performance in the estimation of relative diameters 
trained with the same methodology of this work, 
with correlation coefficients between 0.97 and 0.99, 
as well as SRME% values ​​of 7% on average. As a 

differential, they also point out a good accuracy of 
the ANNs in the prediction of recursive diameters, 
that is, with only 3 measures of the base in the 
generalization step (validation) of the model and 
subsequent estimation of the others. Soares et 
al. (2012) still propose the use of ANNs to study 
the form without previous knowledge of the total 
height, with correlation coefficients between 0.95 
and 0.99, as well as mean SRME% between 1% 
and 20%, considering a stratification of individuals 
by dap class.

Table V shows evaluation statistics of the 
models, both for the test group used in training 
and fit, as well as for validation group. All models 
showed correlation coefficients higher than 0.98, 
but with SRME% values ​​higher than those obtained 
in the relative diameter estimates, indicating greater 
variability in estimates. 

Regarding the ranking, the RF model was more 
accurate for the training set, followed by ANN. In 
turn, ANN proved to be the best performing model 
in the validation set, followed by the Hradetzky 
polynomial.

Figure 3 shows the residual graphs for total 
volume, showing that k-NN model presented 
greater bias for both the training set and validation 

TABLE IV
Fit statistics for diameter estimate along the stem fortraining (1) and validation (2) sets.

Set Model
Statistics

Ranking
r RSME RSME% D |D| SD SSRR RP

1

Hradetzky 0.990 0.58 9.25 0.04 0.40 0.01 159.68 10.77 4

k-NN 0.999 0.11 1.78 4x10-5 0.07 10-3 9.55 2.24 1

RF 0.999 0.20 3.24 10-3 0.14 2x10-3 35.99 4.21 2

RNA 0.992 0.52 8.25 -0.06 0.36 0.01 170.75 9.76 3

2

Hradetzky 0.990 0.58 9.15 0.05 0.40 0.01 117.98 11.21 3

k-NN 0.987 0.63 10.06 0.03 0.44 0.01 251.93 12.57 4

RF 0.991 0.53 8.39 0.02 0.36 0.01 148.71 10.33 2

RNA 0.992 0.51 8.04 -0.06 0.35 0.01 97.41 9.76 1

r – correlation coefficient between observed and estimated values; RSME – Absolute Root Mean Square Error; RSME% - 
Percentual Root Mean Square Error; D – mean deviation; |D| – mean absolute deviation; SD – standart deviation of the differences; 
SSRR – Sum of the relative square residues; RP – percentual residues.
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Figure 3 - Relative residues dispersion and frequency of percentual residues by error class for estimation of stem total 
volume.
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set. Combined with the Hradetzky polynomial, both 
have a slight tendency to overestimate volumes and 
the k nearest neighbor has stronger bias.

RF and ANN models showed a more 
homogeneous distribution, with their points close 
to zero and showing no tendency to over- or 
underestimate.

Özçelik et al. (2010) indicate that ANNs 
implementation in forestry estimation offers several 
advantages over traditionally addressed methods, 
emphasizing that problems such as overtraining 
can be easily avoided with the selection of suitable 
architectures and use of a fit and training database. 
This fact was evidenced in this work, in which 
ANN having been proved the best model among 
those analyzed.

Binoti et al. (2014b) tested a method for 
obtaining total volume estimates with and without 
bark for Eucalyptus sp. using ANNs. Thus, 
networks were trained with clone, dap, total height 
and diameters related to heights 0.5, 1, 2 and 4 m, 
concluding that this methodology can be applied 
as alternative to reduce diameter measurements 
throughout the stem, aiming at the cubing of 
standing trees.

Sanquetta et al. (2015a) have tested k-NN 
models performance for estimating volume of 

stalks of Bambusa sp., combined with fifth-degree 
polynomial taper functions and Hradretzky’s 
fractional exponents, besides other techniques for 
estimation of stem volume. These authors consider 
that satisfactory results were not obtained with 
k-NN models and attribute the poor performance in 
the estimation to the reduced number of database. 
Also noting that using this technique in this 
case would only be indicated if linear regression 
premises were violated.

The Knn algorithm is versatile, simple and 
has great plasticity in the modeling of complex 
relationships. It is an important tool to estimate 
missing values ​​and to explore local deviations in 
databases (Eskelson et al. 2009, Fehrmann et al. 
2008). When compared to the traditional methods 
of regression, Knn algorithms has the disadvantage 
of not having well-studied statistical properties. 
Moreover, the sample size can be a limiting to 
accurate is preferred (Mognon et al. 2014, Haara 
and Kangas 2012).

The Random Forest technique does not need 
assumptions about data distribution, because it has 
high capacity to model complex interactions among 
a large number of predictive variables and demand 
no overtraining to the database (Prassad et al. 2006). 

TABLE V
Fit statistics for estimation of stem total volume for training (1) and validation (2) sets.

Set Model
Statistics

Ranking
r RSME RSME% D |D| SD SSRR RP

1

Hradetzky 0.994 0.01 10.40 2x10-3 5x10-3 3x10-4 2.67 6.35 4

k-NN 0.994 0.01 10.05 10-3 5x10-3 3x10-4 3.29 7.20 3

RF 0.999 2x10-3 2.17 3x10-4 10-3 6x10-5 0.85 2.97 1

RNA 0.994 0.01 9.31 10-3 4x10-3 3x10-4 2.30 5.95 2

2

Hradetzky 0.994 0.01 10.80 2x10-3 5x10-3 4x10-4 1.55 6.24 2

k-NN 0.989 0.01 12.64 2x10-3 0.01 5x10-4 3.43 8.97 4

RF 0.990 0.01 11.65 8x10-4 0.01 5x10-4 1.94 6.78 3

RNA 0.995 0.01 8.32 6x10-4 4x10-3 3x10-4 1.13 5.47 1

r – correlation coefficient between observed and estimated values; RSME – Absolute Root Mean Square Error; RSME% - 
Percentual Root Mean Square Error; D – mean deviation; |D| – mean absolute deviation; SD – standart deviation of the differences; 
SSRR – Sum of the relative square residues; RP – percentual residues.
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However, RF is not a tool for traditional statistical 
inference; therefore, it is not suitable for ANOVA 
and hypothesis tests. It does not compute p values, 
regression coefficients, or confidence intervals. 
The lack of a mathematical equation or graphical 
representation may hinder its interpretation (Cutler 
et al. 2007).

RNAs have the ability to model non-explicit 
characteristics among variables. In comparison 
to traditionally applied models, they have the 
advantage of generating estimates for different 
strata with a single model, besides the possibility 
of including categorical variables in their 
models (Gorgens et al. 2009, Silva et al. 2009 
and Binoti et al. 2014a, b). The RNAs still have 
great adaptability, tolerance to outliers and ease 
of application after network training (Leite et al. 
2011). As a disadvantage, they have difficulties 
in choosing the network configuration, requiring 
high computational capacity and demanding care 
to avoid overtraining in relation to the database.

On the other hand, regression analysis has 
a consolidated theory of wide application. It has 
the possibility of obtaining different variables 
of interest, being less demanding in numbers of 
observations with the advantage of interpreting 
parameters. However, the predefined curve 
behavior makes it difficult to properly adjust to 
different databases. The advantage of Artificial 
Intelligence remains in the ability to identify 
relationships between variables that are too 
complex for parametric models (Strobl et al. 2009).

CONCLUSION

Schumacher and Hall model and ANN showed the 
best results for volume estimation depending on 
dap and height when compared to Random Forest 
and k nearest neighbor.

Artificial intelligence methods used prove to 
be more accurate than the Hradetzky polynomial 
for tree form study estimates, such as the diameter 
along the stem and total volume.

ML models are appropriate as alternative 
in traditionally applied modeling in forestry 
measurement; however, their use should be 
cautious because of the greater possibility of fit-
based overtraining.

REFERENCES

AHA D. 1992. Tolerating noisy, irrelevant and novel attributes 
in instance-based learning algorithms. Int J Man-Machine 
Studies 36(2): 267-287. 

ARCE JE, KOEHLER A, JASTER CB AND SANQUETTA 
CR. 2000. Florexel – Funções Florestais desenvolvidas 
para o Microsoft Excel. Centro de Ciências Florestais e 
da Madeira (CCFM). Universidade Federal do Paraná, 
Curitiba, 2000. 

BINOTI DHB, BINOTI MLMS AND LEITE HG. 2014a. 
Configuração de redes neurais artificiais para estimação 
do volume de árvores. Ciência da Madeira 5(1): 58-67. 

BINOTI MLMS, BINOTI DHB, LEITE HG, GARCIA SLR, 
FERREIRA MZ, RODE R AND SILVA AAL. 2014b. 
Redes neurais artificiais para estimação do volume de 
árvores. Rev Árvore 38(2): 283-288.

BRADZIL P, SOARES CC AND JOAQUIM P. 2003. Ranking 
Learning Algorithms: Using IBL and Meta-Learning on 
Accuracy and Time Results. Mach Learn 50: 251-277. 

BRASIL. 1992. Ministério da Agricultura e Reforma Agrária. 
Secretaria Nacional de Irrigação. Departamento Nacional 
de Meteorologia. Normas climatológicas (1961-1990). 
Brasília, 84 p.

BREIMAN L. 2001. Random Forests. Mach Learn 45(1): 
5-32. 

CLUTTER JL. 1980. Development of taper functions from 
variable-top merchantable volume equations. Forest Sci 
26(1): 117-120.

CUTLER DR, EDWARDS TC, BEARD KH, CUTLER A, 
HESS K, GIBSON J AND LAWLER J. 2007. Random 
forests for classification in ecology. Ecology 88: 2783-
2792. 

ESKELSON BNI, TEMESGEN H, LEMAY V, BARRETT 
TM, CROOKSTON NL AND HUDAK T. 2009. The roles 
of nearest neighbor methods in imputing missing data in 
forest inventory and monitoring databases. Scand J For 
Res 24: 235-246. 

FACELI K, LORENA AC, GAMA J AND CARVALHO 
ACPLF. 2011. Inteligência artificial: uma abordagem de 
aprendizado de máquina. Rio de Janeiro, LTC, 378 p.

FEHRMANN L, LEHTONEN A, KLEINN C AND TOMPPO 
E. 2008. Comparison of linear and mixed-effect regression 
models and a k-nearest neighbor approach for estimation 
of single-tree biomass. Can J For Res 38(1): 1-9. 

FIGUEIREDO FILHO A, BORDERS BE AND HITCH KL. 
1996. Taper equations for Pinus taeda in southern Brazil. 
For Ecol Manage 83(1-2): 39-46. 



An Acad Bras Cienc (2018) 90 (4)

	 MODELING OF TREES WITH MACHINE LEARNING	 3401

GORGENS EB, LEITE HG, GLERIANI JM, SOARES CPB 
AND CEOLIN A. 2009. Estimação do volume de árvores 
utilizando redes neurais artificiais. Rev Árvore 33(6): 
1141-1147. 

GORGENS EB, LEITE HG, GLERIANI JM, SOARES CPB 
AND CEOLIN A. 2014. Influência da arquitetura na 
estimativa de volume de árvores individuais por meio de 
redes neurais artificiais. Rev Árvore 38(2): 289-295.

HAARA A AND KANGAS A. 2012. Comparing k nearest 
neighbors methods and linear regression – is there 
reason to select one over the other? Mathematical and 
Computational Forestry & Natural-Resource Sciences 
4(1): 50-65. 

HALL M, FRANK E, HOLMES G, PFAHRINGER B, 
REUTEMANN P AND WITTEN IH. 2009. The WEKA 
Data Mining Software: An Update. SIGKDD Explorations 
11(1): 10-18.

HAYKIN SS. 2001. Redes neurais: princípios e prática. 
Tradução Paulo Martins Engel. 2ª ed., Porto Alegre, 
Bookman, 900 p.

HRADETZKY J. 1976. Analyse und interpretation statstisher 
abränger keiten. (Biometrische Beiträge zu aktueller 
forschungs projekten). Baden: Württemberg Mitteilungen 
der FVA, 146 p.

KOZAK A, MUNRO DD AND SMITH JGH. 1969. Taper 
functions and their applications in forest inventory. For 
Chron 45(4): 278-283.

LEITE HG, SILVA MLM, BINOTI DHB, FARDIN L AND 
TAKIZAWA FH. 2011. Estimation of inside-bark diameter 
and heartwood diameter for Tectona grandis Linn. trees 
using artificial neural networks. Eur J Forest Res 130(2): 
263-269. 

LIANG J ET AL. 2016. Positive biodiversity-productivity 
relationship predominant in global forests. Science 
354(6309): aaf8957.

MOGNON F, CORTE APD, SANQUETTA CR, BARRETO 
TG AND WOJCIECHOWSKI J. 2014. Estimativas de 
biomassa para plantas de bambu do gênero Guadua. Rev 
Ceres 61(6): 900-906.

MORENO-FERNÁNDEZ D, CAÑELLAS I, BARBEITO 
I, SÁNCHEZ-GONZÁLEZ M AND LEDO A. 2015. 
Alternative approaches to assessing the natural 
regeneration of Scots pine in a Mediterranean forest. Ann 
For Sci 72(5): 569-583. 

ÖZÇELIK R, DIAMANTOPOULOU MJ, BROOKS JR AND 
WIANT JUNIOR HV. 2010. Estimating tree bole volume 
using artificial neural network models for four species in 
Turkey. J Environ Manage 91(3): 742-753.  

PARRESOL BR, HOTVEDT JE AND CAO QV. 1987. A 
volume and taper prediction system for bald cypress. Can 
J Forest Res 17: 250-259. 

PRASAD AM, IVERSON LR AND LIAW A. 2006. Newer 
Classification and Regression Tree Techniques: Bagging 
and Random Forests for Ecological Prediction. Ecosystems 
9(2): 181-199. 

SANQUETTA CR, SANQUETTA MNI, CORTE APD, 
PÉLLICO NETTO S, MOGNON F, WOJCIECHOWSKI 
J AND RODRIGUES AL. 2015a. Modeling the apparent 
volume of bamboo culms from Brazilian plantation. Afr J 
Agric Res 10(42): 3977-3986. 

SANQUETTA CR, WOJCIECHOWSKI J, CORTE APD, 
BEHLING A, PÉLLICO NETTO S, RODRIGUES AL 
AND SANQUETTA MNI. 2015b. Comparison of data 
mining and allometric model in estimation of tree biomass. 
BMC Bioinformatics 16: 247. 

SANQUETTA CR, WOJCIECHOWSKI J, CORTE APD, 
RODRIGUES AL AND MAAS GCB. 2013. On the use 
of data mining for estimating carbon storage in the trees. 
Carbon Balance Manag 8: 6.

SAS INSTITUTE INC. 2002. SAS/STAT User’s Guide, 
Version 9.2. SAS Institute: Cary Inc.

SCHUMACHER FX AND HALL FS. 1933. Logarithmic 
expression of timber-tree volume. J Agric Res 47(9): 719-
734.

SILVA MLM, BINOTI DHB, GLERIANI JM AND LEITE 
HG. 2009. Ajuste do modelo de Schumacher e Hall e 
aplicação de redes neurais artificiais para estimar volume 
de árvores de eucalipto. Rev Árvore 33(6): 1133-1139. 

SOARES FAAMN, FLÔRES EL, CABACINHA CD, 
CARRIJO GA AND VEIGA ACP. 2011. Recursive 
diameter prediction and volume calculation of Eucalyptus 
trees using multilayer perceptron networks. Comput 
Electroni Agric 78(1): 19-27. 

SOARES FAAMN, FLÔRES EL, CABACINHA CD, 
CARRIJO GA AND VEIGA ACP. 2012. Recursive 
diameter prediction for calculating merchantable volume 
of Eucalyptus clones without previous knowledge of total 
tree height using artificial neural networks. Applied Soft 
Computing 12: 2030-2039. 

STROBL C, MALLEY J AND TUTZ G. 2009. An introduction 
to recursive partitioning: rationale, application and 
characteristics of classification and regression trees, 
bagging and random forests. Psychol Methods 14: 323-
348. 

TATSUMI K, YAMASHIKI Y, TORRES MAC AND TAIPE 
CLR. 2015. Crop classification of upland fields using 
Random forest of time-series Landsat 7 ETM+ data. 
Comput Electron Agric 115: 171-179. 

WANG Y AND WITTEN IH. 1996. Induction of model trees 
for predicting continuous classes. Working Paper 96/23. 

WERE K, BUI DT, DICK OB AND SINGH BR. 2015. A 
comparative assessment of support vector regression, 
artificial neural networks, and random forests for 
predicting and mapping soil organic carbon stocks across 
an Afromontane landscape. Ecol Indic 52: 394-403. 

WITTEN IH, EIBE F AND HALL MA. 2011. Data mining: 
practical machine learning tools and techniques. 3rd ed., 
Burlington, Elsevier, 665 p. 


